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DECOUPLING AND POLE ASSIGNMENT IN LINEAR
MULTIVARIABLE SYSTEMS: A GEOMETRIC APPROACH*

W. M. WONHAM+ anp A. S. MORSE}

1. Introduction. The current interest in linear multivariable control has
led to several algebraic results with important applications to system synthesis.
In particular, the problem of decoupling of individual system outputs by means
of state variable feedback was studied by Rekasius [1], Falb and Wolovich [2]
and Gilbert [3]; the problem of realizing arbitrary pole locations in the closed
loop system transfer matrix was investigated by Wonham [4] and Heymann [5].
In the present article, new results are obtained along these lines. In § 3, the problem
of neutralizing the effect of disturbances with respect to a specified group of
output variables is solved. In § 4, the concept of a controllability subspace is
introduced and its relation to pole assignability is investigated. This material
is preliminary to the formulation of a general problem of output decoupling
in §5. In §6 and § 7, necessary and sufficient conditions for decoupling are ob-
tained in two special cases ; the results of § 7 complement and extend those obtained
previously in [1], [2] and [3]. In each case, the problem of pole assignment is
solved completely.

Our viewpoint is that such problems are usefully treated in a geometric
framework in which both definitions and results become intuitively transparent.
In this way, entanglement at the outset in a thicket of algebraic calculations is
avoided. Of course, for applications, it is necessary to translate the geometric
criteria into matrix operations suitable for computation. This matter will be
considered in a future article.

2. Notation. The control system of interest is specified by the differential
equation

2.1) X(t) = Ax(t) + Bu(t)

with x an n-vector, u an m-vector and A, B constant matrices of dimension, re-
spectively, n x n and n x m. Here and below, all vectors and matrices have real-
valued elements. Script letters denote linear subspaces; &" is real n-space; ¥ is
the orthogonal complement of the subspace 7" ; O denotes both the vector zero
and the zero subspace.

If K is a matrix, {K} or ¢ is the range of K, and .4"(K) is the null space of
K. If K is of dimension u x v and ¥~ < &*, we write K~ !¢~ for the subspace
{z:ze &, KzeV'} < &

The controllable subspace of the pair (4, B), written {A|%}, is defined as

{A|B} =B+ AB + --- + A" 'A.
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Thus, {A4|4} is the largest subspace of &" which the control u(-) in (2.1) can
influence. Observe that {A|%} is an A-invariant subspace of &".
With (2.1), we consider the auxiliary equation

(22) y(t) = Hx(1),

where H is a constant ¢ x n matrix. The vector y is the output.
Equations (2.1) and (2.2) play no essential role but serve to guide the investiga-
tion.

3. Localization of disturbances. In place of (2.1), consider the perturbed
system

(3.1) X(1) = Ax(1) + Bu(t) + D&(1),

where D is a constant n x d matrix and &(-) is a disturbance input. If u(t) = Cx(¢)
+v(t) (Where v(-) is an external control input), then the output y(-) will be un-
affected by all possible &(-) if and only if {4 + BC|2} = A(H). This suggests
the problem: given A, B, 9 <= 8", /" < &", under what conditions does there
exist an m x n matrix C such that {4 + BC|2} < 4"? If C exists, the effect of
disturbances is, in an algebraic sense, localized to .4

THEOREM 3.1. There exists C such that {A + BC|2} <= A" if and only if
9 < ¥, where ¥ is the maximal subspace such that

(3.2) YV c N NA B + 7).

Furthermore ¥ is given by ¥~ = ¥"®, where

(3.3) YO = 4, 9O =y N4 NGy D),
i=1,2,---,v,

and v = dim ..

Here and below, “‘maximal’ (“‘minimal”’) mean l.u.b. (g.1.b.) with respect to
the usual partial ordering of subspaces by inclusion.

To prove the theorem we need two auxiliary facts.

LemMmA 3.1. Let x;€6", u;eé™ i=1,---, N, and write X = (x;, -+, Xy),
U = (uy, -, uy). There existsanm x nmatrix C suchthat Cx; = u;,i =1,---, N,
if and only if /'(X) = A(U). C always exists if the x; are linearly independent.

The simple proof is omitted.

LEMMA 3.2. Let?” < &". There existsanm x nmatrix C suchthat(A + BC)¥~
c ¥ ifandonlyif AV <« B+ V.

Proof. Necessity is clear. For sufficiency, let vy, ---, v, be a basis of ¥~
Then Av; = Bu; + w; for some u,e &™ and w;e ¥. Choose C, by Lemma 3.1,
such that Cv; = —u;,i=1,---, u; then (A + BCp; = w;.

Proof of Theorem 3.1. For sufficiency, (3.2) implies ¥~ < A" and AY < &
+ 7. By Lemma 3.2, there exists C such that (4 + BC)?" < ¥ Then

{A+ BCZ} c {4+ BCY} =¥ < N

The maximal property of ¥~ was not required.
For necessity write {4 + BC|2} = #. Then

(3.4) W N, AW B+ W
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If #”is the class of all #” < &" which satisfy (3.4), then clearly 0 e # and # is
closed under addition. Hence, # contains a (unique) maximal member ¥. Then
9 < W < ¥ and ¥ satisfies (3.2).

To prove the second statement of the theorem, observe that ¥ (® o v/
and if ¥v'O" U o> ¥, then v P o ¢v NA Y% + ¥) =¥ Thus, »'® > ¢ for all
i; and since ¥"@ < ¥~ 1 there is a least integer j such that ¥ @ = vV if j > j.
Since ¥V = ¥ and ¥’V satisfies (3.4), ¥ = ¥. Clearly, 0 <j < v; and if
9 < v weevenhave 0 <j <v — dim 2.

Remark 1. Theorem 3.1 depends essentially on the fact that the class %~
determined by (3.4), or equivalently

W={WAH N NA B+ W),

has a maximal element ¥" Furthermore, ¥” is defined constructively by means of
(3.3). This fact will be used without special comment in the following sections.

4. Controllability subspaces. In regard to the system (2.1), suppose that a
subspace # < &" is selected and that it is desired to modify the system in such a
way that £, but no larger subspace, is completely controllable. This aim is to be
realized by feedback of state variables and by forming suitable linear combinations
of control variables: that is, by setting u = Cx + Kv, where K is an m x m’
matrix for some m’ < m. Then (2.1) becomes

x = (4 + BC)x + BKv
and we require

(4.1) (A + BC|{BK}} = &.

Condition (4.1) can be expressed more neatly by noting that {BK} < £ and the
following.

LemMmA 4.1. If B < B and {A|B} = R, then {A|B O\ R} = R. Conversely, if
{A|B N R} = AR, there exists a matrix K such that {A|{BK}} = 4.

Proof. {A|B) = # implies B = R, so B = BN R, and thus # = {A|B}
< {A|% N R}. Also, A#Z = % implies A(B N #) = #; by induction 4/(# N R)
cAj=12---,andso {42 N R} = A.

For the converse, let b;, i = 1, ---, m, be the ith column of B and let {r;,
j=1,---,m} be a basis of # N #. Then

for suitable k;;, and we set K = [k;;]. This completes the proof of the lemma.
By Lemma 4.1, we can pose the synthesis problem as follows:
Given A, B and AR, find conditions for the existence of C such that

(4.2) {A+BC2BN % =R

If such a C exists, we call Z a controllability subspace of the pair (4, B). Observe
that # = 0 and # = {A4|4} are controllability subspaces.
Controllability subspaces can be characterized as follows.
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THEOREM 4.1. Let A, B, # <= 8" be fixed. & is a controllability subspace of
(A, B) if and only if

(4.3) AR < B + R
and
(4.4) R =R,

where R is the minimal subspace such that

(4.5) R=RN(AR + B).

Furthermore, # = R, where p = dim % and
# =0,

(4.6) . .
R =R N (AR + B), i=1,2,---,n.

Write C for the class of matrices C such that (4 + BC)#Z < . To prove the
theorem we need two ~preliminary results.
LEMMA 4.2. Let # = A. For all Ce C,

RNB+(A+BOR =2RN (AR + B).

Proof. Let CeC. Then (A + BC)# <= % and AX + B = (A + BOZ + A.
By the modular distributive rule for subspaces,

RN(AF + B) = A N [(A + BOZ + %)

=(A+BOZ +2 N A.
LemmA 4.3. If Ce C then

4.7) Z(A+BCJ "B N R) =R i=1,---,n,

where the sequence A is defined by (4.6).
Proof. Equation (4.7) is true for i = 1. If it is true for i = k — 1, then by
Lemma 4.2,

k
Y(A+BCY U BNRA)=BNR+(A+ BCOR Y
j=1

=2 N AR + B)
= 2.

Proof of Theorem 4.1. By Lemma 3.2, C is nonempty if and only if (4.3) is
true. Let

(4.8) R ={A+ BC|# N #}.
Then Ce C. By Lemma4.3,

=Y (A+BCY " (BN R) =R =RV,
ji=1
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Conversely, if # = #™, then (4.8) is true for every C € C. It remains to show that
(4.5) has the minimal solution #£%). By induction on i in (4.6), it is seen that
AD < R,i=1,2,--, for every solution Z of (4.5), and that the sequence 2 is
monotone nondecreasing. Hence, there is u < p such that 29 = 2™ for i = p;
in particular, 2 = % and 2% satisfies (4.5).

Remark 2. If Z is a controllability subspace, then it was proved incidentally
that

# = {A + BC|B N &}

for every C such that (4 + BC)# < Z. This fact will be used later without special
mention.

Consider now the problem of assigning the eigenvalues of the restriction of
A + BC to #. It will be shown that there is complete freedom of assignment and
that simultaneously the control v introduced earlier can be made a scalar; i.e., in
(4.1) K can be made an m-vector (m' = 1). For this, recall [4] that a subspace %" is
A-cyclic if there exists xe 2 such that {A4|{x}} = &; that is, if & contains a
generator x. Thus we can take m' = 1 if and only if # can be made (4 + BC)-cyclic
and # (N % contains a generator. :

THEOREM 4.2. Let (4.3) and (4.4) hold, and let o, ---, a, be arbitrary real
numbers(p = dim R). Then C can be chosen such that (4.2) is true and # is(A + BC)-
cyclic with characteristic polynomial

p
4.9) =3 Al
i=1
If 0 £ be B N R is arbitrary, C can be chosen so that, in addition, b generates A.
Proof. By Lemma 4.3 and Theorem 4.1, C is nonempty and
(4.10) {A+BCB N R} =R

for every C e C. Choose C, e C arbitrarily and write 4 + BC; = 4,. Let
b, = beZ N % and let p, be the largest integer such that the vectors

by,Aby, -+, A3 "'y
are independent. Put ry = b, and r; = Ayrj_; + by, j=2,---,p,. Then r,e #
and the r; are independent. If p, < p, choose b,e Z (\ & such that ry, ---, 1

s "p1o
b, are independent ; such a b, exists by (4.7). Let p, be the greatest integer such

that
bla Ty A‘ln_lbl’bz’ ) Atln_le

are independent, and define
Vpl+i=A1rm+i_1+b2, i=1,"',p2.

Thenr,, .-+, r,, are independent and in £. Continuing thus, we obtain eventually
ry, -+, T, independent and in %, with the property

r,-+1=A1ri+5,~, i=1---,p—1,
where b, e # N 2. Now let C, be chosen such that
BC2ri.=5i’ i=1"."pa
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where 13,,692 N # is arbitrary. Since b; = Bu; for suitable u;, and the r; are
independent, Lemma 3.1 guarantees that C, exists. The situation now is that

fiv1 = (A + BCyry, i=1-,p—1,
and
(4, + BCy)r, e #.

By independence of the r;,
{A; + BCyl{r,}} = %;

that is, Z is cyclic relative to 4 + B(C, + C,) with generator r, = b, e Z N 4.
It is well known [4] that now an n-vector ¢ can be found such that 4 + B(C, + C,)
+b,c’ (restricted to #) has the characteristic polynomial (4,9). Setting b, = Bg
for suitable g e &™, it follows that the matrix

C=C1+C2+gcl

has all the required properties.

Remark 3. Theresult that any nonzero vector in [} Z% can serve as generator
is an extension of the useful lemma in [5].

Remark 4. If # = &", (4.3) holds automatically and (4.4) amounts to
{A|#} = 6", i.e., complete controllability of (4, B). Then Theorem 4.2 yields the
known result [4] that controllability implies pole assignability. The construction
just used furnishes a simpler proof of this fact than that in [4].

It will be necessary later to compute the maximal controllability subspace
contained in a given subspace #. For this, let ¥~ be the maximal subspace of ¥
which is (4 + BC)-invariant for some C (recall Remark 1 following Theorem 3.1);
and let C(¥") be the class of C for which (4 + BC)¥ < ¥.

THEOREM 4.3. If C e C(¥), the subspace

4.11) A={A+ BC|#N ¥}

is the maximal controllability subspace in & .

Proof. By (4.2) and Lemma 4.1, Z is a controllability subspace. Furthermore,
by Lemma 4.3 with C(¥") in place of C, # is independent of C € C(¥") and so is
uniquely defined. Now suppose

R={A+BOABNR, R

Since # is A+ BC)-invariant and ¥ is maximal, there follows # — ¥, Let
¥ = A @ ¥. By the construction used in proving Lemma 3.2, a matrix C exists
such that

Cx=Cx, xe®R; (A+BC)Y <.
Then C e C(¥), and
R ={A+ BC% N R}
c {4+ BC# N ¥}
— %

that is, # is maximal.
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5. Decoupling of output variables: Problem statement. Consider the output
equation (2.2), with

(5.1) H=1| -1,
H,
where H; is of dimension q; x n, i=1,---,k, k>2,9g, + --- + g, = q. Then
(2.2) can be written
(5.2) yi=Hix, i—_—l,“',k,

where y; is a g;-vector. The vectors y; may be regarded as physically significant
groups of scalar output variables. It may therefore be desirable to control com-
pletely each of the output vectors y; individually, without affecting the behavior
of the remaining y;, j # i. This end is to be achieved by linear state-variable feed-
back together with the assignment of a suitable group of control inputs to each y;.
That is, in (2.1) we set

(5.3) u=Cx+ Y K.

For v; to control y; completely, we must have
(54) H{A + BC|{BK;}} = #;,

where #; is the range of H;. Since the ith control v; is to leave the outputs y;,
J # i, unaffected, we require also

(5.5) H{A + BC|{BK}} =0, j#i.

Recalling the equivalence of (4.1) and (4.2), we can express conditions (5.4)
and (5.5) more neatly as follows. Write 6" = & and

(5.6) N(H) = A;, i=1,--, k.

Then our problem is: Given A, B and AN, -+, N, find a matrix C and controlla-
bility subspaces R, - - - , Ry, with the properties:

(5.7) R = {A + BC# N R}, i=1,---,k,

(5:3) Ry + N, = &, i=1,---,k,

(59) R NN, i=1-,k.
J#Ei

Here (5.8) and (5.9) are equivalent, respectively, to (5.4) and (5.5).

The relations (5.7)~5.9) provide a geometric formulation of the problem of
simultaneous decoupling and complete control of the output vectors y;, - -, yi.
Thus stated, the problem definition is both natural and intuitively transparent.

We observe that the output matrices H; play no role beyond specification of
the subspaces.4";. Since the H; need have no special structure, the 4"; are similarly
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unrestricted. Nevertheless, we shall rule out trivialities by tacitly assuming:
() N # &i=1,-, k.
(ii) The subspaces 4"} are mutually independent.! In particular, the .#; are
distinct and
(5.10) N #0, i=1,--,k.

(iii) The pair (4, B) is completely controllable, i.e., {A|%#} = &
For if (i) fails, then for some i, 4; = & ; that is, H; = 0 and y; = 0. If (i) fails,
then for some i,

NENY N7 #0

J#i

or, by taking orthogonal complements,

N+ NN #£6E

Jj#Fi
and (5.8) must fail. For (iii), if {A|#} = & # & we can write § = &, ® &, and
(2.1) as

.)'Cl = A1x1 + A3X2 + Blu,
Xy = Ayxy,

where x;€6;, i = 1,2, and {A4,|4,} = &,. The problem is unrealistic unless A4,
is stable (i.e., the pair (4, B)is stabilizable [4]). Hence, we may assume x,(1) = 0 and
take as starting point

)’Cl = Alxl + Blu.

The problem can then be reformulated with &, in place of &.
We turn now to the determination of necessary and sufficient conditions for
the existence of a solution to (5.7)~(5.9) in two special, but interesting, cases.

In the following sections, #; denotes the maximal controllability subspace
such that

(5.11) R, = NN i=1,--,k.
The %; are constructed according to Theorem 4.3.
6. Decoupling when rank (H) = n. Our assumption is equivalent to
(6.1) n4i=o.
That is, there is a one-to-one mapping of state variables into output variables.

THEOREM 6.1. If (6.1) holds, then the problem (5.7}(5.9) has a solution if and
only if

(6.2) R+ N, =6, i=1-, k.

! Equivalently, the row spaces of the H; are mutually independent.
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Proof. If the problem has a solution #;, i = 1, ---, k, then by maximality
ofthe Z,,i = 1, ---, k, there follows #; = #;, and (6.2) follows from (5.8).

Conversely, suppose (6.2) holds. The Z; are mutually independent; for, by
(5.11) and (6.1),

Z; N Zg_i’”cl:ﬂ ./V}:I ﬂ[z N JVv]c NN a=0.
n#i J#i nEIVER J#Fi
Let C; be chosen such that
g,—_—{A{—BC,I.@n@i}, i=1,"',k.

Since the #; are independent there exists, by Lemma 3.1, a matrix C such that
Cr=Cr(reR,i=1,---,k),ie,

(A + BC)r = (A + BCyyr, red, i=1,---,k.
Then

QIZ{A+BC|(@0@,}, i=1,"‘,k;

and C, together with the #,;, satisfy (5.7)~(5.9).
Remark 5. By Theorem 4.2, the C; can be chosen so that 4 + BC;, restricted

to 4, has any desired spectrum. Hence, the same is true for A + BC. Furthermore,
there exists b; € # N Z,; such that

A, = {A + BC|{b;}}, i=1---,k.
7. Decoupling when rank (B) = k. Our assumption is equivalent to
(7.1) dim % = k.

Here the situation has been simplified by narrowing the choice of generating
subspaces 4 N #,. The same assumption was made in [1], [2] and [3], with the
additional restriction that the outputs y; be scalars.

THEOREM 7.1. If (7.1) holds, then the problem (5.7}-(5.9) has a solution if and
only if

(7.2) R+ N, =6, i=1,---,k,
and

k —
(1.3) 2= 20 %

i=1
Furthermore, if C, Ry, - - , R, is any solution, then
(7.4) R, = R, i=1,---,k.

Proof. Part 1. Suppose C, #, --- , %, is a solution. The necessity of (7.2)
follows, as in the proof of Theorem 6.1. To verify (7.3), write

ﬂﬂ%,zg,@[:@n@,ﬂz.@[l, i:l’...’k'

J#Fi
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The %, are mutually independent ; in fact,
Jj#i Jj#i j#i
Recall that the #; are (4 + BC)-invariant. Then
R; = {A + BC\%B,)} + %,

where

@ic{A—i—BC

2@j}cz@jcz N A 4

Jj#i NEL JEipn#j
Therefore, by (5.8),
{A + BC|%} + N; =6,
and since A4 # & there follows 4; # 0,i = 1, - - -, k. Therefore
k k
dim ) %;,= ) dim %, = k;

i=1 i=1
SO
(7.5) B=RBD - DB
and
dim %, =1, i=1,---,k.

Since #; = B N R; = B N A,, it follows that (7.3) is true. B
Proof. Part 2. To verify (7.4), it is enough to show that the subspaces # N £;
are independent. For then,

dm@#@NA) =1, i=1,---,k,
and so

(7.6) BNR=BNR,, i=1,---. k.

Assuming (7.6) is true, let #, = &, ® %, and choose C;, by Lemma 3.1, such that
(A+ BC)R, < R,, Car=Cr, reR, i=1-- k.
Then C;e C(#;) N C(%,), so that
R;={A + BC|% N R;}
= {A + BC|%# N A}

= '@i
which proves (7.4).
We proceed to show that the # N Z; are independent. Write

J#Fi
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It is even true that

(7.7 BNANAR: =0, i=1,---,k.
On the contrary, suppose (7.7) fails for, say, i = 1. If dim (# N #,) = 1, then
(7.8) BNR, = R

Ifdim(# N #,) = 2, and

(7.9) BNR, & RY, i=1,---,k,
then

pt1 [
dim[z Qﬂ@i]gdim[zgﬂ@i]+l,
i=1 i

=1

u=1---,k—1,thatis,

and by induction

a contradiction. Thus (7.9) is false; combining this result with (7.8) there follows

(7.10) BNAR, = R*
for some ae(l, - - -, k). It will be shown below that there exists C, such that
(7.11) (A + BC)#, = #,; (A + BC)R* < R*.

Assuming (7.11) is true, we have
A, ={A+ BC|BNAR, = {A+ BCJA*} = RE < N,
and therefore (7.2) fails for i = o. With this contradiction, (7.7) is established.

It remains to verify the existence of C,. For this we need the following result.
LEMMA 7.1. Let ¥, W be arbitrary. There exists C such that

(A + BO)Y < v, A+ BCOYW < w
if and only if
AV c B+ ¥,

AW < B + W,
AV NIV B+ N A
Proof. Necessity is obvious. For sufficiency, write

VW =9 orNwaew,
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where ¥ < ¥, W < W. By the construction of Lemma 3.2, C can be chosen such
that
A+ BO)\F N#)ycy N W,
(4 + BC)YY < v,
(A + BCYW < .
This completes the proof of the lemma.
Consider now Z,, Z#*. Clearly AR, = B + R,; AR* < B + A*. By (1.3)
B=RBNR,+ AN A and so
AR, N A%) = (B + AR,) N (B + AF)
=B+ B+ R)NRx
=B+ BNRE:+ R,) N R
=B+ R, N A%
By applying Lemma 7.1, the existence of C, is finally established.

Proof. Part 3. We now prove that (7.2) and (7.3) are sufficient conditions for
existence of a solution. Let ¥; be the maximal subspace such that

(7.12) AV, c B+ ¥, Vi NN, i=1,--

J#i

B

It is enough to check that the ¥; are compatible, in the sense that there exists C
such that

(4 + BO)Y; = 77, i=1,---
We show first that the subspaces

Vr=37%

Jj#Fi
are compatible. From (7.12) there follows
AV c B+ ¥}

=30V +7F  (by(73)

= B, + ¥V}, i=1,--,k,
where %, = 4 N ¥;. By Lemma 3.2, there exist B; with {B;} = %;, and C;, such
that

(A + BC)¥¥ < ¥v¥, i=1,---,k.

Choosing a basis {v,, - -, v,} for ¥ + --- + ¥, we define C such that

k
BCv, = ) BCpw,, v=1,--+, u.
&

i
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Then
J#Fi
c(4+BC)F¥+ ) %
(7.13) j#i
STTHY
Jj#i
= ¥, i=1,---,k.

This proves compatibility of the ¥*. Now define

%:n’y_jk, i-':l,"',k.
Clearly, ¥; > ¥;,i=1,---, k. By (7.13),
(7.14) (A4 + BCO)Y; v, i=1,---,k,

and, furthermore by the second condition of (7.12),

(7.15) Ve N'Y N Ap=N N2

J
jtiatjm#a Jj#i

By (7.14) and (7.15), the ¥ satisfy the conditions imposed on the ¥; in (7.12).
Since the ¥, are maximal, there results ¥; = ¥;, and, therefore, ¥; = ¥;,
i=1,---,k.

Remark 6. If the conditions of Theorem 7.1 are satisfied, then

M=

a,

1

k
Y {A+BC|.@0921}={A+BC
i=1

k
S % ng‘z,}
i=1

(7.16) i

Il

(A + BC|B} = {A|B) = 6.

We turn now to the problem of pole assignment. In contrast to the situation
of § 6, it is no longer possible, in general, to vary the spectrum of A + BC on each
A; independently. The following example shows that certain eigenvalues of
A + BC may even be fixed for all admissible C.

Let & = &3, k = 2 and

1

o = O
— = O
>
l

o= o O

; Ny =

OO Rk O = =
- o o o O

2 This identity and its dual, ), N ). = ¥, are readily established by using the (modular) distributive
rule for subspaces.



14 W. M. WONHAM AND A. S. MORSE

It is easily checked that (5.7)-(5.9) have the (unique) solution

1 0 0 0
'@1 = O s 1 ) %2= 1 5 0
0 0 0 1

and that C must have the form

[cl 0 0]
C =
0 0 ¢
with arbitrary ¢, c,. Then
det(A+BC—-Al)=(1+c¢; =)0 =)+ c; — 4).

Observe that the eigenvalue A = 1, belonging to the eigenvector (0, 1, 0) of 4 + BC,
is fixed.

To discuss the present case in general, we introduce a suitable decomposition
of &. Assume that the problem of (5.7)-(5.9) has a solution C, #,, - -- , %,, and
let C denote the class of matrices C for which (4 + BC)Z, c #;,i=1,---, k.

We know that the spaces AR; are the unique solutions: for simplicity of notation,
write Z; for #;. Define

k
(7.17) &= N R,

i=1
and let &; be any subspace such that

(7.18) Ri= 6D %R N &), i=1--,k
In the following, J denotes the set of indices (1, - - - , k), Jo theset (0, 1, - - - , k).
In intersections and summations involving #’s, the index ranges over J; in those
involving &’s, the index ranges over J,.
LEMMA 7.2. The subspaces &; have the properties
(719) go@£1@"'@£k=(g],
(7.20) (A4 + BC);, = &; + 6, ieJ,, CeC.

Proof. Assertion (7.20) is obvious by the fact that the #; are (4 + BC)-
invariant. For (7.19), observe first that

J#Ei
and so, ifieJ,

j#0
Jj#i
= . 0 *
(7.21) ¢ N A
—o.

Now for arbitrary subspaces &, i = 1,2, 3, if
KNG+ H=ANS+ %NS,
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then
BN G+ R =ANSK+HNL.

Applying this fact and using (7.21) we have

k k
j=2 j=2
and therefore

k k
éaoﬂ(gl‘i' Zgj) =éaoﬂéal+éoon 251
j=2 j=2
k
j=2
Repetition of this argument yields, after k — 2 steps,

k
=2
Equations (7.21), (7.22) state that the &;, i € J,, are independent. Finally, by (7.16),
k k k
Zg)l:Z(gl-}—gO):) Ze@':é&
i=0 i=1 i=1

12

Remark 7. If the &, are independent, then § = 0 and &§; = %;,ie J.

For ie J, let P, be the projection on &; along Zj*i & ;,and now let Ce C be
fixed.

LEMMA 7.3. Let 8 N R; = {b;},i€J. Then
(7.23) &; = {P(A + BC)|{Pb;}}, ield.
Proof. By (7.18) and (7.19), &; = P,%;. By (7.18) and (7.20),

PR, = P, Z (A + BCY~'{b;}
i=1

— ¥ (P4 + BOY ' {Pby

i=1

{P(A + BC){Pb,}}.
Lemma 7.4.

(7.24) BNE,=0.
Proof. By (7.3) and (7.7),

k

i=

1

J

— BN RN RE=0.
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This completes the proof of Lemma 7.4.

Next let C = C, be a fixed member of C, let C, € C, and write D = C, — Cy;
thus A + BC, = A + BC, + BD. Now b,e#;, < &, + &, (ieJ); and (7.20)
yields BD&; = &; + &, (i€ J,); therefore

(7.25) Pb;=0, PBD& =0, ijed, i#]j

Also, using (7.24)

(7.26) BDE, = BN &, = 0.

Write \

(7.27) BD = ,-; byd;,

where, as before, {b;} = # N #;. Then

(7.28) PBDE; = Phdi&; =0, i#j, ied, jeld,.
We can now compute the spectrum A of A + BC,. Define

(7.29) A;=P(A + BC,), ield,,

By (7.26) and (7.29),

(7.30) Py(A + BC,) = Py(A + BC,)(I — Py) + AoPo,

and by (7.28) and (7.29),

k
P(A + BC,) = A; + PBD Y P,
(7.31) i=0
:A,+I)lbld;P,, iEJ.

Suppose 1€ A, with corresponding (complex) eigenvector . A brief calculation
from (7.30), (7.31) shows that either (i) for some ie J, P.¢ # 0 and (4; + Pb,d)PL
= AP¢, or (ii) ¢ = Pyé and Ay¢ = A&, Conversely, if Ag¢ = A for 0 # Ee€ &, or
(A; + Pbd))¢é = )& for 0 # £ € &, and some i € J, then 1 € A. Therefore

k
A= UA,
i=0
where A;, i€ J,, is the spectrum of the restriction of P(4 + BC,) to &;. By (7.30),
A, is independent of the choice of C,, i.e., is fixed uniquely by the requirement
C € C. On the other hand, for ie J Lemma 7.3 states that &; is the controllability
space of the pair (4;, Pb;). Hence, any choice of A; can be realized by appropriate
choice of d;: indeed, for any w € & there exists d; such that

w'x for xe é&;,
dix =
0 forxe) &;.
j#i
These results are summarized in the following theorem.
THEOREM 7.2. Let the conditions of Theorem 7.1 be satisfied. If CeC, the
eigenvalues of A + BC can be partitioned into k + 1 disjoint sets

A=,y Ay i€,
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where )

no = dlm( n g;k),

j=1

n; = dim (#;) — dim (#; N #¥), ielJ.
The set Ay and the integers n; (i€ J,) are fixed for all C € C. The sets A; (i € J) can
be assigned freely (by suitable choice of C e C) subject only to the requirement
that any A;; with Im 4;; # O occur in A; in a conjugate pair.

Remark 8. If basis vectors are chosen in the &;, then the system differential

equation can be put in a simple ‘“normal’ form. Let

z; = Px, ieJo,
and
X = (A + BC,)x + Bv.
Multiplying through by P, and using (7.30), (7.31), we obtain

z; = (A; + Pbd))z; + PBv, iel,
(7.32)
Zg = Po(A + BCy)(zy + - + ) + Aozo + PoBu.

Let K be an m x m (= k x k) matrix such that BK = [b, --- b,] and put v = Kw,
w=(wg,- -, w).Since b;e §; @ &,, we have
bi=Pibi+P0biEBi+Bi0‘

Adopting n;-dimensional representations of the z;, etc., we see that (7.32) can be
written as

~
’

i + bd)z; + b, iel,

)

Il

Zy=(

(7.33) .

20 = Z Aonj + 2020 + Bow-
Jj#1

Equation (7.33) exhibits the system (2.1) as an array of k decoupled subsystems,
each completely controllable by an independent scalar input w;, plus one addi-
tional subsystem which is driven by the others and by w. Finally, since #; N &,
=R, N RF = A, it follows by (5.8) and (7.18) that &; + A; = &, that is, H,&;
= %..

Remark 9. The decoupled system is acceptable in practice only if the eigen-
values in the fixed set A, are all stable. It is possible to check for stability of A,
as follows. Recall that #;, = &, + &, (ie J) and note from (7.20) that A(&; + &,)
<&+ &y + % (ieJ). Furthermore,

é"i + go (e n z/‘/lj, ied.
Jj#Ei
It follows by Theorem 4.3 and the maximality of the #; (=%;) that

for any C with the property (7.20). That is, (7.20) is both necessary and sufficient
that C e C. Thus, to compute A, it is necessary only to compute the spectrum of
A + BC, (restricted to &) where C, is any matrix such that (4 + BCy)éy < & .
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Concluding remark. This article represents a preliminary investigation of
the general decoupling problem formulated in § 5. The results for the special cases
of § 6 and § 7 suggest the possibility of a complete and detailed geometric theory
of linear multivariable control, in which the concept of controllability subspace
would play a central role. Specific problems for future study include not only that
of § 5 but also the problem of decoupling by adjunction of suitable dynamics
(augmentation of the state space), and the problem of sensitivity. As formulated,
decoupling represents a “hard” constraint, an all-or-nothing algebraic property.
Of course, for applications a quantitative approach via “‘soft’’ constraints might
also prove rewarding.

It is clear that an adequate qualitative theory of large linear multivariable
systems is currently lacking ; and equally clear that, with computers, such a theory
would find wide application.
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TRANSFER EQUIVALENCE OF LINEAR DYNAMICAL SYSTEMS*
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Abstract. The concepts of weak and strong transfer equivalence of constant (time-invariant)
linear dynamical systems are defined and analyzed. The analysis leads to a simple new algorithm for
constructing minimal realizations of transfer function matrices. In addition, it provides new informa-
tion on the significance of the polynomial invariants which appear in the Smith-McMillan canonical
form.

1. Introduction. During the past ten years, fundamental advances have been
made in the structure theory of linear dynamical systems [1]-[11]. This basic work,
stimulated in large measure by R. E. Kalman, has led to the development of a
rigorous axiomatic theory of linear systems. In particular, the relationship between
the differential equation (state variable) description and the transfer function
(impulse-response) description of a constant (time-invariant) linear system is now
well understood. Nevertheless, there are still important structural questions in
constant linear systems theory which remain unanswered. In this paper we
investigate some of these.

By a constant linear dynamical system we shall mean a triple (F, G, H), where
F is a real square matrix and G and H are real rectangular matrices of appropriate
sizes so that the matrix product HFG is defined. Thus (F, G, H) is the basic data
required to describe a system of constant coefficient linear differential equations
of the form

x = Fx + Gu,
1)
y = Hx
relating an input vector u = u(t) to an output vector y = y(f) through a state
vector x = x(1).
Assuming that the system (1) starts at rest at time ¢ = 0, the Laplace trans-
forms Y = Y(s) and U = U(s) of y and u are related by

Y=2U,

where Z = Z(s) is the transfer function matrix of the system (F, G, H) and is given
by

) Z(s) = H(Is — F)"'G.

The matrix Z is a proper rational matrix ; that is, each entry in Z is a quotient of
polynomials in s with the degree of the numerator lower than that of the denomin-
ator. The matrix Z exhibits the transfer (input—output) behavior of the system
but suppresses the internal (state) behavior.
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Thus, to each system (F, G, H) is associated a unique proper rational matrix
Z, its transfer function matrix. However, to each proper rational matrix Z there
is associated a whole class of systems, called realizations of Z, each having Z as
transfer function matrix. These systems share the same input-output behavior but
can differ internally. In particular, they can differ in the dimension of the state
space (size of F). The realizations of Z having the smallest possible state space
dimension are of particular interest ; these are the minimal realizations of Z.

Various algorithms for constructing minimal realizations of transfer function
matrices have been given [4], [5], [8]. One of these, described by Kalman, requires
the reduction of the transfer function matrix by means of elementary row and
column operations to Smith-McMillan form [12], a diagonal form in which
certain divisibility conditions hold. We shall describe a related algorithm for
constructing minimal realizations which requires only the reduction of the
transfer function matrix to diagonal form.

If, in our algorithm, we reduce the transfer function matrix to the Smith—
McMillan form, we obtain the same realization as the one obtained by Kalman [5].
However, our algorithm does not coincide with Kalman’s even in that case.
In fact, our algorithm then yields new information about the significance of the
polynomial invariants ¢ which appear as numerators in the Smith—-McMillan
form. (Indeed, it was the problem of interpreting these invariants which motivated
our research.) We are able to exhibit directly the role played in the output structure
by the proper parts of the polynomials ¢;; that is, by the remainders obtained
from the numerators ¢; after division by the corresponding denominators y; in
the Smith-McMillan form. Our results seem to indicate that these proper parts
are more basic to linear systems theory than are the ¢; themselves.

The basic tool which we shall use is transfer equivalence. Systems are called
strongly transfer equivalent if their transfer function matrices have the same
Smith-McMillan form. A more fundamental concept, called weak transfer
equivalence, is also defined. An important property of weak transfer equivalence
is that in each weak transfer equivalence class there are systems which are com-
pletely uncoupled.

This paper is organized as follows. We begin (§ 2) by developing the basic
properties of weak and strong transfer equivalence. In § 3 we derive the complete
analytic relationship between any pair of controllable and observable systems
which are weakly transfer equivalent. These results are applied in §4 to obtain
our algorithm for constructing minimal realizations. We conclude (§ 5) with a
discussion of various related topics. In particular, we discuss two methods for
“realizing” improper rational matrices. We also discuss an interpretation of the
invariants ¢; which exhibits the polynomials ¢; themselves and not just their proper
parts.

2. Transfer equivalence. Let Z = Z(s) be a rational matrix; that is, Z is a
matrix whose entries are quotients of polynomials in s with real coefficients.
Associated with Z is a diagonal matrix A = A(s), called the Smith—-McMillan
canonical form [12] of Z, obtained as follows. By letting iy = ¥(s) denote the
monic polynomial (leading coefficient 1) which is the least common denominator
of the entries of Z, the matrix ¥ Z is a polynomial matrix. By applying a sequence
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of elementary row and column operations (that is, operations which: (i) inter-
change two rows or columns, (ii) multiply a row or column by a nonzero real
number, or (iii) add a polynomial multiple of one row or column to another) to
Y Z we can obtain a unique (independent of the row and column operations used)
diagonal matrix.

(3) r=diag['})l’yb""yRaOa"'a()]

such that each diagonal element y; = y{(s) is a monic polynomial which divides
its successor ;4 ,,i = 1,---, R — 1. The matrices Z and I are related by

) YZ = AT'B,

where 4 = A(s) and B = B(s) are polynomial matrices with constant nonzero
determinants [13]. Dividing both sides of this equation by ¢ and reducing each
polynomial fraction y;/yy by cancellation of common factors, we obtain

(5) Z = AAB,
where
(6) A:diag[gl/'/jla'“’SR/'pR’O’""O]a

and where the ¢; = &(s) and the ; = ,(s) are monic polynomials, with ¢; dividing
&+ and Y, dividing ¢, for each i, 1 < i < R — 1, such that each pair (¢;, ;) is
relatively prime. The matrix A is the Smith-McMillan form of Z.

DErFINITION. Two rational matrices Z and Z are called strongly equivalent
if there exist polynomial matrices A and B with constant nonzero determinants
such that Z = AZB. Two constant linear dynamical systems are said to be strongly
transfer equivalent if their transfer function matrices are strongly equivalent.

Note that, since products and inverses of polynomial matrices with constant
nonzero determinants are again polynomial matrices with constant nonzero
determinants, strong equivalence and strong transfer equivalence are equivalence
relations.

Clearly, each rational matrix is strongly equivalent to a unique Smith—
McMillan canonical matrix; that is, each strong equivalence class contains
exactly one Smith—-McMillan form. It follows that the rank R together with the
2R polynomials ,, -+, Yg, &, -+, &g form a complete set of invariants for
strong equivalence of rational matrices.

A basic handicap, from the system theoretic point of view, of the notion of
strong transfer equivalence is that, although each rational matrix is strongly
equivalent to a Smith-McMillan form, it is not true that each linear dynamical
system is strongly transfer equivalent to a system whose transfer function matrix
is in Smith—-McMillan form. This is a consequence of the fact that the Smith—
McMillan form is not, in general, proper; that is, the degrees of the numerators
in the Smith—McMillan form need not be lower than the degrees of the correspond-
ing denominators. However, this drawback can be eliminated by weakening the
notion of equivalence.

First recall that two polynomials &« = a(s)and f§ = f(s) are said to be congruent
modulo the polynomial ¥ = y(s), written ¢ = f(mod i), provided that « and f
have the same remainder after division by . Similarly, two polynomial matrices
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A = A(s)and B = B(s) are said to be congruent modulo y, written 4 = B (mod y),
provided that corresponding entries of 4 and B have the same remainders after
division by . Thus 4 = B (mod y) if and only if there exists a polynomial matrix
C = C(s)such that 4 = B + yC.

DEFINITION. Let Z and Z be rational matrices and let y and y be, respectively,
the least common denominators of the entries of Z and Z. Z and Z are called
weakly equivalent if

(i) ¥ =y and

(ii) there exist polynomial matrices 4 and B with constant nonzero deter-
minants such that yZ = Ay Z)B (mod ).

Two constant linear dynamical systems are said to be weakly transfer equi-
valent if their transfer function matrices are weakly equivalent.

It is clear that weak equivalence and weak transfer equivalence are equi-
valence relations. It is also clear that strong equivalence implies weak equivalence
(the equality of the least common denominators ¥ and V for strongly equivalent
Z and Z follows from the uniqueness of the Smith-McMillan form (6) and from
the fact that, in (6), Y, = V).

Note that, although a given constant linear dynamical system will not in
general be strongly transfer equivalent to a system which is completely uncoupled,
that is, one whose transfer function matrix is diagonal, each constant linear
dynamical system will be weakly transfer equivalent to a system which is completely
uncoupled. Indeed, one need only take any (possibly improper) diagonal matrix
D which is strongly equivalent to the given transfer function matrix Z and reduce
it by replacing each entry in D by its remainder after division by y to obtain
Y D', where D' is a proper rational diagonal matrix which is weakly equivalent to
Z. Any system with D’ as transfer function matrix will then be weakly transfer
equivalent to the given system.

The matrix D’ will be called the proper part of the matrix D. Note that D’
can also be obtained by replacing the numerator of each entry in D by its remainder
after division by the corresponding denominator. Indeed, if «/f is any quotient of
polynomials with § dividing , then the remainder after dividing y(o/B) by ¥
is just y(o'/f), where o is the remainder after dividing o by f.

The proper part A’ of the Smith—-McMillan form A of a transfer function
matrix Z will be of special importance. If A is of the form (6), then A’ is of the form

(7) A/=diag[S’l/lﬂl,"‘,8;./lﬂ,,0,'“,0],

where r = max {i|l <i =< R,¥; # 1} and where ¢ is the remainder after dividing
& by y;. We shall call A’ the reduced Smith—-McMillan form of Z.

3. External equivalence. In this section we investigate the relationship between
linear dynamical systems which are weakly transfer equivalent. For this we shall
need two facts about the rational matrix (Is — F)™ !, where F is a square matrix.

(i) Let y(s) = s" + a,_s"" ! + .-+ + a, denote the minimal polynomial of
F; that is, { is the monic polynomial of least degree such that (F) = 0. Then
(Is — F)~ ' is given by the formula

®) (Is — F)™' = — ) @uF)s",
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where the ¢, are the polynomials
) oux) = x""F 1 a, X" 4 oy, k=0,1,.--,n—1.

Indeed, an elementary computation shows that
n—1

Ys) = y(s)I — Y(F) = [ > (pk(F)sk](IS - F),
k=0

and then right multiplication by (Is — F)~! yields (8).
(i1) For each nonnegative integer k we have

(10) sY(s)Is — F)™' = FY(s)(Is — F)™' (mod y)
and
(11) Y(s)(Is — F)~'s" = Y(s)(Is — F)"'F* (mod ).
Indeed,
sY(s)(Is — F)™' — Fy(s)(Is — F)™' = (Is = Fyy(s)(Is — F)™! = Y(s)] =0

(mod ¥),

so (10) is valid for k = 1. An elementary induction argument establishes (10) in
general. Formula (11) is a consequence of (10) and the fact that F commutes with
Is — F)~ L.

THEOREM 1. Let (F, G, H) be a constant linear dynamical system. Let A and
B be polynomial matrices (not necessarily square) of appropriate sizes so that the
matrix products AH and GB are defined. Let A =Y A;s' and B =Y B;s’ express
A and B as matrix polynomials. Define (F, G, H) to be the constant linear dynamical
system given by

(12) F=F, G=)YFGB, H=YAHF.

Then the transfer function matrix Z of the system (F, G, H) is related to the transfer
function matrix Z of (F, G, H) by

(13) YZ = AYZ)B (mod y),

where \ is the minimal polynomial of F.
Proof. First note that, by (8), ¥Z and A(¥Z)B are polynomial matrices so
that it makes sense to ask if they are congruent (mod ). By (10) and (11) we have

Z = H(Is — F)"'G = ). A,HF)(Is — F)"' (3 F/GB))
= (Y AHs)(Is — F)~'(}. s’GB;) (mod y)
= (Y. A;sHAs — F)"'G(} B;s')
= AZB,

as claimed.

DEFINITION. Two constant linear dynamical systems (F, G, H) and (F, G, H)
are called externally equivalent if

~

(14) F=F, G=)YFGB, H=YAHF,
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where A = ) A;s'and B = )’ B;s’ are (square) polynomial matrices with constant
nonzero determinants.

An elementary computation shows that external equivalence is an equi-
valence relation. In particular, if (F, G, H) is related to (F, G, H) by equations of
the form (14), then (F, G, H) is related to (F, G, H) by equations of the same form.

One consequence of Theorem 1 is that systems which are externally equivalent
are also weakly transfer equivalent. Thus weak transfer equivalence is a weaker
notion of system equivalence than external equivalence.

Note that the polynomial matrices A and B in the definition of external
equivalence may always be taken to be of degree less than n, the degree of the
minimal polynomial of F. This is because each power of F is expressible as a
polynomial (with scalar coefficients) in F of degree less than n. Thus, given a
system (F, G, H), every system (F,G, H) externally equivalent to (F, G, H) is
given by

n—1 n—1
F=F, G=)Y FGB, H=) AHF
j=0 i=0

for appropriate polynomial matrices

n—1 n—1
A=) As and B= ) By
i=0 ji=0

with constant determinants. These expressions for G and H can be rewritten as

B, H
_ B, - HF
G=[G,FG, -, F"'G] . and H =[Ag, -+, 4,-1]
B,_; HF" !
The matrix
(15) [G,FG,---, F*"'G]

is known [7] as the controllability matrix of the system (F, G, H), and the matrix

H

HF
(16) .
HFn- 1

is known as the observability matrix of the system. Thus externally equivalent
systems are related to one another by certain matrix operations on the con-
trollability and observability matrices.
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An important property of external equivalence is that externally equivalent
systems have the same controllability and observability properties. Recall [7]
that a constant linear dynamical system (F, G, H) is controllable if the controll-
ability matrix (15) is of maximal rank; that is, if the matrix (15) has n linearly
independent rows. Similarly, (F, G, H) is observable if the observability matrix
(16) is of maximal rank (has n linearly independent columns).

THEOREM 2. Let (F,G,H) and (F,G,H) be externally equivalent constant
linear dynamical systems. Then their controllability matrices have equal rank and
their observability matrices have equal rank. In particular, (F, G, H) is controllable
if and only if (F, G, H) is controllable and (F, G, H) is observable if and only if (F, G, H)
is observable.

Proof. Since (F,G,H) and (F,G, H) are externally equivalent, we have
F=F, G=) FGB;, and H =) AHF' for some polynomial matrices
A=Y As and B =) B;s’ with constant determinants. Suppose ¢ is a row
vector such that

[G,FG, -, F""'G] = 0.

Then, since each power of F can be expressed as a polynomial in F of degree less
than n, it follows that cF*G = 0 for all nonnegative integers k. Hence

¢F*G = Y cF**IGB; = 0
for all k = 0 and so
[G,FG, -, F""'G] = 0.

Thus, viewing K = [G, FG, ---, F""'G] and K = [G, FG, ---, F*"'G] as linear
operators acting on row vectors, we see that the null space of K is contained in
the null space of K. But, since external equivalence is a symmetric relation, it
follows that the null space of K is also contained in the null space of K ; that is,
these null spaces must be equal. By the rank and nullity theorem of linear algebra,
we conclude that the controllability matrices K and K have the same rank. The
proof for observability is similar.

We shall call two constant linear dynamical systems (F, G, H) and (F, G, H)
internally isomorphic if there exists a nonsingular matrix T'such that F = TFT !,
G = TG, and A = HT . Clearly, internally isomorphic systems have the same
transfer function matrix. Conversely, it is well known [6] that any pair of con-
trollable and observable systems which have the same transfer function matrix
are internally isomorphic.

THEOREM 3 (Basic equivalence theorem). Two controllable and observable
constant linear dynamical systems are weakly transfer equivalent if and only if
they differ (at most) by an external equivalence and an internal isomorphism.

Proof. The sufficiency part is clear from Theorem 1. To prove necessity,
suppose (F, G, H) and (F, G, H) are weakly transfer equivalent controllable and
observable systems. Then their transfer function matrices Z and Z are related by
YZ = AWZ)B (mod y), where A=) As' and B =) B;s’ are polynomial
matrices with constant nonzero determinants and where ¥ is the least common
denominator of the entries both of Z and of Z. But it is known [5] that the least
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common denominator of the entries in the transfer function matrix of any con-
trollable and observable system (F, G, H) is the minimal polynomial of the state
matrix F. (This fact will also follow from our Theorem 4 below.) Thus, y is the
minimal polynomial of both F and F. Let (F, G, H) be constructed from F, G, A, A
and B as in formula (12), and let Z denote its transfer function matrix. By Theorem
1,yZ = AWZ)B = yZ (mod ¥). But, since Z and Z are both proper, this implies
that yZ = yZ and hence Z = Z. Furthermore, by Theorem 2, both (F, G, H) and
(F, G, H) are controllable and observable. It follows that (F, G, H) and (F, G, H)
are internally isomorphic. Since (F, G, H) and (F, G, H) are externally equivalent,
this completes the proof.
Explicitly, the systems (F, G, A) and (F, G, ) are related by

F=TFT"', G=TYFGB, H=YAAFT
for some nonsingular matrix T.

4. Realization theory. It is well known [3] that a constant linear dynamical
system is controllable and observable if and only if it is a minimal realization of
its transfer function matrix. Thus, in order to construct a minimal realization of a
given proper rational matrix, one must construct a system which is controllable
and observable and has the given matrix as its transfer function matrix. Since
each proper rational matrix is weakly equivalent to a proper rational diagonal
matrix, it suffices (in view of Theorems 1 and 2) to minimally realize proper
diagonal matrices. But this is easily accomplished by taking direct sums of systems
realizing the diagonal entries.

We shall say that a system (F, G, H) is the direct sum of the systems (F;, G;, H,),
i=1,--, kif

Fl Gl Hl
F2 G2 H2

-

Clearly the direct sum (F, G, H) of the systems (F;, G;, H;) is controllable if and
only if each (F;, G;, H;) is controllable, and is observable if and only if each
(F;, G;, H)) is observable. (Note that our concept of direct sum is different from
that adopted, e.g., by Kalman [5].)

THEOREM 4 (Realization theorem). Given a proper rational matrix Z, let D’ be
any proper rational diagonal matrix which is weakly equivalent to Z, say
D' = diag [\ /Yy, -+, &/¥.,0, ---, 0] where, for each i, €; and ; are relatively
prime, &; # 0 and \; is monic. Let A and B be polynomial matrices with constant
determinants such that YyZ = A(WD')B (mod ), where  is the least common
denominator of the entries in Z. Construct a system (F, G, H) as follows.



TRANSFER EQUIVALENCE 27

(@) Foreachi=1,---,r, let (F;, G;, H) be the system given by

0 1 0 0
0 0 1 0
E e )
17 _L—azo diyp  —ap Aini—1
0
0
G; = R Hiz[biOabila"'abi,m,«’O’"'70]’
_1

where the a;; and the b;; are the coefficients of ; and of & respectively (i.e.,
Yo = Y, a8’ where a;,, = 1 and & = )" b;s7). (These systems will be minimal
realizations of the 1 x 1 matrices [g;/{y;].)

(b) Define (F, G, H) to be the system obtained by taking the direct sum of the
systems (F;, G;, H;) and then augmenting, if necessary, by adding columns of zeros
to G and/or rows of zeros to H to make H(Is — F)™'G of the same size as Z. (This
system will be a minimal realization of D'.)

(c) Let (F, G, H) be obtained from F, G, H, A and B as in formula (12).

Then (F, G, H) is a minimal realization of Z.

Remark 1. The diagonal matrix D’ can be taken to be the proper part of
any diagonal matrix D which is strongly equivalent to Z. In particular, D’ can be
taken to be the reduced Smith—-McMillan form (7) of Z. However, we do not
require that D’ be this canonical form (for example, we do not require any divi-
sibility relations among the ¥,). In fact, the canonical form (3) is not in general
the first diagonal matrix encountered in the standard algorithm [13] for reducing
a polynomial matrix to canonical form and so, in general, the reduced Smith—
McMillan form may not be the most convenient diagonal matrix to use in the
realization procedure described above.

Remark 2. 1t is clear from Theorem 4 and the fact that two controllable and
observable systems realizing the same Z can differ at most by an internal iso-
morphism, that the dimension of the state space (size of F) for any minimal realiza-
tion of Z is equal to ) '_, n;, the sum of the degrees of the denominators y; appear-
ing in D'. This number )7_, n; is known as the (McMillan) degree of the rational
matrix Z (see [4], [12]).

Remark 3. Note that the minimal polynomial of the matrix F constructed in
Theorem 4 is the least common multiple of the polynomials y; appearing in D',
since each F; has minimal polynomial ;. Thus the minimal polynomial of F is
equal to the least common denominator of the entries in D' and, by weak equi-
valence, also of the entries in Z. Since minimal realizations of Z differ only by
internal isomorphisms, it follows that the least common denominator of the
entries in Z is equal to the minimal polynomial of the state matrix of any minimal
realization of Z. (This known fact was used in our proof of Theorem 3. Note that
Theorem 3 is not used in the proof given below for Theorem 4.)

In order to prove Theorem 4, we shall need the following lemma.
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LEMMA. Let F be the companion matrix

0 1 o - 0
F— 0 0 1 .- 0
—Go —a4y —4p - 0y

associated with the polynomial y(s) = s" + a,_s" ' + -+ + ao. Then

1
W Is = F) ' = | 0 | 0o, s Puei(9)]
Sn—l_
(18) "0 0 - 0 0]
1 0 00
—yY(s)| S 1 0 0},
hsn—Z Sn—3 1 0_

where the ¢, k = 0,1,---, n— 1, are as in (9).
Proof. Multiply both sides of (18) on the left by Is — F and compute.
Proof of Theorem 4. First, using (18) with F = F; and yy = ;, we see that

Yis)H(Is — F)7'G; = bjo + byys + -+ + by s™

and hence the system (F;, G;, H;) of (17) is a realization of the 1 x 1 proper rational
matrix [&;/i;]. Moreover, it is a minimal realization because, given any realization
(F,, G;, H)) of [¢}/y;], the matrix F; must be of size A; x #; for some #; > n;. Indeed,

A

for F; of size A; x #;, its minimal polynomial i/, is of degree <#; and, by (8) (or (18)),
lz;igi(ls - Fi)—léi = ';i(*?g/‘//i)
is a polynomial matrix, so y; divides ; and hence
fi; = deg ‘/;i 2 degy; = n;.

Thus each (F;, G;, H;) is controllable and observable. Since the direct sum of
controllable and observable systems is controllable and observable, it follows
that the system (F, G, H) constructed in (b) is controllable and observable and is
a minimal realization of D'.

Finally, by Theorem 1 (with Z replaced by D’), we see that the system (F, G, H)
constructed in (c) is a realization of Z. By Theorem 2, it is controllable and observ-
able; that is, it is a minimal realization of Z.

Remark 4. It may be of interest to decompose step (a) in the realization
procedure into two substeps as follows. First realize the rational matrix [1/y,]
with the system (F;, G;, H;), where F, and G, are as in (17) and where H, = [1,0,
.-+, 0]. Then construct H; from H; by the formula H; = H;s(F,) to achieve the
realization of [&;/\;].
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More generally, given a system (F, G, H) realizing a proper rational matrix
Z and given a polynomial ¢ such that ¢Z is still proper, a system (F, G, H) realizing
¢Z is obtained by taking F = F, G = G and H = He(F) or, alternatively, by
taking F = F, G = &(F)G, and H = H. That these systems do realize ¢Z is an
immediate consequence of Theorem 1.

To illustrate the realization procedure, we consider two examples.

Example 1. Let

7 1[ s+1  2s24s5—1 52_1]
CYl-s2—s  —sP+s s
where Y(s) = s + 3s% + 2s = s(s + 1)(s + 2). Then we have Z = ADB, where
L 0} b [+ 29 0 0]’
-5 1 0 s (s* +3s+2) 0
1 25—1 s—17
B=|0 2 1
Lo 1 0 |

Denoting by D' the proper part of the matrix D we have that D’ is weakly equivalent
to Z and, in fact, yZ = A(yD')B, where A and B are as above. The matrix D' is
given by

. [1/(52 + 25) 0 0]
B 0 (=3s —2)/(s> +3s+2) 0]

According to parts (a) and (b) of Theorem 4, a minimal realization (F, G, H) of
D’ is given by

0 1 0 0 000
~ 0 -2 0 0 ~ 1 00 - [1 0 0 0:|
F = , G = , H = .
0 0 0 1 0 0 O 00 -2 -3
0 0 -2 -3 010
Since
P T
0 1 -1 0
and
1 -1 -1 0 21
B=1|0 2 1| +(0 0 O0}s=By+ Bys,
0 1 0 0 0O
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part (c) of Theorem 4 yields the following minimal realization of Z:
0 1 0 0

0 -2 0 0

o o o 1|

0 0 -2 -3

F=F=

0 2 1
1 -1 -1 0 2 1
~~ 1 -5 -3
G=G|0 2 1|+ FG|0O 0 0| = ,
0 0 0
0 1 0 0 0 Q0
0 2 1

[1 0]~ |: 0 OJW [1 0 0 0]
H= 7+ AF = .
0 1 -1 0 0 -1 -2 -3

Example 2. Let

T4 — 2544 322545
Then Z = ADB, where

5—2[352—55—2 252——55—1]

A__—24 0 ] |:0 O] |:O 0]2 [O 0]3
“lois —spal Tl ol T lis ol s o™
[(s — 2)/(s* — 1) 0 ]
D= ,
i 0 (8 + 5% — 12)/(s2 + 1)
[ 1/24j| [5/24 5/24] [—1/8 —1/12] ,
“lays aysl Tl 2T o o |7

In this case, the matrix D is the Smith-McMillan form (6) of Z. The proper part
D’ of D is then the reduced Smith-McMillan form (7) of Z and is given by

D= [(s - 2)fs* = 1) 0 ]
B 0 (—s — 13)/s* + 1]

Following the realization procedure yields

.. [—2 1 00 0 O:|
H = ,
0000 —13 -1

(&)}

Il
o - © o ©
- 0 0O O © ©

K



TRANSFER EQUIVALENCE 31

0100 0 0]
0010 00
PP 0001 00 ’
1000 00
0000 01
L0 O 0 0 —1 0]

0 0

—1/8 —1/12

o 524 524

112 124 |

-3 -2
L 22/5  23/5]

. [48 24 0 0 0 0]
141 -84 1 6 6524 5724

Remark 5. As mentioned in § 3, the polynomial matrices which are used in
this realization procedure can always be chosen to be of degree less than the degree
of . In practice, however, it may be as easy to make the extra matrix computations
required as to reduce modulo ¥ the polynomials involved.

Remark 6. Kalman [5] has described another realization procedure which
will give the same result as ours when D’ is taken to be the reduced Smith-McMillan
form of Z. His procedure is based on the formula

1

S
(19) Yi)Is = F)"t = | . | [@ols), -+, @,-1(5)]  (mod ),

Sn“ 1
where F is the companion matrix with minimal polynomial  and ¢q, -+, @,_1
are as in (9). This formula follows immediately from (18). From (19) it follows

that the transfer function matrix Z of a system (F, G, H) (F a companion matrix)
satisfies

VZs)=H| . | [@os), -, @,-1(9)]G  (mod ).

Sn——l

Hence a minimal realization of Z = A(¢/yy)B, where A4 is a 1-column polynomial
matrix and B is a 1-row polynomial matrix, is obtained by taking F to be the
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companion matrix associated with iy and solving the equations
1

S
200 H | . | = A(s)els) (mod ) and [@o(s), -+, @, 1(5)]G = Bls) (mod ¢)

Sn—l

for H and G. (Kalman actually puts ¢ with B instead of with A in these equations,
but points out that it can go either place.) A minimal realization of a general Z
is obtained expressing Z = AAB, where A is the Smith—-McMillan form of Z as
in (6), rewriting this equation as

7 = i A®fipa i ADg, B
i=1 ll’i i=r+1

where the A are the columns of 4 (not the coefficients of 4 as a matrix polynomial)
and the B are the rows of B, and observing that the sum (in Kalman’s sense) of
the realizations of the AV(¢;/\f;)BY, i = 1, ---, r, then gives a minimal realization
of Z. That Kalman’s procedure gives the same result as ours is a consequence
of the fact that, for transfer functions of the form Z = A(¢/i))B, our realization
satisfies Kalman’s equations (20). Indeed, taking F to be the companion matrix
of , we see that our H satisfies (see (12), (17) and (19))

1

S
H . [(P()(S), T (pn-1(s)] = Z Ai[bO’ T bm’O’ T O]F’z//(s)(ls - F)_l

=Y As'lbo, -+, by 0, -+, OW(s)Is — F)~* (by (10))
1

S
A(S)[bo, Tt bm’O’ Tt 0] . [(Po(s), Tt (pn—l(s)]

= A(s)gl(s) [‘Po(s), Y (pn—l(s)]
= A(s)e(s)[@o(s), « -+, @u—1(s)] (mod y).

Since ¢,_ (s) = 1, equality (mod ) of the last columns of the matrices on the left
and the right gives the first of equations (20). The second is derived similarly.
In addition to the computational saving resulting from the option of using
an arbitrary diagonal form of the transfer function matrix, our procedure has a
theoretical advantage over Kalman’s in that it more clearly exhibits the role of the
polynomial invariants which appear as numerators in the Smith—-McMillan
canonical form. Indeed, if we take D’ in Theorem 4 to be the reduced Smith—
McMillan form (7) of Z, then the entries in the output matrices H; of (17) are just
the coefficients of the polynomials obtained as remainders after dividing the
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numerators in the Smith-McMillan form (6) of Z by the corresponding de-
nominators.

Our procedure has the further advantage that it exhibits directly the relation-
ship between the system realizing a given transfer function matrix and the com-
pletely uncoupled system realizing the associated (reduced) Smith—-McMillan
form.

5. Further remarks. (a) As was pointed out in §2, a complete set of in-
variants for strong equivalence of rational matrices is provided by the rank R
together with the 2R polynomials, ¢, -+, ¥ and &, - - -, &g, which occur in
the Smith-McMillan canonical form. There still remains the problem of finding
a complete set of invariants for weak equivalence. A step toward the solution of
this problem is provided by the following theorem which suggests a possible
candidate for a canonical form for weak equivalence.

THEOREM 5. Let Z be a rational matrix. Then Z is weakly equivalent to a
proper diagonal matrix Q of the form

Q= dlag[l/'ﬁu ) 1/IP"_1,G)/l//,,O, ) 0]7

where Yy, ---,\, are the polynomials which appear as denominators in the
Smith—M cMillan form of Z and where w is a (nonzero) polynomial which is relatively
prime to s, .

Proof. We shall show that, for each i with 1 < i < r, Z is weakly equivalent
to a proper diagonal matrix of the form

Qi = dlag[l/l//b Y 1/lpi—17wii/lpi’ Tt wir/lprao’ Y 0],

where each w;;, j =i, ---, r, is a (nonzero) polynomial which is relatively prime
to the corresponding ;. Then, taking i = r and setting w = w,, will complete
the proof.

Note that each rational matrix is weakly equivalent to a matrix of the form
Q, since each matrix is weakly equivalent to its reduced Smith—McMillan form
(7). We now show that each matrix of the form Q, for 1 < i < ris weakly equivalent
to one of the form Q;, ; transitivity of weak equivalence will then imply the
theorem.

We shall alter Q; into the form Q; , ; by means of weak equivalence operations,
working only with the ith and (i + 1)st rows and columns. By denoting w;; by 0
and w;;; by 7, the effect of these operations on the 2 x 2 submatrix obtained
from the ith and (i + 1)st rows and columns will be as follows (with ¥ = /,):

np[e/l//i 0 ]_*[Olﬂ/% agl/’/lpi]:_li&///‘/’i 'ﬁ/‘ﬁ;:l
0 nihisy 0 mMiid L O myppis,

_»[ Oy /; !///!/h]_)[ 0 l///l//i:|_)l/]|:1/l//i 0 }
—n0iy 0 i, 0 0 —n0fpied

Each of these operations consists of the addition of some polynomial multiple
of one row or column to another, a congruence modulo ¥, or an interchange of
two columns. The polynomial « is chosen so that af + fiy; = 1 for some f3; it
exists because 6 and ; are relatively prime. The congruence mod  is valid since
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aby/r; + P = Y/ and hence af/yy; = /iy, (mod ). Note that —#0 is rela-
tively prime to ;. , since both # and 6 are (0 is prime to ; and y;, ; divides ;).

Clearly, the proper part of the matrix obtained after this sequence of opera-
tions is of the form Q;, ,, it is weakly equivalent to Q;, and the proof is complete.

It is clear that the number r together with the r polynomials y,, -- -, ¥, are
invariants of weak equivalence, since any pair of weakly equivalent proper rational
matrices has externally equivalent minimal realizations and the polynomials ¥;
are the invariant polynomials of the common state matrix F. Hence, if it could be
shown that w is also an invariant of weak equivalence, then Q would be a canonical
form for weak equivalence (i.e., there would be one and only one matrix of the
form Q in each equivalence class) and {r,y,, -+, ¥,, } would be a complete
set of invariants for weak equivalence.

There is a polynomial { closely related to w which is an invariant of weak
equivalence. Given a rational matrix A4, this invariant is obtained as the mod
reduction (the remainder after division by ) of the greatest common divisor of
the r x r minors of YZ, where  and r are as in the reduced Smith—-McMillan
form (7) of Z. For the matrix Q of Theorem 5, this invariant { is just the mod
reduction of Y/, - - -, Yw/y,. The polynomial w cannot be determined from a
knowledge of ¥, ---, ¥,, and (; this may be seen by considering the example
Q = diag [1/s*, 1/s2, (as + b)/s?].

It may be of interest to note that the polynomial w obtained in the proof of
Theorem 5 is just the mod ¥, reduction of the polynomial (—1)¢,, - -, &,, where
£, , &, and ¥, are as in the Smith—McMillan canonical form of Z. This may be
seen upon close examination of the proof.

(b) The realization procedure described in § 4 suggests a way of “‘realizing”
any (not necessarily proper) rational matrix as follows. Given a rational matrix
Z, let y denote the least common denominator of the entries in Z and let Z denote
the (proper) rational matrix with the property that

YZ = yZ (mody);

that is, yZ is the proper part of yZ. Then we can define a realization of the rational
matrix Z to be any realization of Z.

In terms of this definition of realization of improper rational matrices, our
realization technique (§ 4) can be described as follows:: first realize any diagonaliza-
tion of Z in the obvious way (parts (a) and (b) of Theorem 4); then construct the
realization of Z itself using formula (12).

(c) Another way of “‘realizing” an improper rational matrix is by enlarging
the class of linear dynamical systems. As is well known, a regular rational matrix
(one in which the degree of each numerator is less than or equal to the degree of
the corresponding denominator) can be realized by a system (F, G, H, K), where
F, G, H and K are matrices corresponding to equations of the form

x = Fx + Gu,
y = Hx + Ku.

Similarly, any improper rational matrix Z can be realized by a system (F, G, H, K),
where F, G and H are matrices and K is a matrix polynomial corresponding to
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equations of the form

x = Fx + Gu,
(21)

y = Hx + K(D)u,

where D is the differentiation operator. The system (F, G, H) corresponds to the
“proper part” (the mod y reduction Z) of Z and the polynomial K corresponds
to the “improper part” (the polynomial matrix Z — Z) of Z. Physically, the
presence of an improper part alters the system by introducing the input and its
derivatives directly into the output (bypassing the state space).

(d) We consider now the question of when is a Smith-McMillan form (6)
equal to the Smith-McMillan form of some linear dynamical system (F, G, H).
More generally we ask : when is an improper rational matrix strongly equivalent
to a proper one? In view of remark (b) above, this is equivalent to asking: when
is a generalized system of the type (21) strongly transfer equivalent to an ordinary
system of the type (1)? The answer is provided by a degree condition.

THEOREM 6. Let Z be a rational matrix. Then Z is strongly equivalent to a
proper rational matrix if and only if the degree of Ag(WZ) is less than or equal to
R(n — 1), where R is the rank of Z, s is the least common denominator of the entries
in Z, Ag(WZ) is the greatest common divisor of the R x R minors of WZ, and n is
the degree of .

Proof. First recall that yy, R and Ag(¥/Z) are invariant under strong equi-
valence. Hence the necessity of the condition is clear, since for a proper rational
Z the maximal degree of the entries in Z is n — 1 and hence the maximal degree
of any R x R minor is R(n — 1).

For sufficiency we may assume that Z is in Smith—-McMillan form, since
every rational Z is strongly equivalent to such a form. Then ¥/Z is of the form (3)
where the degrees d(y;) of the y; satisfy

(22) 2. diy) = diAY2)] = R(n — 1).

Let p denote the largest integer in {1, - - -, R} such that y, is proper (i.e., such that
d(y,) = n — 1). (Note that y, is proper since, by the divisibility relations among
the y;, d(y;) = d(y,) for all i and hence d(y;) < () d(y;))/R < n — 1.) We shall show
that for each k = p, ---, R, WZ is strongly equivalent to a matrix M, of the form

[ v 7
Yi-1

Vi+1

YR
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where each element in the box is proper, j is some positive integer less than p
(depending on k), and « is a (nonzero) polynomial which is of maximal degree
among all the elements in the kth row and all the elements in the kth column and
which satisfies

k

24 do) =n—1+ ) [dy) = (n — D).
i=j

Taking k = R will then complete the proof.

The proof now proceeds by induction on k. Takingk = p wesee that M, = yZ
satisfies (23) and (24) with j = p and o = y,. So now we assume we have found
M, (p £ k < R) and we proceed to construct M, ;.

Let g, be a polynomial of degree n — 1 — d(a) (q,(s) = s" ' 79@ will do).
Dividing y, . ; by g, we obtain

(25) Ye+1 = P1d1% + Ty

for some polynomials p; and r; with d(r;) < d(q,o) = d(q,) + d@) =n — 1.
Multiplying the kth row of M, by p, and adding it to the (k + 1)st row, then
multiplying the jth column of this new matrix by ¢, and subtracting it from the
(k + 1)st column, we obtain a matrix MV which is strongly equivalent to M,
(and hence to yZ) and which is of the form

) Vi-1

(26) M® = o

pla...

Vi+2

i

where all entries in the two boxes are proper and where p,a is an element of
maximal degree in its row and column. Moreover, by (24) and (25),

d(pio) = d(yx+1) — d@y) = A1) — (n — 1) + d(@)
27) k+1
—n— 14 Y [dg) — (- 1),

i=j

If pyo is proper, we may take M,,, = M{" and we are done. Furthermore,
if j = 1 in (26) (i.e., if the square box extends all the way to the upper left-hand
corner of M{V), then p,a is necessarily proper since then, using (22),

R R
dipyj) =n —1+ Zl diy) — (k + Din = 1) = > dy)
i= i=k+2

sn—1+Ron—-1)—-k+1D)mn—-1)—[R—(k+1]n—-1)

=n—1.
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If pya is improper (ie., d(p ) > n — 1), then we can use y;_, to reduce its
degree. Let g, be a polynomial of degree n — 1 — d(y;_,). Then

(28) P10 = P2qsYj—1 + T2,

where d(r,) < d(q,y;-,) = n — 1. Multiplying the (j — 1)st row of M{" by p,
and adding it to the (k + 1)st row, then multiplying the (j — 1)st column of this
new matrix by g, and subtracting it from the jth column, we obtain a matrix
M which is strongly equivalent to M{" (and hence to Z) and which is of the
form

Vi-2
Vi-1
0
@ M- ; ,
0
tr
D2Yj-1 boA
Vi+2
L e

where all the entries in the solid boxes are proper and where p,y;_, is an element
of maximal degree in its column. Furthermore, we may assume that p,y;_, is
an element of maximal degree in its row; otherwise we can accomplish this by
multiplying the (j — 1)st column of (29) by appropriate polynomials ¢; and
subtracting from the other columns. (This process will not introduce improper
entries into the solid boxes in (29) since: (i) p,a was of maximal degree in its row
in (26), and (ii) d(p,a) > n — 1 > d(r,); hence for each element # in the dotted
box in (29) we have, using (28),

dif) < d(p,0) = d(Pz‘]sz—l) =d(q,) + d(Pz?j—l),

so the polynomial g; required to reduce f will have d(g;) < d(g,) and therefore
d@y;-1) = dg2y;-1) = n — 1.) Also we have, by (27) and (28),

d(Pz')’j—l) = d(p,a) — d(g,) = dlp2) —(n — 1) + d(y;-1)
k+1
=n—1+ % [do)~ @)

1=J]—
Hence, if p,y;_, is proper, we may take M, ,,; = M{® and we are done. If p,y;_,
is improper, we are again in the same situation as (26) but with a box one row and
one column larger and we may repeat the above process to obtain M{>. Clearly
this process must stop and we obtain M, ., = M{" for some | < j.

(e) As mentioned in § 4, our realization procedure provides new insight into
the significance of the polynomial invariants ¢, of a system which occur in the
Smith-McMillan form of the transfer function matrix Z. Another interpretation
of these polynomials is obtained as follows.
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Instead of the polynomial g, which occurs in the Smith—-McMillan form of
Z, we consider the polynomial invariant A,(yZ) obtained as the greatest common
divisor of all k x k minors of yZ, k =1, ---, R. As is well known, these poly-

nomials A,(yZ) are related to the polynomials y, appearing in the canonical form
(3) of yZ by

(30) AWZ) = yy - Ye

In particular, the polynomials A,(yZ) contain the same information as the poly-
nomials &,.

The polynomial A;(})Z) = y, has an immediate interpretation, as a conse-
quence of its definition as the greatest common divisor of the entries in Y Z: it is
the polynomial whose roots form the set of zeros of the given system (i.e., the set
of frequencies s to which the system is completely unresponsive). A similar
interpretation of the A, (Y Z) (k > 1) can be given by constructing a system whose
transfer function matrix has as entries the k x k minors of Y Z. We shall carry
out this construction here only for k = 2. The generalization to arbitrary k is
straightforward.

We recall first a few facts from multilinear algebra [14]. Recall that to each
vector V is attached another space A?(V), the spaces of bivectors of V. Formally,
A*(V) is the vector space generated by objects of the form u A v (u,ve V) and
subject to the relations

Uy +u) ANo=u; ANv+u, Ao,
(cu) AN v=clu A v),
ulNv= —v Au,
where u, v € Vand cisascalar. Given a basis {v,, - - -, v,} for ¥, theset {v; A vi <j}

is a basis for A*(V). In particular, A*(V) has dimension n(n — 1)/2, where n is the
dimension of V.

Given a pair A, B of linear operators on V, there is induced a linear operator
A A Bon A*(V), defined by

A N Bu A v) = {Awm) A Bv) — A@v) A B()].
The following properties of this “wedge product” of operators are easily checked :
A+B)AC=ANC+BAC,
(cA) A B = c(4 A B),
ANB=BA A,
(A A B)(C A D) = (AC) A (BD).

It is also easily verified that, given a basis {v,, ---, v,} for V, the matrix for the
operator A A A relative to the basis {v; A v]i <j} for A*(V) is a matrix whose
entries are the 2 x 2 minors of the matrix for A relative to {v,, ---, v,}.

With slight modifications, the above discussion is also valid in the more
general situation where V is a module over a commutative ring.

Now, given a constant linear dynamical system (F, G, H) with transfer
function matrix Z, we can exhibit a related system whose transfer function matrix
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is Z A Z. Since
Z ANZ=[H(Is— F)~'G] A [H(Is — F)"'G]
=HAH[(Is—F) ™" AN(Is—F)'lGAG
=HAH[(Is—F)AN(Is—F)] 'GAG
=HAH[IANIs* —2F ANIs+ F AN F]"'G A G,
it is clear that Z A Z is the transfer function matrix of the second order system
X—=2FANIx+ F A Fx=G A Gu,
y=H A Hx.

Transforming this system in the standard way to a first order system, we conclude
that Z A Z is the transfer function matrix of the linear dynamical system (F, G, H)
given by

- 0 IAT N 0 _
F=[ ] G:[ ] A=[HAH, 0]
—~FAF 2FAI GAG

Furthermore, the invariant A,(yZ) of the original system (F, G, H) is the poly-
nomial whose roots are the zeros of the associated system (F, G, H).

The blocks appearing in F each admit simple interpretations: I A I is the
identity, F A F represents the induced operator on A%(V) (V the state space of
(F, G, H)) given by

F A F(u A v) = Fu) A F(v)
and 2F A I represents the extension of F to a derivation on A%(V), since

2F A I(u A v) = Fu) A v + u A FQ).
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THE VALIDITY OF A FAMILY OF OPTIMIZATION METHODS*
ROBERT MEYER?

Abstract.. A family of iterative optimization methods, which includes most of the well-known
algorithms of mathematical programming, is described and analyzed with respect to the properties
of its accumulation points. It is shown that these accumulation points have desirable properties under
appropriate assumptions on a relevant point-to-set mapping. The conditions under which these
assumptions hold are then discussed for a number of algorithms, including steepest descent, the
Frank-Wolfe method, feasible direction methods, and some second order methods. Five algorithms
for a special class of nonconvex problems are also analyzed in the same manner. Finally, it is shown
that the results can be extended to the case in which the subproblems constructed are only approximately
solved and to algorithms which are composites of two or more algorithms.

1. Semicontinuity and mathematical programming. The concepts of upper
and lower semicontinuity for point-to-set mappings have been studied by a number
of prominent mathematicians, including Hausdorff [1], Berge [2] and Dantzig [3].
Several similar definitions of the two concepts have been formulated, and some
comparisons may be found in a recent paper by Jacobs [4]. The following defini-
tions, which are essentially the same as those given in Debreu [5], will be used
in this paper: a point-to-set mapping Q with domain G and range consisting of
subsets of a set R is said to be (i) upper semicontinuous (u.s.c.) at a point y belonging
to Gify;, > y,{y;} = G, and z; > z with z;€ Q(y)) for each i imply z € Q(y); (ii) lower
semicontinuous (1.s.c.) at a point y belonging to G if ze Q(y), y; = y, {y;} = G imply
the existence of an integer m and a sequence {z,,, Z,+ 1, - - -} With the properties
that (a) z;€ Q(y;) for i = m and (b) z; —> z; and (iii) continuous at a point y if it is
both upper and lower semicontinuous at y. Note that these definitions are meaning-
ful whenever the notion of convergence is defined in both G and R. In particular,
they are valid if G and R are subsets of topological or metric spaces. (If Q(y) is a
single point for every y € G, i.e., a function, then it is easily seen that l.s.c. at a point
implies u.s.c. and hence continuity at that point. Similarly, if Q is single-valued
and R is a sequentially compact subset of a topological space, then it is true that
u.s.c. at a point implies L.s.c. and hence continuity at that point. However, it is
easy to construct set-valued mappings that are only u.s.c. or only l.s.c. even when
R is a compact subset of E". Examples displaying this behavior appear below.
These notations should not be confused with numerical upper and lower semi-
continuity for real-valued functions, which have quite different definitions.)

An important class of point-to-set mappings consists of those mappings
that involve the linearization of some or all of the constraints defining a set about
a point. Let M denote the set S N {zlu(z) = 0} N {z|v(z) = 0}, where S is a closed
subset of a Banach space B and u and v are continuously Fréchet differentiable
vector-valued functions. For a point y e B, we say that the ‘“‘linearization” of M
about y is the set

Im(y) = S N {zlu(y) + ' (y)(z — ») 2 0, v(y) + V'(y)(z — y) = 0}.
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Note that if ye M, then I'm(y) is nonempty, since y € I'm(y). We shall now show
that the point-to-set mapping I'm is u.s.c. at every point of B. For, let ye B, and
let y; > y. If z;e T'm(y;) for each i and z; — z, then it follows from the closure of
S that ze S, and it follows from the continuity of ' and v’ at y that

u(y) + u'(y)z — y) = lim (u(y;) + v'(y)(z; — y)) 2 0
and

o(y) + v(y)(z — y) = im (v(y;) + v'(y)(z; — y)) = 0,

so that z € I'm(y), proving u.s.c. Without additional hypotheses, however, it is not
true that I'm is L.s.c. This fact was demonstrated by Rosen [6], and it can also be
deduced from the following very simple example where B is taken to be the real
line.

Example. Take S = E!, v = 0, and u(z) = z3. Let y; = 1/i, so that y; > 0 as
i—> o0 and I'm(y;) = {z|y? + 3y?(z — y)) = 0} = {z]z = 2/3i}. However, I'm(0)
= E', and it is clear that I'm is u.s.c. but not 1.s.c. at the point 0.

In the case that B = E" and S is a convex set consisting of the points satisfying
f(z) = 0, where fis continuous and vector-valued, the next theorem gives sufficient
conditions for Ls.c. of I'm in the neighborhood of a point. We adopt the con-
vention of calling the inequality constraint fi(z) = 0 (u;(y) + ui(y)(z — y) = 0)
active at the point ze I'm(y) if fi(2) = 0 (u(y) + ui(y)(z — y) = 0). The (possibly
vector-valued) function consisting of active constraint functions at ze I'm(y) is
understood to consist of those functions fi(z) and u;(y) + ui(y)(z — y) which
correspond to active inequality constraints at z as well as the function
uy) + vz — y).

THEOREM 1.1. Under the preceding assumptions on B and S, the point-to-set
mapping I'm is Ls.c. in a neighborhood of a point y* if the set I'm(y*) contains a
point z* at which the gradients to the active constraint functions at z* are linearly
independent.

Proof. See Appendix.

We shall now obtain three basic results relating semicontinuity of point-to-set
mappings to mathematical programming. Similar results may be found in Berge [2]
and Debreu [5]. It will be assumed that f is a real-valued function defined and
continuous on R x G and that the optimal value function u(y) = min,q,, f(z, y)
is well-defined for every ye G.

LemMMA 1.2. If Qis u.s.c. at a point y* € G and R is sequentially compact, then
u is (numerically) lower semicontinuous at y*.

Proof. Let y; — y*, {y;} = G. Then there exist sequences {y,,} and {z,} such
that pu(y,) = f(2Zu;s Vn)» Za, = 2*, and p(y,) — liminf u(y;) as i — co. It follows
from us.c. that z* € Q(y*), and thus lim inf u(y;) = lim u(y,,) = f(2*, y*) = u(y*).

If the compactness hypothesis is deleted, the conclusion is no longer valid.
Examples illustrating this are easily constructed. However, compactness is not
required in the following complementary result.

Lemma 1.3. If Q is Ls.c. at a point y* € G, then u is (numerically) upper semi-
continuous at y*.

Proof. Let z*eQ(y*) be such that u(y*) = f(z* y*), and let {y;} be an
arbitrary sequence in G converging to y. Choose {y,} and {z,} such that u(y,,)
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- lim sup u(y;) and z,, — z* with z, € Q(y,). We then have u(y*) = f(z*, y*)
= lim f(z,,, y,) 2 lim p(y,) = lim sup u(y,).

Combining the previous two lemmas, we obtain the following theorem.

THEOREM 1.4. If Q is continuous at a point y* € G and R is sequentially compact,
then u is (numerically) continuous at y*.

The next theorem reflects a slightly different viewpoint. It shows that con-
tinuity of Q is a sufficient condition for the limit of a set of solutions to solve the
limiting problem. Note that compactness does not enter directly into the statement
of the result.

THEOREM 1.5. Let M(y) denote the subset of €y) consisting of all points z
such that f(z, y) = w(y). If Q is continuous at y* € G, then the point-to-set mapping
M is u.s.c. at y*.

Proof. Let {y;} = G converge to y*, and let z; € M(y;) for each i, with z; —> z*.
Since Q is u.s.c. at y*, it follows that z* € Q(y*), and thus u(y*) < f(z*, y*). On
the other hand, by Lemma 1.3, f(z*, y*) = lim u(y;,) < u(y*).

(The previous theorem and also Theorem 1.1 are similar to results published
recently by Dantzig, Folkman and Shapiro [3]. Theorem 1.1 differs from the
corresponding result [3, Corollary I1.3.5] in that the former: (i) allows for the
intersection of the linearized constraints with the convex set S, and also (ii) has a
stronger conclusion. As with Theorem 1.5, the method of proof is quite different
than that used by Dantzig et al. in obtaining similar results. Finally, as noted
previously, Theorem 1.5 is proved assuming only that the notion of convergence is
defined in the spaces dealt with, whereas the analogous Corollary 1.2.3 is stated
for a pair of metric spaces.)

Let us now suppose that R < G and that we have a continuous function ¢
defined on G with the property that y' € M(y) implies @(y') < ¢(y) unless y e M(y).
(This will sometimes be referred to as the strict monotonic property.) Consider the
algorithm defined as follows:

(a) Choose an arbitrary y,€ G.

(b) Let y;,; = y; if y;€ M(y;); otherwise let y;, € M(y;).

THEOREM 1.6. If {y;} is contained in a sequentially compact set and y* is an
accumulation point of {y;} at which Q is continuous, then y* € M(y*).

Proof. If the conclusion were false, we would have ¢(y) < @(y*) for all
y € M(y*) by the assumption on ¢. We shall show that this leads to a contradiction.
Let subsequences {y,,} and {y,,,,} be chosen so that y, — y* and y, ., - ). It
follows from the previous theorem that y' € M(y*), so that ¢()') < ¢(y*). However,
since {¢(y;)} is a monotone decreasing sequence we have ¢(y) = lim ¢(y,, +;)
= lim ¢(y;) = lim ¢(y,) = @(y*), a contradiction.

The preceding theorem can be looked upon as a special case of a result of
Zangwill [ 7], who assumes u.s.c. of M instead of the continuity of Q. From Theorem
1.5 it follows that Zangwill’s result is more general than Theorem 1.6; but, from
the standpoint of application, the latter appears to be a more useful formulation
in many cases. In addition by considering the continuity properties of Q rather
than M, a sharper result can be obtained in the important case f(z, y) = ¢(z2).
This result, given in the following theorem, states that in such cases the conclusion
of Theorem 1.6 continues to hold when the assumptions of sequential compactness
and u.s.c. of Q are dropped. (As shown by an example in the Appendix, sequential
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compactness cannot be deleted in the more general case. Simple examples can also
be constructed to show the need for u.s.c. of Q in both Theorems 1.5 and 1.6.)

THEOREM 1.7. If ¢(z) = f(z, y) and y* is an accumulation point of {y;} at which
Q is .s.c., then y* € M(y*).

Proof. Again suppose that the conclusion is false, and let y € M(y*), so that
@(y) < @(y*). Since Q is assumed Ls.c. at y*, there exists a sequence of points
{z,,} with z, € Q(y,) for each n; and such that z,, — y. Thus we conclude that
o(y*) > @(y) = lim ¢(z,) = lim @(y,,+ 1) = @(y*), which cannot hold.

2. An application: Reverse—convex programming. Consider the following
problem:
1. Minimize

@(2)
subject to

ze F =S N {zlu(z) = 0},

where S is a closed, convex subset of E", u is a vector-valued, convex and con-
tinuously differentiable function, and ¢ is continuous and real-valued on F.
We shall further assume that F is bounded, which is easily seen to imply that F
is compact. The curious feature of problems of the form I is the nonconvexity of
the feasible region F. The convexity of u implies that the region {z|u(z) < 0}
given by the reverse inequalities is convex (see Fig. 1). For this reason, the sets
U = {zJu(z) = 0} and F will be called reverse—convex and the problem I a reverse—
convex minimization problem.

Z2

Z)

FI1G. 1. A reverse-convex set

Such problems arise, for example, when we wish to determine the minimum
of a function in a region from which an open sphere about a point has been re-
moved.

It is easy to show that even with a linear objective function such a problem
may have a local minimum that is not a global minimum. The numerical methods



FAMILY OF OPTIMIZATION METHODS 45

proposed below, like all numerical methods based on local searches for solutions,
can at best be expected to yield local minima for problems of the form I. Global
minimality could be assured only by exhaustive searches over successively finer
grids. Grid search techniques, however, usually require more function evaluations
than would be computationally feasible for most practical problems.

In order to establish iterative procedures for problems of type I, we first
consider a technique for generating convex subsets of F. This is conveniently
done by “linearization.” That is, we define W(y) = {zlu(y) + v'(y)(z — y) = 0},
the “linearization” of the set U about the point y (here u'(y) is the Jacobian of u
evaluated at y); and we let I'(y) = S N W(y). For every y € F the set I'(y) has the
three important properties: (i) I'(y) is convex and compact, (ii) I'(y) = F, and
(iii) y e I'(y). (This was first pointed out by Rosen [6].) Property (ii) is an immediate
consequence of the convexity of u, and properties (i) and (iii) are obvious. Note
that by the results of § 1, the point-to-set mapping I" is everywhere u.s.c.

Consider now the following subproblem, R(y), derived from the problem I:

R(y). Minimize

@(2)
subject to

ze ().

If ye F, by property (i) above, R(y) has a solution; by property (ii), every point
at which the minimum value is attained must be in F; and by property (iii), if
z* solves R(y), ¢(z*) < ¢(y). Of course, it is not likely that a solution of the sub-
problem R(y) can be obtained by numerical means unless the objective function
has some convexity property. (For example, if ¢ is strictly quasi-convex [8], a
local minimum for R(y) will be a global minimum.) In many problems of interest
the objective function will be linear, so that if S is a polytope (the intersection of a
finite number of half-spaces), the problem R(y) can be solved by linear program-
ming (LP). In any event, the following iterative scheme proposed by Rosen [6]
is mathematically well-defined :

METHOD A.

(a) Choose an arbitrary y, € F.

(b) Given y;, let y;, be a solution of R(y;).

By the above discussion, Method A yields a sequence of feasible points
satisfying @(y;+1) < @(y;), with strict inequality holding if y, does not solve
R(y;). Because F is compact, {y;} must have at least one accumulation point,
and every accumulation point must lie in F. Note that in Method A, unlike the
iterative procedure in § 1, we do not require that y;, , = y; if y; solves R(y;). This
restriction was included in § 1 merely to assure that {¢(y;)} satisfied @(y;+1) < @(y;).
By an immediate application of Theorem 1.7, then, the following theorem holds.

THEOREM 2.1. If T is ls.c. at an accumulation point y* of a sequence {y;}
generated by Method A, then y* solves R(y*).

There are several aspects of the' previous theorem that warrant further
discussion. The first point to be noted is that the compactness of F is only used
to guarantee that the subproblems R(y) have solutions and that the sequence
{y:} has at least one accumulation point. It follows that compactness can be
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replaced by those two hypotheses. In this case we might as well consider ¢ to be a
real functional defined on a reverse—convex subset F of a Banach space, since the
proof of the previous theorem was based solely on Theorem 1.7. It should be
pointed out that while Theorem 1.1 gives a sufficient condition for ls.c. of I" at
y* when F < E", sharper results have been obtained in [9]. In particular, if S is
determined by constraints of the form g(z) = 0, where g is vector-valued and
differentiable, it is sufficient that there be a point z* € I'(y*) such that the gradients
to the active constraints at z* form a positively linearly independent set (i.e., no
nontrivial nonnegative combination of the vectors of the set vanishes). With regard
to the conclusion of the theorem only one observation will be made here. (This
topic is examined in some detail in [9].) If T'(y*) satisfies some farm of constraint
qualification at y* (which is the case, for example, if S is a polytope), then the
fact that y* solves R(y*) implies that the Kuhn—Tucker (K-T) first order necessary
conditions for a solution of I are satisfied at y*. This is obvious, for at y* the K-T
conditions for the two problems R(y*) and I are identical.

If the function ¢ is differentiable on some open set containing F, we can
construct the following subproblem for each point y e F':

L(y). Minimize

@'(y)z
subject to

ze[(y).

Of course, if ¢ is linear affine, the solutions to L(y) coincide with the solutions
of R(y). However, even for the class of quasi-concave functions (which includes
all linear affine functions), we have the crucial property that if y does not solve
L(y), then every solution y of L(y) satisfies @(¥) < ¢(y). This follows from the
(differential) definition of quasi-concavity [8], which requires that ¢'(y)(y — y) <O
imply @(J) < ¢(y). Consider now the following iterative method.

METHOD B.

(a) Choose an arbitrary y, € F.

(b) Let y;,; = y; if y, solves L(y,); otherwise, let y;, ; be any solution of L(y;).

The following is an immediate consequence of Theorem 1.6.

THEOREM 2.2. Let ¢ be quasi-concave and continuously differentiable on some
open set containing F. If y* is an accumulation point of a sequence {y;} generated
by Method B and I is continuous at y*, then y* solves L(y*).

A comparison of Theorems 2.1 and 2.2 is in order. The former is valid for all
continuous objective functions (although from a numerical standpoint we can
apply Method A only to objective functions with certain convexity properties),
whereas the latter holds only for continuously differentiable quasi-concave
functions (although Method B is numerically feasible whenever ¢ is differentiable).
Although the last theorem specifies that I' be continuous at y*, it follows from a
result of § 1 that I is u.s.c. everywhere, so that only Ls.c. at y* need be assumed
or verified. In order to apply Theorem 1.6 to prove the previous theorem, it is
necessary that F be compact. As noted above, the compactness of F does not play
so crucial a role in the proof of Theorem 2.1. Finally, if we assume again that
I'(y*) satisfies some type of constraint qualification at y*, we conclude that if y*
solves L(y*), then y* satisfies the K-T conditions for problem I.
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In the event that ¢ is continuously differentiable but not quasi-concave, it
is still possible to obtain algorithms in which the objective is linearized and which
have the required properties if we assume that ¢ is twice continuously differentiable.
These are based upon the observation that the linear part of the objective function
dominates in a region sufficiently close to the point linearized about. Let the
constant R > 0 be chosen so that

%(Zz - 21)T(P”(Z1)(22 —z;) £ Rz, — 21”2 forall z;,z,e F

(the norm is arbitrary but fixed for the remainder of the section). Given a point
yeF, let M(y) be the set of solutions of L(y). Let a be a fixed element of (0, 1)
and for z # y define the real-valued function

K(y,z): =min{a-@'(y)(y —2)-lz — yll"*-R™ %, Iz — yl}.

For the three algorithms below, it is to be understood that: (i) y, is chosen arbi-
trarily from the feasible set F, and (ii) given y;, that y;, , is selected according to
the rule of the algorithm, unless y; itself solves L(y;). In the latter case, the rules are
not used, but instead y;,  is taken to be y;. Finally, z¥ is used below to denote an
arbitrary element of M(y,).

ALGORITHM C. Choose y;,; to minimize ¢’'(y;)z over the set

T(y) N {Z| Iz —yill = K(yi’zl*)}'

ALGORITHM D. Let y;yy = y; + K(y;, 2}) - (zF — y) - zF — yill 7.

ALGORITHM E. Choose an element 6 from the fixed interval [f, y], where
0<B=<y<l1,andlet y,,, =y; + 0/ -(z¥ — y;), where i is the smallest non-
negative integral exponent for which the inequality

Oy + 0 -F —y) = oy) + (1 — )0 @(y)(zF — y)

is satisfied. (It will be shown that the previous inequality is satisfied for all sufficiently
large j, so that the algorithm is well-defined.)

THEOREM 2.3. Let ¢ be twice continuously differentiable on some open set
containing F, and let the sequence {y;} be generated by one of the three procedures
above. If y* is an accumulation point of {y;} at which T is continuous, then y* solves
L(y*).

Proof. See Appendix.

In general, the three previous algorithms will yield three different points if
applied to a given point. A typical situation is shown in Fig. 2, where the points
C, D and E correspond to the application of Algorithms C, D and E respectively.
The dotted lines represent level lines of the linearized objective function ¢'(y))z,
and the square in the interior of I'(y;) represents the set {z| ||z — y;|| < K(y;, z})}.
The figure illustrates a case in which we have chosen to'work with a norm whose
level surfaces are the surfaces of similar polyhedra. When these types of norms are
used, and, in addition, S is a polytope, it follows that in order to obtain y;, via
Algorithm C from y; and z¥, we need only solve an LP problem. Hence, in this
case we would solve two LP problems in order to move from y; to y;,, using
Algorithm C. On the other hand, regardless of the norm used, when S is a polytope,
only one LP problem must be solved when Algorithm D is used to obtain a
successor to y;. However, for both Algorithms C and D an estimate on the upper
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bound of the norm of the Hessian matrix ¢"(z) is needed, and this may not be
easily obtained. For Algorithm E this estimate is unnecessary, and y; , ; is obtained
from y; by solving one LP problem (assuming again that S is a polytope) and
performing a finite number of evaluations of ¢.

F1G. 2. Successor points

In the case that S is a polytope, Method B and the method corresponding
to Algorithm C are special cases of the MAP method of Griffith and Stewart [10].
For the classes of minimization problems for which they are intended, the former
two methods resolve the previously unsolved problem of step-size limits for
the MAP method. Algorithms D and E can be contrasted with the well-known
Frank—Wolfe algorithm in the special case when F is a polyhedron. (This will
occur if S is a polytope and u is linear, and will mean that I'(y) = F for all y.) The
Frank—Wolfe algorithm consists of choosing y; , ; to be a point on the line segment
connecting y; and z¥ which satisfies (y; ) < o(y;) + (1 — a)[()F) — @(y;)], where
y¥ is a point which minimizes ¢ on that line segment and a € [0, 1). Algorithms
D and E require no knowledge of the minimum of the function ¢ on line segments,

and hence enjoy something of a theoretical advantage over the Frank—Wolfe
scheme.

3. Applications to other mathematical programming algorithms. In this section
we shall indicate how the results of § 1 may be applied to a number of well-known
algorithms of mathematical programming.

3.1. Unconstrained minimization methods. In the notation of §1, let
f(z,y) = ¢(z) and Uy) = {y + A- D(e(y)|4 = 0}, where the composite function
D(¢p) (which can be thought of as a direction-assigning function) is continuous for
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all continuously differentiable ¢ and has the property that ¢'(y)D(¢(y)) < 0 with
equality if and only if ¢'(y) = 0. (When D(¢(y)) is chosen to be (—¢'(y))”, the
corresponding algorithm (see § 1) is the method of steepest descent. If ¢ is twice
continuously differentiable and has a positive definite Hessian matrix at each point,
then we may choose D(¢(y)) = —[@'(»)¢”~'(y)]". The corresponding algorithm
is then a modification of the Newton—Raphson second order method.) It is clear
that Q is everywhere l.s.c. and that the iterates have the required monotonicity
property. We thus conclude that an accumulation point y* of such a method
must solve the problem: Minimize ¢(z) subject to ze€ Q(y*). This implies that
¢@'(y*) = 0, and if @ is convex, y* must be the global minimum of the unconstrained
minimization problem.

3.2. Feasible direction methods. Topkis and Veinott [12] recently studied
the properties of a general feasible direction algorithm which contains as special
cases a feasible direction method of Zoutendijk [13], the Frank—Wolfe method
[11], and second order feasible direction methods. We show below how the same
general algorithm can be studied by the techniques of § 1. Again we consider a
general minimization problem of the form I, but we shall assume here that the
set U = {zlu(z) = 0} is convex (rather than reverse—convex as assumed in §2).
All other assumptions on the feasible set F, including compactness, are assumed
to hold. We define the set Q(y) to be those pairs (v, z) satisfying

vZ @'Yz —y) + 13z - YHYE-Y),

vz —[uy) +uy)z —y)]  foralli,
and ze S N (B + y), where H is a continuous mapping from E" into the set of all
positive semidefinite n x n matrices and B is a compact convex neighborhood of
the origin. Letting u(y): = min {v|(v, z) € Q(y)}, the iterative procedure proposed
by Topkis and Veinott is as follows:

(a) Choose an arbitrary y, € F.

(b) Given y;, let y¥ be chosen so that (v}, y¥) € Q(y;) and v} = u(y,);if u(y;) = 0,
let y;+1 = y;, and if not, let y;, ; be a point in the intersection of F with the line
segment connecting y; and y¥ such that ¢(y;; ;) < ¢(z) for all z in the intersection.

It is shown in the Appendix that the mapping Q as defined above is continuous
on S and that ¢(y; ) < @) if u(y;) < 0. By a slight modification of the proof
of Theorem 1.6, it follows that a limit point y* of the iterative procedure just
described has the property that u(y*) = 0. If some form of constraint qualification
holds at y* (for a particular case, see [12]), the relation u(y*) = 0 implies that the
Kuhn-Tucker necessary conditions for a solution of problem I must be satisfied
at y*. The Kuhn-Tucker conditions are also sufficient for optimality when ¢ is
pseudoconvex and the constraint functions are quasi-concave (see Mangasarian

[14]).

4. Generalizations. Because of such factors as finite arithmetic and rounding
errors, there is little hope of obtaining exact analytic solutions to optimization
problems on digital computers. One can expect at best very good approximations
to the true solutions. In the theory developed in the preceding sections, however,
the availability of exact solutions at each iteration was assumed. We shall now
show how Theorems 1.6 and 1.7, upon which most of the results of this paper are
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based, can be strengthened to provide for a certain type of approximate solution.
(This type of approximation was considered by Dem’yanov and Rubinov [15]
in a paper dealing with a convex programming method in Banach space. Other
approximations, such as the class considered by Topkis and Veinott [12], can be
handled in a similar manner.)

Let o be a fixed element of the open interval (0, 1), and, using the notation
and assumptions introduced for the statement of Theorem 1.6, let the sequence
{3;} be constructed in the following manner :

(a) Choose an arbitrary y, € G.

(b) Let y;,., = y; if ;€ M(y;); otherwise let y,,, be an element of Q(},)
satisfying @(y) — @(Ji+1) 2 - (@(V:) — @(yF)), where y¥ € M(y)).

Roughly this means that at each iteration at least a fixed fraction of the
theoretically possible decrease in ¢ is attained.

THEOREM 4.1. If {y;} and {y}} are contained in sequentially compact sets and
y is an accumulation point of {y;} at which Q is continuous, then y € M(y).

Proof. As in the proof of Theorem 1.6, we assume that the conclusion is
false, and show a contradiction. It follows from the assumptions preceding
Theorem 1.6 that ¢(y) < ¢(y) for all y'e M(y). Now let subsequences {y,},
{Vn.+1}>and {y}} be chosen so that y, = 7, ¥,,+1 = J, and y} — y* It follows that
y* € M(y) and that

0 < @(y) — @(y*) = lim (¢(¥,) — (Vi)

é a_l : llm ((p()—)m) - (P(.)_)n.-+1)) = 0,
which cannot hold.

By an analogous modification of the proof of Theorem 1.7, we obtain the
following theorem.

THEOREM 4.2. If ¢(z) = f(z, y) and y is an accumulation point of {y;} at which
Qs Ls.c., then y € M(¥).

Another computational aspect of algorithms that can be easily dealt with
by the techniques of this paper is that of accelerating convergence by periodically
taking a step in a direction other than that prescribed by the basic algorithm
being used or taking slightly larger or slightly smaller steps than those prescribed.
(The validity of procedures so modified has also been discussed by Topkis and
Veinott [12].) It should be observed that the proofs of Theorems 1.6 and 1.7
depended only on the monotonicity of the sequence {¢(y;)} and the fact that y*
was the limit of a subsequence {y, } whose successor points were constructed by an
algorithm with certain specified properties. Thus, if, with the goal of accelerating
convergence, an algorithm without those properties is used periodically, we can
conclude nevertheless that convergence of the iterates to a point y* at which Q
is continuous (or Ls.c. in the case of Theorem 1.7) implies that y* € M(y*).

A further extension of Theorems 1.6 and 1.7 can be made if we note that the
proofs still go through if we assume only that {¢(y,)} converges (i.e., it need not
be monotonic) and that the strict monotonicity property holds at y* (instead of
everywhere). Such an extension of Theorem 1.7 can be used to prove the validity
of Kelley’s cutting-plane algorithm [16] in the following manner: (i) let {y;} be a
set of points generated by Kelley’s algorithm, (ii) let G be the union of {y;} and its
accumulation points, (iii) define a point-to-set mapping Q over G by letting
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Q(y;), i=0,1,2,---, be the polyhedral set generated by the cutting-plane al-
gorithm over which the objective function was minimized to obtain y;,,, and
Qy*) = NE, Qy,) for each accumulation point y* of {y;}, and (iv) show, making
use of the fact that each accumulation point is feasible, that all of the assumptions
of the generalized version of Theorem 1.7 are satisfied.

Appendix. The following property of sequences in normed spaces will be
needed in the proof of Theorem 1.1.

LEMMA. If z; >z as i— o and z;; > z; as j—» 00, i = 1,2, ---, then there
existn;,j = 1,2, ---, such that Zy,j = 2 AS j — 0.

Proof. Let N(1) be chosen such that ||z; — z|| < 1 for i = N(1), and let N'(1)
be chosen such that |zyg), — zyull <1 for j = N'(1). Suppose now we have
chosen N(1),N(2), ---, N(k) and N'(1), N'(2), ---, N'(k). Choose N(k + 1) and
N'(k + 1) so that |z; — z| <1/(k + 1) for i =Z N(k + 1), llzng+1), — Zne+ 1)l
<1/(k + 1) for j = N'(k + 1), and N'(k + 1) > N’(k). Let N(0) = 1 and define
n; = N(I) when N'(I) £j < N'(I + 1). It is easily verified that the sequence so
defined satisfies z, ; > z as j — co.

Proof of Theorem 1.1. We shall first show that the linear independence
hypothesis is equivalent to assuming that there exists a point z' such that f(z') > 0,
u(y*) + v (y*) (2 — y*) > 0, v(y*) + V(y*)(z — y*) = 0, and that the Jacobian
matrix v'(y*) has full row rank. For, we may choose a vector d such that v'(y*)d = 0
and such that the inner product of d with each gradient to an active inequality
constraint function at z* is positive. It is now easily seen that a suitable choice
of z/ is z*¥ + 6d, where 0 is a sufficiently small positive scalar. (Since
v(y*) + v(y*)(z* — y*) = 0, the linear independence hypothesis implies that v'(y*)
has full row rank.)

Now partition the variable z into the variables s and ¢ (with values s" and ¢’
at z') so that the function v defined by i(s, t, y) = v(y) + v'(y)(z — y) has a non-
singular Jacobian with respect to s at the point (z/, y*) = (s, ', y*). It follows from
the implicit function theorem that there exists a neighborhood N of (¢, y*) and
a differentiable function h defined on N with the properties that h(t', y*) = s’ and
o(h(t, y),t,y) = 0 for (1, y)e N. Without loss of generality we can assume that
N was chosen small enough so that all of the inequality constraints involved in
defining I'm(y) are satisfied by (h(t, y), t) when (¢, y) € N. (This follows from elemen-
tary continuity arguments.) Hence if {y;} is any sequence converging to y*, it
follows that for i sufficiently large (say i = m), we have (¢, y;) € N, so that 5(h(¢, y,),
¢, y;) = 0, and hence the equality constraints involved in defining I'm(y,) are also
satisfied at the point (h(t, y;), ') = z;. The sequence {z;} so defined for i > m thus
has the property that z;e I'm(y;) and z; — z'. To complete the proof of l.s.c. at y*
we must prove the existence of a similar sequence for each z € I'm(y*). In order to
do this, we first note that I'm(y*) is a convex set, so that given any z € I'm(y*),
the line segment connecting z and z’ lies in I'm(y*). Moreover, since

ze S N {Zlu(y*) + w'(y*)(z — y) = 0}
and
ZeintS N {zlu(y*) + w() e — y) > 0} =5,

it follows from a well-known theorem on convex sets (see, for example, [2]) and
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a simple computation that all points on that line segment with the possible excep-
tion of zalso lie in S. But at each point in § 1 I'm(y*) we can construct the sequence
required in the definition of Ls.c. by exactly the same method used for z'. Letting
z; = (1/i)z' + (1 — 1/i)z and performing such a construction for i = 1,2, ---, we
obtain a sequence of sequences from which, by the preceding lemma, we can
construct a sequence converging to z and satisfying the requirements in the
definition of Ls.c. This completes the proof of l.s.c. at y*.

Now for y sufficiently close to y* we have previously noted that the point
(h(t',y),t) lies in I'm(y) and satisfies all of the inequality constraints strictly.
Since there also exists a neighborhood of y* in which the Jacobian v'(y) has full
row rank, it follows that for all y in some neighborhood of y* the point (h(t', y), t)
has the same properties with respect to I'm(y) that z' had with respect to I'm(y*).
Hence the proof of Ls.c. of I'm at such y may be carried out in the same manner.

The next example illustrates that the compactness hypothesis cannot be
deleted in Theorem 1.6.

Example. Let G = R = [—2, =141 U [0,1] U [2, + 0),

-2 if y=0,
ap = 172 e

{_2+ya1/y} lfye(oaf]a

{1/2y)} if ye (2, +00);

242 ifze[—2, —11],
flz,y)= <0 if ze [0, 3],

1/z ifze[2, +0);

y+2 ifye[—2, —14],
p(y)= <y +1 if y [0, 3],

1 +2/3y) ifyel2, +o0).

It is easily verified that with the above definitions the conditions stated prior
to Theorem 1.6 are satisfied, that Q is continuous on G, and that f and ¢ may be
extended to continuous functions on E? and E! respectively. Suppose that we
choose y, = 1. It may be verified that M(y,) = {—13,2}, so that we can choose
y; = 2. Since Q(y,;) = {4}, it follows that y, = 1. Continuing in a similar fashion,
we obtain the sequence of iterates {3,2,4,4,3%, - -}. However, the accumulation
point 0 does not belong to M(0) = {—2}.

Proof of Theorem 2.3. We shall show that all three algorithms have the
strict monotonicity property. Using a second order Taylor expansion and the
definition of R, we obtain for z€ F the inequality ¢@(z) < @(y;) + @' (y)(z — )
+R-|z — yl|2 If ||z — y;|l £ 6- K(y;, z¥), this becomes

@(z) < o(y) + ')z — y) + R-6*- K*(y;, z})
S o) + @)z — y)
=% a- @' (y)(zF — y)-llzF — yll =1 K(yi, 2F).
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If we denote by )’ the point generated by applying Algorithm D to y;, we have
Yy —yi= (¥ —y)-llz¥ — y:l ' K(y;, z¥), and the inequality reduces to ¢(z)
Soy) + @)z —y) — 6% a- @' (y)(y — y;). Three cases will now be con-
sidered: (i) if z = y/, choose 0 = 1, and the inequality becomes ¢(z) < ¢(y;)
+(1 — 0)@'(y)(y' — y;); () if z is generated by Algorithm C, choose 6 = 1, and
it follows from ¢'(y)z < ¢'(y)y that ¢(z) < @) + @' W) — y) — - ¢'(y)
-V =) =oy) + (1 — 0)9'(y)(y' — yy); and (iii) if z = y; + w - (¥ — y;), where
0 =< w £ 1, choose § = w, yielding

0(2) S o) + @ @I = y) — @ @' W) — )
=)+ (1 — o)) 09y — y)
Soe)+ 0 -0 0 o) — ¥
By the analysis in case (iii), it is easily seen that in Algorithm E the relation
Pi+1) = @(y) + (1 — 0)-0;- @' ()2 — yi),

where y;,q = y; + 0;-(zF — y;) is satisfied if 0;-||zF — y;|| < K(y;, z¥), proving
that the algorithm is well-defined. Moreover, since < 0, the point z generated
by Algorithm E must satisfy ¢(z) < o(y;) + (1 — a)-B-@'(y)()) — y;). For all
three algorithms, then, {¢(y;)} is a nonincreasing sequence.

Let y* be an accumulation point of {y;} at which the point-to-set mapping I'
is continuous. Choose subsequences {y,,}, {Vn,+1} and {z}} such that y, — y*
and the latter two are convergent with limit points y and z* respectively. As a
consequence of Theorem 1.5, z* is a solution of L(y*). If we now suppose that y*
does not solve L(y*), then K(y*, z*) > 0. For Algorithms C and D we thus have

@(y) = lim ¢(y,,+1) < lim [p(y,) + (1 — @) @' (Va) Vn, 41 — Yu))]
=o(y*) + (1 —a)- @' (Y*)(y — y*)
= o(y*) + (1 — a)- @'(y*)(2* — y*)- lz* — y*| ' - K(y*, z%)
< o(y*).

This is impossible, however, since {¢(y;)} is a nonincreasing sequence. By inserting
the factor f in the appropriate places, we can prove the conclusion for Algorithm E.
(Alternative proofs have been constructed (see Meyer [9]) for Methods C and D
by establishing the strict monotonicity property and the continuity of certain
point-to-set mappings. In this way the conclusion is obtained as a direct con-
sequence of Theorem 1.6, but at the expense of increasing the complexity of the
proof.)

Proof of assertions in § 3.2. By using the continuity of the terms involved, it
is easily shown that Q is everywhere u.s.c. To prove Ls.c. on S, we first observe that
the point-to-set mapping defined by Q'(y) =S N (B + y) is Ls.c. on S. This is
seen by noting that interior points of B + y that lie in S also lie in B + j for y
sufficiently close to y, and that a boundary point of B + y that lies in S is the limit
of interior points of B + y contained in S. Now let (v, z) be an arbitrary point of
Q(y) and let {y,} be a sequence of points in S converging to y. By the preceding
argument, there exists a sequence of points {z,} with z, € Q'(y,) converging to z.
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It is clear that a sequence {v,} converging to v can now be chosen so that (v,, z,)
€ Q(y,), completing the proof of L.s.c.

To simplify notation, we shall drop the subscripts in the following proof of
the monotonicity property asserted in § 3.2. Suppose that there exists a point
(v*, z%)e Q(y) with v* < 0. We show that for sufficiently small positive A, the
point z =y + A(z* — y) belongs to F and satisfies ¢(z) < ¢(y). It is clear that
zeS N (B + y) for A€[0,1], so to prove feasibility we need only show that
u(z) 2 0. If uy(y) > 0, then clearly u(z) > 0 for A sufficiently small; and if u(y) = 0,
then 0 > v* = —[uy) + ui(y)(z* — y)] implies ui(y)(z* — y) > 0, and again it is
true that u,(z) > O for sufficiently small positive 4. Since H(y) is assumed positive
semidefinite, 0 > v* = @(y)(z* — y) + 3(z* — Y)H(y)(z* — y) implies 0 > @'(y)
-(z* — y), and the required result follows.
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ON PERFORMANCE BOUNDS FOR UNCERTAIN SYSTEMS*
H. S. WITSENHAUSENY

1. Generalities.

1.1. Introduction. A central problem with uncertain systems is to choose one
element o out of a set A of possible decisions (designs, strategies, policies, con-
trollers, estimators, coding schemes etc.). The performance is measured, at first,
in terms of a function K: A x B — [0, co] where K(a, ) is the cost incurred with
decision o if the uncertain quantities affecting the system have the (system of)
values denoted by f from set B (see [8]).

In principle the case of randomized decisions can be included in this frame-
work by considering A4 to be the set of all possible randomizations and defining
K accordingly, say by the expectation of an underlying cost function. But the
intended interpretation for the sequel is the case where randomization is considered
undesirable.

Two designs o, o, in 4 are said to be equivalent if and only if K(a,, f5)
= K(a,, p)for all in B. Equivalence classes of designs are partially ordered in the
obvious way, writing o; < a, when K(ay, f) < K(a,, f) for all  in B. A dominant
choice o* (an element of A such that o* < o for all o in A) rarely exists. One way
to proceed to a decision is to define a supercriterion J:A — [0, 0] and seek
designs which minimize J over A, either exactly or within ¢. A priori, the minimal
requirement on J is that it be compatible with the partial order, a; < a, implying
J(oty) = J(a,). This leaves room for a wealth of possibilities, such as the regret
criterion of Savage [9]:

(1 J(0) = sup (K(w, p) — inf K@. ),

where Q < B is given. With the latter definition the sign of J(x;) — J(a,) can
change when a third element o5 is dropped from the set 4. If such phenomena are
not desired it becomes necessary to put further restrictions upon J. An important
class of supercriteria is obtained by requiring that J(a) be defined to depend only
on the function K(a,-):B — [0, co], by way of a functional V called an evaluator.
That is

@ J(@) = V(K(a, -)).

The problem (A4, B, K, V) is then to determine the infimum J* of J over A,
with J defined by (2), and to determine an element of A for which this value is
attained exactly or within e.

Because of the difficulty of this task, suboptimal procedures are often used.
One consists of selecting an element ff, in B as being “typical” and seeking a,
to minimize K(a, o) over A. In this paper bounds on J(oy)/J* are sought. Such
bounds require of course more detailed assumptions about K, V and the notion
of typical element. This motivates the following definitions.

* Received by the editors March 11, 1969.
1 Bell Telephone Laboratories, Murray Hill, New Jersey, 07974.
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1.2. Basic definitions.
DEFINITION 1. An evaluator for the problem (4, B, K) is a function

(3) V:D — [0, o],

where D is a subset of [0, c0]®, and which satisfies the following three conditions:
(i) K(o, -)eDforallae A4;

(i) if f1, f, € D and, for all B in B, f,(B) < f>(B) then V(f;) = V(f2);

(iii) if f(B) = a = Ofor all §in B then fe D and V(f) = a.

DErFINITION 2. Evaluator V is weakly subadditive when fe D, a =z 0 imply
f+aeD, V(f +a) £a+ V(f). It is subadditive when f, ge D imply f + ge D,
V(f + ) < V() + Vig).

DEFINITION 3. An element B, of B is called a representative element for
problem (A4, B, K, V) when K(a, 8,) < J(o) for all o in A.

This generalizes beyond the stochastic realm a definition of Fréchet [5],
itself a generalization of a definition by Doss [2] of one mean value concept for
random elements of metric spaces.

1.3. Examples of evaluators. The most common evaluators are the following.
The stochastic mean of order p = 1 is defined by specifying a o-field on B
and a probability measure on this field. Then, for p = 1, f measurable,

(4) V) = E{/"BH"

and

) Voo(f) = ess sup f(B).

One nonstochastic evaluator is obtained by specifying a subset Q of B with
(6) Vo(f) = sup { f(B)BeQ}.

Then every element of Q is representative. In general, evaluators can be composed
by applying first an evaluator containing a parametric element and applying
another evaluator to the parameter set, a process which can be continued through
any number of stages. For example, if M is a set of probability measures on a
common o-field on B then an evaluator is defined by

Vaulf) = sup lf{f B}

All of the above examples are subadditive evaluators.

1.4. The zig-zag inequality.
DEFINITION 4. K satisfies the zig-zag inequality when for all o, a, in 4 and
all §,,B,in B

(7) K(al’ﬁl) é K(al,ﬂZ) + K(“Z’ ﬁZ) + K(“Za ﬂl)

The importance of this notion derives from the following fact.
THEOREM 1. Let K:A x B — [0, 00). Then a necessary and sufficient condition
for the existence of a real normed linear space L, || -| and of maps m: A — L,
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n:B — L such that
®) K(a, B) = |m(a) — n(B)l

is that K satisfy the zig-zag inequality.

Proof. First, one may assume that the sets 4 and B are disjoint (otherwise
one lifts the definition of K to a pair of disjoint copies of 4 and B). On the union
P of A and B define a pseudometric d in the following way :

Ifae A, pe B then d(a, f) = d(B, o) = K(a, f).

Ifxe A, o € A then

) d(o, o) = sup [K(ex, B) — K(o', B)I.
If fe B, p' € B then
(10) d(B, p') = sup |K(a, f) — K(a, B)l.

Note that (9) and (10) are the definitions of Wald’s intrinsic pseudometric [10]
on A and B. Because of the zig-zag inequality, d is a pseudometric on the union P.
The equivalence relation d(x, y) = 0 on P defines a quotient space of equivalence
classes on which d defines a metric. Let M be this metric space and ¢ the quotient
mapping. Let L be the linear space of bounded, continuous real functions on M
with the supremum norm and let 6 be an arbitrary fixed reference element of M.
Define, according to a well-known technique [6], the mapping ¢:M — L which
sends an element of x of M into the element of L which, as a function f: M — R, has
the values: f(z) = d(z, x) — d(z, 0).

Then ¢ maps M isometrically into L. Denote by i,:4A — P and iz:B — P the
injection maps of A, B into their disjoint union. Then the compositions
m= @oqoiy, n = @oqoigprove sufficiency. The triangle inequality implies the
zig-zag inequality, proving necessity.

1.5. A general bound for suboptimal performance. For problem (4, B, K, V)
let J be defined by (2) and J* = inf {J(«)l € A}. Assume f, is a representative
element as per Definition 3, that is, for all « in A4,

(11) K(a, Bo) = V(K(x, -));

and assume that o, is optimal versus f,, that is, for all « in A
(12) K(ag, Bo) = Ko, Bo);

and let

(13) Jo = J(oo) = V(K(ao, -))-

Then one has the following result.
THEOREM 2. If V is weakly subadditive and K satisfies the zig-zag inequality,
then J, < 3J* and this bound is sharp.
Proof. By Definition 4, for all xe A, f€ B,
K(ao, f) = Kl(ao, Bo) + Ko, Bo) + K, B)

= 2K(x, Bo) + K(a, f) by (12).
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By Definition 1 (ii),
V(K(ao,-)) = V(2K(a, Bo) + K(a, -))
< 2K(a, Bo) + V(K(a, -)) (by Definition 2)
= 3V(K(a, -)) by (11),

orJy, = J(ag) = 3J(a); and, taking the infimum over all ain 4, J, < 3J* as claimed.
The bound is attained already under much more special conditions, as was shown
earlier [11].

1.6. Synopsis. In view of Theorems 1 and 2, most of the remainder is devoted
to the case where K(o, ) is defined as |« — f|| in a general normed space N. The
stochastic mean of order p is taken as the evaluator. Theorem 3 below shows that
the bounds for p = oo also apply to the nonstochastic minimax problems.

A direct geometric interpretation for the bounds is constructed, first in N
and then in a space of random vectors with values in N. In this way a simple and
general proof of the equality of the bounds for conjugate exponents p is obtained
(Theorems 4 to 10). An alternative approach by Lagrange multipliers is described
in § 4.2 for its computational value. But since the bound is the supremum of an
expression which is neither concave nor (in general) differentiable and need not
be attained, the direct approach is preferable.

The consequences of various assumptions are explored: The distribution
of B may be symmetric about its mean; the constraint set for « may be convex.
The normed space N may be a pre-Hilbert space; the dimension of N may have
a given finite value. Lemmas 11 to 16 make explicit some of the simplifications
upon which actual calculations are based.

A few of the bounds are then computed either in theorems or by machine.
In the latter case the problem is analyzed to the point where one can guarantee
that convergence of the computer program will be convergence to the correct
solution. Some asymptotic formulas are derived and a logarithmic convexity
conjecture is stated.

1.7. Relations between supremum and essential supremum evaluators. Let B
be provided with Wald’s intrinsic (pseudo-) metric d according to (10). By lifting
the definition of K to the quotient space, if necessary, one can assume that d is a
metric, (B, d) a metric space.

In view of Definition 3, two evaluators that produce the same supercriterion
J,in (2), from a given K are equivalent for the purposes of this paper.

THEOREM 3. If (B, d) is separable, then any supercriterion J produced from K
by taking the essential supremum under a probability measure on the Borel sets of
(B, d) can also be obtained by taking the supremum over some nonempty set Q in B,
and vice versa.

Proof. Any separable metric space is a second-countable Hausdorff space.
For all o in A, K(, -) is Lipschitz-continuous on (B, d) with constant one, by
virtue of (10). Hence Theorem 3 is a special case of the following lemma.

LemMMA 1. Let T be a second-countable Hausdorff space. Then for every
probability measure P on the Borel sets of T there is a set S = T such that for every
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real function f continuous on T
(14) sup f(x) = P-ess SlTlp f(x).

xeS

Conversely, for every nonempty set S in T there is a P such that (14) holds for all
continuous f.

Proof. Let P be given. By the Lindelof property of second-countable spaces
the union of all open null sets is equal to a countable subunion and is therefore a
null set. Its complement S, the closed support of P, is the smallest closed set of
probability one. Then sup f = esssup f because S has probability one. If sup f
> esssup f = a, then the closed set f ~}([— 00, a]) N S would be a closed proper
subset of S of probability one, a contradiction.

Now assume S given. Since continuous f are considered one may assume
S closed. As a subspace of a second-countable space, S is separable. With {x; € S|i
=1,2,---} dense in S let P({x;}) = 27'; then S is the closed support of P so that
(14) holds.

1.8. Uncertainty cost and clairvoyance premium. If the assumption that
f = B, were actually correct, then the cost with decision o« would be just K(a, S,)
instead of J(x) = V(K(a, -)). The difference J(x) — K(o, B,) may therefore be
considered as the cost of uncertainty.

The interpretation of Definition 3 is that an element f§, is representative
when the cost of uncertainty is nonnegative for all possible decisions; that is, for
every decision, one is better off with § fixed at 8, rather than uncertain.

Now imagine that just before o must be selected, a medium (spy, instrument)
reveals the actual value of f. Then the decision can be chosen to yield, exactly or
within ¢, the cost

m(f) = inj K(a, p).

Before the medium speaks out, though, m(f) is an uncertain quantity. Thus the
merits of this imaginary situation must still be evaluated. Assume m belongs to
the domain of evaluator V. Then, since for all « and 8, m(f) < K(«, ),

A=V(m(-)) £ V(K -)) = J(@),
and taking the infimum over a,
A J*,

The difference J* — A, the premium for clairvoyance, can therefore not be negative
but it can be zero. If it is positive, then part of this premium might be collected by
partial clairvoyance, that is, by some increase in data gathering (feedback) during
the decision process. Note that (4, B, K) is the reduced canonical form of the
problem as opposed to the extensive form in which the time sequence of events
is displayed.

In this paper, following [1], certainty equivalence is said to hold for a class
of casesif J, = J* for all these cases. This does by no means imply that the premium
for clairvoyance or the cost of uncertainty need be equal to zero.

2. Means of order p of norms.
2.1. Construction of spaces. The sequel will be devoted to the case where K
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can be defined by a norm and the evaluator is the stochastic mean of order p,
with1 < p £ 0.

Let N, || - || be a real normed linear space. N serves as the set B of § 1.1, while
the set A is a nonempty subset of N.

Consider the cost function

(15) K(a, B) = llo = BI.

Let (Q, &, P) be a probability space, i.e., Q is a nonempty set, # a o-algebra
of subsets of Q, and P a probability measure on .

For fixed p in [1, oo] consider the Bochner integrable [7] functions q:Q — N
such that:

(i) g = E{q(w)} belongs to N, not just to the completion of N.

(i) E{|lg(w)||’} < oo, or, for p = o0, ess sup ||g(w)|| < oo.

The set of all functions q satisfying the above requirements is a linear space
under pointwise addition and scalar multiplication, and the same is true for the
set of all equivalence classes of these functions, modulo almost sure equality. In
the sequel, equivalence classes will, abusively, be referred to as functions. Their
linear space will be normed by letting

(16) llgll = (E{liq(c)|I”})"",
or, for p = oo,

(17) liqll = ess sup flg(w)|l,

where triple bars are used to avoid confusion with the norm of N.

This normed space will be denoted A(Q, #, P, N, p) or more briefly by A"

One may always consider N as a dense subset of its completion N. The
Bochner integrable functions with values in N satisfying requirement (ii) above
form a Banach space. In this space, those functions which have an N-valued version
form a subspace. Another subspace is the set of functions whose mean belongs to
N. A is isometrically isomorphic to the intersection of those two subspaces,
under the natural embedding,

It is important to note that 4" contains all simple functions, that is, all
functions of which a version has finite range, each of the values being taken on a
measurable set. Since P is a finite measure and all functions in .4~ are Bochner
integrable, the linear subspace of simple functions is dense in .4 in the sense of
convergence in measure. It is norm dense in A4 for 1 £ p < 0.

2.2. Geometric interpretation in N. Any choice of a normed space N, an order
p = 1, an element g of 4" and a subset of A of N defines a decision problem with
the cost (15) and the pth order mean evaluator. The resulting supercriterion
J:N — [0, o0) is given by

(18) J(x) = (E{lx — q(w)|PP'?,
or, for p = oo, by
(19) J(x) = esssup |x — g(w)|.

That is, (4) and (5) are applied with the probability structure induced on B = N
by g. The optimal performance is J* = inf,_, J(x).
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LEMMA 2. The mean q§ = E{q(w)} is a representative element in the sense of
Definition 3.

Proof. Let S be the set of all linear functionals ¢ on N with induced norm

,X
ol = sup <222

<1
xeN ||X“

= s

where, as usual, the occurrence of 0/0 under the supremum sign is ignored because
sup {num./den.|conditions} is interpreted as inf {k|conditions = num. < kden.}.
This interpretation is used throughout the sequel.

Then |[[x|| = sup {(@,x)|@e S} (because the norm-dual is always norm
determining). Since g is Bochner integrable, |g| and (¢, ¢)> are integrable. Thus
one has, for f, = g and any a € N,

K(a, Bo) = llo — gl
= sup {{p,a — PlpeSs}
= sup {E{<p,a — g(w)>}lpe S}
< E{sup {<¢,a — g(w))lp e S}}
= E{Jla — g(o)]}
< (E{lla — g(o)I?})'"?
< esssup fo — g(w)l,

where the last two inequalities hold by the monotonicity in p of the pth order mean.
Hence K(a, o) < J(a) for all « in N and, in particular, for « in A, satisfying
Definition 3 as claimed.

With 8, = g, a suboptimal choice «, is one that satisfies (12), i.e.,
(20) weA and VaeAd:lo, — gl < o — gl

The least value of k such that J, = J(xo) < kJ*, ie., the supremum of Jy/J*,
is sought under various assumptions concerning Q, &, P, N, A. A bound k holds
on a set 4 when the conditions (20) imply J, < kJ*. This means that on a set
where no suboptimal a, exists any bound holds and on a set where several choices
for o exist k must be valid for every possible choice in order to qualify.

The parallelogram law. One important possible assumption is that the

parallelogram law

@1 Ix = yII> + llx + ylI> = 2[x]> + 2)y|?

holds in N. Then N is a real inner product (pre-Hilbert) space with the inner
product given by

22 x-y =glllx + ylI* = lIx = ylI*).

In this connection, one has the so-called “‘certainty equivalence” property for
quadratic criteria [1].

LemMA 3. If the parallelogrdm law holds in N and p = 2, then this law holds
in A and J, = J*.
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Proof. For x, y in ./, (21) holds pointwise, and by integration with
(23) lIxl1* = E{lIx(c)]?}
it is seen to hold in .#". Because ./ is now an inner product space one has
JAo) = E{flo — gl)]?}
= llo = qlI* + E{llq(@) — glI*},

where § = E{q(w)}. If og minimizes || — g|| in A, then it minimizes the right side
of (24) and thereby also J(x). Hence J(oy) =

Convexity. For a fixed element qe A (Q, #, P, N, p) the bound k, for all
nonempty sets 4 in N, is just

(24)

(25) k = sup {J(( ;

Indeed if u = o, satisfies (20) on some set A, then for any point ve 4, J(u) £ kJ(v)
by (25); whence .J, < kJ* showing that the bound holds. But for any pair of
points u, v satisfying |u — g|| < [lv — g| one possible choice of A4 is {u, v}, with
oo = u; hence the bound is sharp. If the bound k, holding over all convex sets A
is sought, then

u,veN, Jlu —q| = llv —_éll}-

J(u)
J(v)

because if u = a satisfies (20) on a convex set A and v is another point of A, the
segment uv belongs to A, and by (26), J(u) < k.J(v), implying that the bound holds.
For u, v satisfying the condition in (26), the segment uv is a convex choice for A
with oy = u, and therefore the bound is sharp.

When the parallelogram law holds, the condition

(26) k. = sup {

u,veN,VOe[0,1]:lu — g|| < 6u+ (1 —0)0—6_]”}

27 lu—qg| < 16u+ (1 — 0 — g|| forall 6e[0, 1]

is equivalent to

v+ q
2

For fixed g and v, equation (28) restricts u to a sphere, while in general the set C,
of all u satisfying (27) need not even be convex, though it is always star shaped
with respect to both g and v.

Symmetry. The symmetry assumption is that the probability measure
generated in N by ¢q is symmetric. More precisely, the involution x — 2§ — x on
N is assumed measure preserving. This implies J(x) = J(2§ — x). The resulting
simplification is great. First, since J is convex, § minimizes J on N, regardless of
the value of p. Most important is the following,

LeMMA 4. Let the space N, the class of subsets A and the order p be fixed.
Let k be the supremum of J o/J* over all those choices of Q, #,P and of g N (Q, F,
P, N, p) that generate a symmetric distribution in N. Let k' be the supremum over
all q with the fixed choice Q = {w;, w,}, F = 2% P(w,) = P(w,). Then k = k'.

28) Hu _ \génv _al.
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Proof. With that choice of (Q, #, P), every q generates a two-point symmetric
distribution and all such distributions can be so generated (all functions on Q are
simple functions, hence belong to .#7). Therefore k' < k by inclusion. To show
the reverse inequality let p be any probability measure on the Borel sets of N,
symmetric about some point g, which is taken as the origin without loss of gen-
erality. Then J is finite everywhere if finite somewhere, and when a, satisfies (20)
in 4and 1 £ p < o0, one has

JE = J(a) = E{floo — q(w)|?}
E{lloo + g(o)l|?} (by symmetry)

3E{lloo — q(@)lI” + llao + g@)]7}.
However, by definition of k" one has pointwise

Il

Il

oo — q(@)lI” + llotg + g(@)” < KP(loe — g()lI” + llo + g(w)]?)
for all w e Q and o € A. Integration gives
JE < KPHE{lle — g(@)” + llo + g(w)[7})
= KPE{Jlo — q(o)|7) (by symmetry)
= k'PJ(o)P.

Taking the infimum over a in A, then the power 1/p yields J, < k'J* or k < K/,
establishing the claim for p < oo. For p = oo,

Jo = esssup [lag — g(w)]|

Il

ess sup [l + g(w)] (by symmetry)
= ess sup max ([lag — q(@)Il, llao + g(@)]).

By definition of k’ one has for all @ in 4 and w in Q,

max (lag — g(@)l, leg + g(@)[) = k" max ([l — g(w)Il, [loe + gl)]}).
Taking the essential supremum gives
Jo < K ess sup max ([l — g(@)ll, [l + g()])

= k' esssup [l — g(w)|
= k'J (o).

Taking the infimum over « in A yields J, < k'J* hence k < k', thus completing
the proof of the lemma.
Since the simplification of the probability space is valid by Lemma 4 for

any fixed choice of N it is automatically valid for bounds over any given class of
normed spaces.

(by symmetry)

2.3. Geometric interpretation in ./". A natural embedding of N into A" is
obtained by assigning to « in N the function (i.e., equivalence class) on Q almost
surely equal to o. This is an isometric isomorphism between N and the subspace
U of almost surely constant functions in A"
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Let M be the linear operator on .4" which maps g into the constant function
with value g = E{g(w)}. Then M is a projection operator with range U. The
complementary projection T = I — M translates a distribution in N to have
zero mean. Let Q be the subspace of 4" determined by the condition E{g(w)} = 0,
ie, let Q be the kernel of M.

Then M and T are the canonical projections associated with the direct sum
decomposition

(29) N =U+0Q

so that MT=TM =0, M + T= 1, U = range M = kernel T, Q = range T
= kernel M.

Since the criterion K as well as the classes of constraint sets 4 to be considered
are translation invariant, one may, without loss of generality, restrict attention to
the zero mean case, that is, consider only g in subspace Q. Now if u is the image
in U of « € N, under the natural embedding, then J(a) = |ju — ql)|.

On the other hand, the distance in N of « to the mean is || = ||u]|. Hence
(20) becomes : u, is suboptimal in a subset 4 of subspace U if and only if for up e A
(30) lluoll = llvll forallve A.
Then
(31 Jo = llq — uoll
while
(2) J* = infllg — ol

The fact that the mean, according to Lemma 2, is always a representative element
can be expressed by the inequality (for all g€ Q and for all ue U)

(33) llull = g + ull
which is equivalent to, for all x € 4, || Mx|| < |Ix|||, that is, to
(34) Ml = 1.

In the very special case where the parallelogram law holds in .4, relations (33) or
(34) imply orthogonality of U to Q and therefore || T|| = 1 as well.

In the symmetric case, with A" the space of two-point symmetric distributions
in N, as per Lemma 4, one has (for all ue U and all g€ Q)

llu + qll = llu — qli
from which

35 lall =2lig + u) + (g — Wil < 3(lq + ull + llg — ull) = lig + ull

so that || T|| = 1 in that case also.

However, in general, from ||M|| = 1 and the triangle inequality (for operators)
one only obtains

(36) L= ITI = 2,

and these bounds are sharp.
Finally since T and M are bounded, the subspaces U and Q are closed in .A".
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2.4. Geometric expression for the sharp bounds. For fixed (Q, #, P, N, p) the
sharp bound on J,/J* for all sets A in N and all random vectors in .#" can be
expressed by combining the translation to zero of the mean, the geometric in-
terpretation of § 2.3 and the expression (25) of the bound for fixed g. The result is

lg + wll
37) k = sup sup su ,
( b e TP
where
(33) S, = {ueUllull = llvlll}.

When only convex sets A are considered one obtains likewise, from (20),
an expression

llg + ull
39 k. = sup sup su ,
(39) PSP S g + ol
where
(40) C, = {ueU|forall [0, 1], lull = l6u + (1 — O)ll}.

2.5. Sharp bounds on classes. The most useful bounds for applications are
those that hold under general, readily verifiable conditions and make the fullest
use of these conditions. Therefore one seeks sharp bounds on classes of cases.

Let £ denote a nonempty class of probability spaces, let £ denote a non-
empty class of normed spaces and let 1 < p < 0.

Then k(#, Z, p) will denote the smallest number k such that J, < kJ* for
all cases where Ne X, (Q, #,P)e P, qe /'(Q, F,P,N,p), A = N and J is defined
by the pth order mean.

Similarly k2, %, p) will denote the number defined as above but with the
additional condition that only convex sets 4 are considered.

By inclusion and Theorem 2, one has

(41) 1 S k(?,Z,p) S K2, Z,p) £ 3.

A class X will be called quadratic when each of its members satisfies the parallelo-
gram law.
The two most important classes of probability spaces are:
2% the class of all probability spaces,
and
%, the class having as its only member the two-point symmetric probability
space of Lemma 4.
Other classes of interest are those containing only probability spaces of finite
cardinality. Among these is
2" the class of all probability spaces with card Q = n, # = 2%
The most important classes of real normed spaces are:
2®: the class of all normed spaces,
X the (quadratic) class of all normed spaces in which the parallelogram
law holds (the pre-Hilbert spaces),
Z4 Z9: the classes defined like ®, respectively X, except that only spaces of
dimension not exceeding the positive integer d are included.
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3. Duality theory.

3.1. Simple duality. Assumptions concerning completeness, reflexivity and
separability are unwise and unnecessary for most of the results on inequalities.
For this reason a weaker form of duality than usual should be used here.

DEFINITION 5. Two real normed spaces N, N* with a bilinear product
{+,->:N* x N — R are said to be in simple duality if and only if the two following
relations hold:

forallxe N,

{x*, x5
llc*|

x*, %)

(B

42) [x] = sup
x*eN*

(43) |x*|| = sup forall x*e N.
xeN
In other words, N* is (isometrically isomorphic under the natural embedding
to) a norm-determining subspace of the norm-dual of N and vice versa. A fortiori,

each of the spaces ““is” a total set of linear functionals on the other; that is, for
xin N

(44) (for all x*e N*, {(x*, x> = 0)<x =0,
and for x* in N*

(45) (for all xe N, (x* x> = 0) < x* = 0.

When N is finite-dimensional (a “Minkowski space”) then Definition 5 implies
that N* “is” the norm-dual of N and vice versa, but otherwise the natural em-
bedding of N* into the norm-dual of N need not even have an everywhere dense
range.

It is crucial for the sequel that the simple duality between N and N* transfers
itself automatically to 4", #™* when the latter are constructed with a common
probability space and with conjugate exponents. Because the present set-up is
slightly weaker than the usual one it may not be redundant to give the proof in
extenso.

LEMMA 5. Let N, N* be in simply duality, (Q, #,P) a probability space,
1<p p*< o0 with p ' +p*'=1 Then N¥/(Q F,P,N,p)= AN and
N(Q, F, P, N*, p*) = N* are in simple duality with the bilinear product defined,
for x*e /* xe N, by

(46) x*,x) = E{{x*(w), x(w))}.

Proof. By symmetry only one of the two relations in Definition 5 need be
proved, say

@7) lxll = sup $X72X2

srens [Ix*

This holds for x = 0 so that one may assume x # O below.
By the simple duality of N and N* one has pointwise

(48) ), x(@)) = [[x¥w)] - [|Ix()]-
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Integrating this relation gives

Kx*, xy = E{{x*(w), x(w))}
(49) < E{x*(@)] - Ix()Il}
= (-l

where the last step holds by Hélder’s inequality for real functions.

Thus (47) holds with the = sign. The reverse inequality will first be proved
for x = s, a simple function taking values s; in N on sets Q; with probabilities w;,
i=1,--,n

By the simple duality of N and N* there exists, for all ¢ > 0, and s;e N, a
ray in N* such that for any s¥ on that ray

st 2 (L= sFl] - llsill,

where the length ||s¥| can be chosen as desired.

Let s* e A#™* be the simple function taking the values s¥ on the set Q;,
i=1,---,n;then
Cs*, sy = Y wilst, s

i=1

2 (1 =X wlstl- llsidl-
For p = 1, choose ||s¥| = 1, giving ||s*|| = 1 and

Cs*sy z (1 =g Ywilsil
= (L = &)lIs*ll - lisll.

proving the assertion.

For 1 < p < o, choose ||s¥| = ||s;[|?/?" ; then
1/p N 1/p*
2owillsill - ls¥l = (Z W,-IIS.-II”) (Z WJIS?‘H")
= lls*ll - sl
from which

Ks*s) 2 (1= e)lls*| - fisll

as before.

For p= oo let j be one of the indices for which the maximum in
llsll = max,, o [Is;] is attained, and choose ||s}|| = ;. Then [|s*|| = ), w;lls¥|
= w; and

Ks* sy z (1 =)y wills¥] - lsil
= (1 - 8)Wj||5j||

= (1 = &)lls*[l - s,

completing the duality proof for simple functions.
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Now for 1 < p < oo the simple functions are norm-dense in 4", and for
x # 0, ¢ > 0, one can choose s such that ||s — x|| < &l|x[l. Then ||s|| = |||
—Is = xll = (1 — &)|Ix|l and constructing s* as above, one has s* # 0 and

¥, xy = Ls*,5) + ¥, x — 5Y
2 5%, 5) — [Ks%, x — s)]
= (1= alls*M - Ml — Ml - s — il
2 (1 = 3e + e)ls*ll - llxIl,

proving that equality holds in (47).
Finally for p = o0, x € A", ¢ > 0 the probability that

(1 = lixll = lIx(@)ll = Ml

is positive by definition of || x|| = ess sup | x(w)]|.

Since x is Bochner integrable it is almost separably-valued. Then the inter-
section of the above shell with the range of a version of x is separable so that, for
all ¢ > 0, it can be covered by a countable collection of spheres of radius ¢ centered
at a separating set. By countable additivity at least one of these spheres has
positive probability.

Hence there exists ae N such that (1 — ¢)[|x[] £ |lal £ |Ix|| and such that
the set F < Q on which || x(w) — al| £ é||x|| has positive probability P{F} = w.

Choose b # 0 in N* such that {b,a) = (1 — &)||b| - |la|| from which <b, a)
= (1 — &?|Ix|l - IIbll. Let x*(w) = b for w in F, 0 otherwise. Then x* # 0,x* € A"*
and

x*, x) = E{{x¥(w), x(w))}
=f P(dw)<b, x(w)).

However, on F
b, x(w)y = <b,ay + <b,x(w) — a)
z (1 = &lxll - 5]l — lIx(w) — al - b]
2 (1= 3e+ &)lixll - 5]

so that
Kx*,xy 2 (1= 3e+ )Xl - (6] -w
= (1 = 3e+ &)l - Nx*l,

establishing (47) in the case p = oo and completing the proof of Lemma 5.

The definitions of the projections M, T and subspaces U, Q in ./" as per § 2.3,
when applied in A4"*, yield entities denoted by M*, T*, U*, Q*. That is, M* is the
mean value projection, T* = I — M*, U* consists of the almost constant func-
tions Q* of the functions of zero mean.

The notation is justified by the following lemma.

LEMMA 6. M* is the operator adjoint to M ; T* is the adjoint of T; U* is the
annihilator of Q; Q¥ is the annihilator of U and vice versa.
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Proof. First, by Lemma 5, 4* is norm determining and, a fortiori, total
on ./ and vice versa. Hence the adjoint of an operator is uniquely defined.
Since Bochner integration commutes with bounded linear operations:

(M*x*, xy = E{Xx*, x(@))}
= {x*, %)
= E{{x¥(w), ¥}
= x*, Mx,

(50)

and of course

LT*x*, x) = x*,x) — {M*x*, x)y = {x*,xy — x*, Mxy =Lx*, Tx),
(1)
and for u* € U* = range M*, ge Q = kernel M,

(52) u*,q)y = KM*u*,qy = Cu*,Mq) = <u*,0) =0,
and likewise {g*,u) = 0.

3.2. Duality lemmas for support functions. Now for u in U, u* in U*, the dual
product {u*, u)y isjust (a*, a), where o, a* are the preimages of u, u* in N, N* under
the natural embedding.

More precisely, we have the following lemma.

LEMMA 7. When £ -, - is restricted to U* x U it establishes a simple duality
between these subspaces.

Indeed

(33) ull = [ = sup K22 Cu*, uy

= su
aehr lo*]| weerr lu¥l

and vice versa. For this reason one can use the same symbols for elements of
N, N* and U, U* without inconsistency. From Lemmas 5 and 7 follows the
next obvious but important lemma.

LEMMA 8. Forve U,v*e U* and S,, S« defined as in (38), one has

sup Cv*,up = [lo*fl -flvll = sup <u*,v).

With the convexity assumption it is necessary to consider the sets C, and
C« defined as in (40).

LEMMA 9. Suppose the parallelogram law holds in N ; hence also in N*. Then
sucp ¥, uy = §uLp u*, vy
= 3K0*, 0 + 3ol - lllvll-

Proof. By Lemma 7 one need only establish it for the preimages in N, N* of
the vectors and sets involved.
In N, C, is the sphere
u—stlw@
2(T2

(54) C, = {ul
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by virtue of (28). That is,

R nen <
CV—{20+2n|ln||_1.

For v* in N* the support function of C, is

1
sup (v*,u) = sup <v*,-v + Mn

ueC, Il =1 2 2
IR [[v] *
(55) = (v*,v) + — sup {(v*,n)
2 2 ynjz1

1
= 3<% 0> + 30 ol

and the symmetry of this expression establishes Lemma 9.

When the parallelogram law is not assumed, the convexity assumption
becomes more difficult to exploit. For the first time it will be useful then that N*
consist of all bounded linear functionals on N, i.e., be the norm-dual of N.

In the case where N is finite-dimensional this follows from the simple duality.
But in infinite dimension the assumption is made in the next lemma to enable the
use of the Hahn—Banach theorem.

LEMMA 10. Assume N* contains all bounded linear functionals on N. Then
for allve U, v* € U* one has

sup Kv*,uy < sup {u* vy.
ueC,, u*eC %

Proof. One need only consider the preimages in N, N*. For any ve N,
v¥e N* ueC, either (v*,u) £0 and then for u* = 0e C, one has {u*, v)
= (v*,uy or else {v*,u) > 0, implying u # 0.

Then the ball {x € N| ||x| < [lu|} is disjoint from the segment {Qu + (1 — O)v|
0 < 0 £ 1}, and by the Hahn—Banach theorem there exists a nonzero linear func-
tional which separates them.

Such a functional can be taken to have unit norm and, by assumption, is
represented in N*. Hence there exists n* € N* such that

@) [n*] =1,

(i) [Ix] < flul = <{n*, x) < <n*up,
which entail <n* u) = |ul| and

(iil) <n*,v> = {n* ud.

Let
* <U*’u> *

[[ul

First u* belongs to C,. because, for all 0,

[0w* + (1 — O)p*|| = <Ou* + (1 — O)*, u/ul)

el

_ ”71“(9 <U*’u>n*,u> + (1= 0<% ud
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= v*, uy/|ull = llu*|.
Second,

¥, up

[lul

> o u)

[l
= o%up,

{u*, vy = {n*, v)

(n*,u)

which shows that
(56) sup <u*,v) = sup {v*,uy,

u*eC* ueCy

establishing Lemma 10.

COROLLARY. If N, N* are complete reflexive, i.e., mutually norm-dual Banach
spaces, then the conclusion of Lemma 10 holds with equality.

3.3. Elemental duality theorems. Given a probability space (Q, &, P), an ex-
ponent p e [1, o], a pair of normed spaces in simple duality N, N* define /" = U
+Q asin §2 and A#* = U* + Q* Then without the convexity assumption, the
bounds k, k* are defined by (37) and its dual. These bounds are equal.

THEOREM 4. For & = U + Q and N* = U* + Q* constructed above, the
three following expressions are numerically equal :

. llg + ull
i k = supsupsup.—-,
® 4eb veb ues, llg + ol

llg* + w*ll
il k* = sup sup sup .————,
(i) S9P. 9P, S g + ol

a4y + oIl - ol
1i1) Sup sup sup su .
( woh oD 3R S g + ¥ - Tig + ol

Proof. By virtue of the symmetry of expression (iii) one need only show that
it equals k.
By Lemma 5, 4" and A4"* are in simple duality; hence

x*,q + uy

wede x|l

Il

llg + wll

(57) = sup sup q* +v%q +up

q*eQ* v*eU* HIq* + v¥||

Kg* 4y + v uy
sSu su .
b oabe llg* + 0%l
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Thus,

£q*, gy + v*,uy
k = sup sup sup sup su
260 veb ueS, e et llg* + v*[[-llg + oll

€g*,q) + sup {Kv*, upluesS,}
= Sup sup su sSu
260 veb g el llg* + o*ll - llg + oll

and by Lemma 8 this reduces to expression (iii), proving Theorem 4.

When the bound is over convex sets only, then (39) must be used. Two cases
are distinguished according to whether the parallelogram law does or does not
hold in N.

THEOREM 5. Assume the parallelogram law holds in N, N* and let N, /* be
constructed as in Theorem 4. Then the following three expressions are equal:

lig + wll

i k = supsupsup.———,
o U5 SUP SUP g = ol

. * 4+ u*
(i) k* = sup sup su mq*—*”l,
q*<Q* vrel* weCys [lg* + 0¥ |l

gt a*y + Co%, oy/2 + lloll - loll2
S .
(i) sup sup sup sup llg* + o*1l-llg + ol

Proof. The only change as compared to the proof of Theorem 4 is that
Lemma 9 is invoked instead of Lemma 8.

THEOREM 6. Suppose N* is the norm-dual of N and let k, k* be the same ex-
pressions as in Theorem 5. Then k < k*,

Proof. Using expressions for k, k* derived as in Theorem 4, one has

k = sup sup sup sup €q*,q) + sup {€v*,uplue C,}
qeQ q*eQ* vel v*eU* llg* + v*[I-llg + vl

*qy + s * vylu* e Cp
sup sup sup sup $E™9> + suP (Cut. )lu* e €,
qeQ g*eQ* vel v*eU* llg* + v*|l- llg + ol

*
’

(58)

lIA

[
=~

where the inequality is due to Lemma 10.

The inequality of Theorem 6 will be enough to obtain equality for bounds
holding on classes of normed spaces, as in the sequel.

3.4. Duality for bounds on classes. Since bounds on classes are the most
important, the duality of such bounds is of greatest interest. It requires some
form of duality between the classes of normed spaces involved.

This motivates the next two definitions.

DEFINITION 6. Two classes of real normed spaces are said to be in simple
duality if for each N e X there exist an N* € £* and a bilinear function N x N* —» R
such that N, N* are in simple duality, and conversely for each N* e X* there
exist an N € X and a bilinear function such that the same holds.
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DEerINITION 7. Two classes of real normed spaces are said to be in full duality
if for each space N in Z there exists in Z* a space isometrically isomorphic to the
norm-dual of N, and conversely.

Note that the members of ¥ and £* need not all be complete and none need
be reflexive. Indeed it is sufficient that whenever N € £ each even order iterated
norm-dual of N be represented (modulo isometric isomorphism) in ¥ and each
odd order iterated norm-dual be represented in Z* and conversely for each space
in £*,

The duality theorems for classes can now be readily obtained. The exponent
conjugate to p is denoted by p*.

THEOREM 7. If the classes T and T* are in simple duality then

K2, Z,p) = k(2, 2%, p*).

Proof. For each (Q, #, P)e 2 and N eX there is, by Definition 6, an N* in
2* for which Theorem 4 applies. Hence, any value of J,/J* that can be approached
with 2, ¥ and p can be approached or exceeded with £, £* and p*. This shows
that k(Z2,Z,p) < k(?,X* p*) and a symmetric argument yields the reverse
inequality, establishing the theorem.

THEOREM 8. If the classes ¥ and T* are quadratic and in simple duality then

kd{?,Z,p) = k{2, Z*, p*).

Proof. The proof proceeds as for Theorem 7 with appeal to Theorem 5
instead of 4.

THEOREM 9. If the classes X and T* are in full duality then
k(2, X, p) = k(2,Z*, p*).

Proof. For each (Q, #, P) in £ and N in X there is, by Definition 7, a repre-
sentation N* of the norm-dual of N in the class * By Theorem 6 any value of
Jo/J* that can be approached with Q %, P, N, p and convex sets in N can be
approached or exceeded with Q, #, P, N*, p* and convex sets in N*. This estab-
lishes k(2, X, p) £ k(2, Z*, p*). For the symmetric argument, one needs only the
symmetry built into Definition 7; the unsymmetric Theorem 6 is simply applied to
the representative in X of the norm dual of a space in Z*. This yields the reverse
inequality and proves the theorem.

Applying these results to the classes considered in §2.5 leads to the next
theorem.

THEOREM 10. If £ = =% or £ or ¢ or 24, if 2 is any class of probability
spaces and if 1 < p, p* < o are conjugate exponents, then

k(g’ E’ p) = k(g’ E’ p*)’

k(2,Z,p) = k{2, Z, p¥).
Proof. Each of the classes X listed in the statement is in full duality with
itself because the norm-dual of a normed space is a normed space, the norm-dual

of a pre-Hilbert space is a Hilbert space, the norm-dual of a space of dimension
d has the same dimension. Hence, Theorems 7 and 9 suffice to establish Theorem 10.
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Applying Theorem 10 with £ = £®, # = 2*, with £ = Z%°, # = Z,, with
X=X #=2% and with £ = X, 2 = Z, and letting p = 1, p* = oo, one
obtains eight equalities which provide a complete explanation of the phenomena
that were reported earlier [11], [12] and were a motivation for the present study.

4. Properties and values of bounds.

4.1. Auxiliary lemmas. For a specific normed space and probability space
the bounds may be very difficult to compute, but for broad classes of spaces their
determination is often easier because the extreme situations tend to be quite
simple.

Attempts to determine the bounds are facilitated by a number of elementary
lemmas.

LeEMMA 11. The values of expressions (37), (39) for the bounds are unchanged
if one or more of the following simplifications are made:

(i) Replace S, by dS,, where

dS, = {ue Ul llull = llvl}.
(ii) Replace C, by dC,, where
dC, = {ue Ul llull = inf l0u + (1 — O)oll}.

(iii) Remove point v from S,, C,, dS, or dC,,.

(iv) Strengthen ve U by the condition ||v|| = 1.

Proof. For u, in S,(C,), a straight line through u, and the origin intersects
S,(C,) in an interval whose endpoints u,, u, belong to dS,(dC,). Since the ratio in
(37) or (39) is convex in u for fixed g and v, the maximum of the ratio for u = u,,
u, cannot be less than the ratio for u = u,. This establishes (i) and (ii). Since
u = v gives a unit ratio this case can be disregarded as in (iii). From v = 0 follows
u = 0; hence, one may assume v # 0 and by homogeneity ||vl| = 1, that is, (iv).

For comparing bounds on different classes an appropriate subordination
relation among classes is needed.

DEFINITION 8. The subordination X£; < X, holds if and only if for any
normed space in class X, there exists an isometrically isomorphic subspace in a
space in class X, .

DErFINITION 9. The subordination 2, < 2, holds if and only if for all
(Q,, %, P) in 2, there exists (Q,, %, P,) in %, and f:Q, — Q, such that for all
sets S € Z; the set £~ 1(S) belongs to % and P;(S) = P,(f ~'(S)).

LEMMA 12. One has

(i) 2y =X, =Z% =X,
(i) =« Py=>P =P,
(iii) £, < £, % = & imply, for 1 < p < o0,

k(Z1,2;,p) £ kZ2,2,,p)
and

kc(zlagl’p) é kc(ZZMWZap)‘

Proof. (i), (ii) and (iii) for , = £, are obvious. However, (iii) with Z; = X,
holds because for any N in £; = X, and any (Q, %, P,) in #; one can choose
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(Q,,%,, P,)in %, and f as in Definition 9. Then for any ¢, in /(Q,, %;,P,,N,p)
the function g, = ¢q, o f belongs to A(Q,, %, P,, N, p) and generates the same
function J on N. Thus any ratio feasible with £ is feasible with £,.

LEMMA 13. Assume £ < X" and "' < P ;then, for 1 < p < o,

k(2,Z,p) = k("' %, p)
and
k{2, Z,p) = k(?"*1,Z,p).

Proof. Any space N € X is of finite dimensiond < n. Forp = 00,(Q, %, P)e 2,
qe(Q,%,P,N, o) choose a finite e-net on a ball in N of radius greater than
ligll. Then quantize g to the nearest net-point to obtain a simple function s which
satisfies ||s — gl £ & For 1 £ p < oo such an s can be found even in the infinite-
dimensional case. Thus one need only consider simple functions, and, by transla-
tion, only those of zero mean. The set of all probability measures on a fixed finite
set in N is convex and compact. Hence the main theorem of Dubins [3] applies ;
that is, any such measure with zero mean is a convex combination of measures
supported on subsets of cardinality at most d + 1 and also of zero mean. If a
bound holds for class 2¢*1, it holds for all these measures and as in Lemma 4
for their convex combinations. This establishes k(% Z,p) < k(2" 1, Z, p).
Lemma 12 implies the reverse inequality, completing the proof.

For a class X of normed spaces, (X)? will denote the class of all normed spaces
of dimension not exceeding d that are subspaces of spaces in £, provided with the
induced norms. With this notation one has, within isomorphism, ¢ = (Z®)¢,
¢ = (Z7)! and always (£) < X.

LeEMMA 14. If ? < P, then

(59) k(c)(@’ 27 P) = k(c)('% (Z)n+ ! ) p)
and if in addition X is quadratic, then
(60) k(c)(‘qa 27 P) = k(c)('@a (Z)n’ p) .

Proof. Any random vector g of zero mean has a range of at most n points
and this set of vectors spans a space of dimension not exceeding n — 1 because
of the zero mean condition. Thus for any choice of u, v all points involved are
contained in an (n + 1)-dimensional subspace of a space in X. This establishes
the first equality. If T is quadratic then the (n + 1)-dimensional space is Euclidean.
The range of g and point u are contained in some n-dimensional subspace H.
With expression (37), replace v by the point © in H obtained by a rotation leaving
the span of range ¢ fixed. Then ||g + || = |lg + vll and ||zl = |||l so that ue S,
and the ratio is unchanged. With expression (39), replace v by its orthogonal
projection # upon H. Then ue C, implies ueCy and one has ||g + || < g + ol
so that the ratio is not decreased. This shows that in either case one need only
consider n-dimensional subspaces, as claimed.

The bounds for infinite-dimensional spaces are limits of bounds on finite-
dimensional spaces as can be seen from the previous lemma in conjunction with
the following one.
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LeEMMA 15. For 1 < p < oo and any class  one has
k(c)(‘@OO IR p) = 3213 k(c)(*@na 27 P),

and if there exists a class * with which X is in full duality then this holds for p = o
as well. (Simple duality suffices without convexity or with quadratic X.)

Proof. The first part of the lemma follows from the fact that the simple
functions are norm-dense in any space .4/ formed with 1 < p < oo. The second
part follows by duality from the first part with p = 1.

Finally Lemma 3 can be restated as follows.

LEMMA 16. For any class # and any quadratic class X one has

KP,2,2) = k(?,%,2) = 1.

4.2. Smooth norms and duality. When the norm in 4" is differentiable except
at the origin, denote by g, the linear functional which is the gradient at point x
of the norm. One has for all x # 0in A~

(61) llgulll = 1,
and, by Euler’s theorem on homogeneous functions,
(62) €8x, xy = llixIl.

Now assume that for exponent p and A" = U + Q one has found u, v in U and
g in Q to yield a maximum in the expression for the bound. Then, without con-

vexity, one may assume |||lul| = [|v|| by Lemma 11. Thus one has found a maximum
of
log lllg + ull — log lllg + vl
subject to
el = fwll
and

Mg = Tu= Tv=0.

Assume A"* is the norm-dual of 4. Then the Lagrange multipliers are a real
number 4 and three vectors a, 8,y in A"* such that

log llg + ull — logllg + oll + A(llull — llvll)
+<&o, Mgy + LB, Tu) + Ky, Tv)

is at an unconstrained extremum.
Setting to zero the differentials with respect to g, u, v yields these equations
in A7

(63)

g +u g +v
64) g — o2 + M*a =0,
( g +ull i + ol
g +u
65 ! + Ag, + T* =0,
(65) lig +uf T8 T TP
(66) Barv | Ag, — T*y = 0.

llg + ol
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Note that because u, v belong to U and ||M|| = 1, the gradients g,, g, belong to
U*. Define

M*g,+
67 u* = 128 e U*,
67) g + ol

M*g, .
68 v¥ = 1t e U*,
(68) g + ul

T*g,+ T*g,+
69 wo B Bt g
(69) T =g+l g+ ol €2
Then
(70) w* = —Jg,,
(71) U* = '_/lgu,
(72) el = o™l = 14
and

lg* + w*ll g + ull
73 =
(73) g™ + 0% — flg + ol

so that g*, u*, v* yield the maximum in A%
With the convexity assumption, the condition
flull < 0w + (1 — Opll  forall 0€ [0, 1]

is equivalent, by convexity of the norm, to the requirement that the directional
derivative of the norm at u in the direction from u to v be nonnegative. When the
gradient exists this is just

(74) 8w, 0 —u)y 20

and at the maximum equality will hold. Thus one has an unconstrained maximum
of the function

log llg + ull — log llg + vl + A&g,, v — u)
+<La, Mgy + LB, Tuy + Ky, Tvy.

Now assume the norm twice continuously differentiable, except at the origin. Then
the Hessian H, of the norm at point x is a self-adjoint linear mapping of 4" into
A"*. Because of the homogeneity of the norm one has, for all x,

(73)

(76) H.x = 0.
Using this Hessian one obtains three equations in A"*:
84+u 8q+v

77 a - 1 + M*a =0,
an llg + ull ™ Tig + o

(78) Batu e 4 AHp + T*B =0,

llg + wll
gq+u ES
(79 g, — T*y = 0.

llg + vl
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Now defining u*, v*, g* by the formulas (67)-(69) as before one still has

lig* + w*ll g + ull

50 g + 0¥l ~ llg + oll’
but now
(81) u* = —Jg,
and
(82) v* = —1g, + AM*H .
The gradient of the dual norm at g,, is u/||[u]|| because ||lu/||ull || = 1 and <u/llull, g,
=1 = [lg.ll-

Hence the gradient at u* = —Ag, is +u/|ull|. Therefore
(83) Lgu, v* —u*Yy = iﬁ((u,M*H.p)}

and the dual constraints are satisfied since

(84) u, M¥*H,wy = {Mu,HpYy = {u, Hpy = {H,u,vy = 0,0y = 0.

Note that the proportionality of u* to g, can be seen also from the fact that with a
smooth norm in N the only possible choice of n* in Lemma 10 is the gradient of
the norm at u.

4.3. Symmetry. With the symmetry assumption one need only consider
P = 2, by Lemma 4. Since 2, < #? one need only, by Lemma 14, consider
classes T subordinated to X* or, in the quadratic case, to 2. Since X is isomorphic
to {E', E*} and since k(#, {E'}, p) = 1 for all p, the only quadratic bounds that
can be considered are k(Z,, {E*}, p) and k(Z,, {E*}, p) which will be computed
later.

Without the parallelogram law there are an infinity of possibilities, essentially
as many as there are classes of convex bodies in R®. When the conditions defining
such a class are involved, the determination of the bounds could be very difficult.
All such bounds are upper bounded by k(Z,, 3, p).

THEOREM 11.

k(#,2°,p) = KZ,Z%p)=2  forl Sp < 0.
Proof. For ||ul] < ||vll one has, by (33) and (35),

llg + ull < gl + Ml < lgll + llell < 2lllg + ol

which shows that k(#,,£*,p) < 2.

To see that k(#, X3 p) = 2 consider N = R® with [_-norm. Let g(w;)
= (1,1,0), g(w,) = (=1, = 1,0),u = (1, —1,0), v = (0,0, 1). Then |ju|| = |v| =1,
lg(w,) — ull = lglwy) — u| =2 giving [lg — ull =2, while |[g(w,) — vl
= ||g(w,) — v| = 1 giving |lg — vl = 1 which completes the proof.

4.4. Logarithmic convexity. According to expression (iii) of Theorem 4 the
bound k for given spaces .4 and 4"*, without convexity, can be written, with
x=q+v,x*=q*+ v¥
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85) k = sup T*x*, Tx} + [[M*x*||| - [|Mx]|

subject to xe A, |Ixll £ 1, x* e A*, |Ix*|| £ 1 and using the dual expression
for the norm:

(86) k = sup {T*x* Tx) + {M*x*, yy y*, Mx)
subject to
xoped, Il =1 vl S,
x¥yre /% fIxl = 1, lly*ll = 1.
Similarly the expression (iii) of Theorem 5 can be written as
(87)  k =sup {T*x* TxY + 3 M*x*, Mx) + s{M*x*, yy {y*, Mx)

subject to the same conditions.

These expressions for the bounds satisfy all but one of the requirements of
Lemma VI1.10.7 as extended by Exercise VI.11.39 in Dunford and Schwartz [4].
The missing feature is the field of complex rather than real scalars.

Hence, to prove that log k is convex as a function of p~?, as is the case in all
examples known to the writer, one would have to construct an extension of the
entire set-up to the complex field and show furthermore that this extension does
not increase the bound. This will not be attempted here, but it is conjectured that
the Riesz-type convexity holds at least for all quadratic classes.

Note that logarithmic convexity can hold for a class X even if it does not
hold with some (in principle, any) of the normed spaces in , because the supremum
of a set of nonconvex functions can be convex.

4.5. Powers of norms and pseudonorms. The criterion K may at first be ex-
pressed by a pseudonorm rather than a norm. This would be due to the presence
of “don’t care” subspaces (in particular, components) in the underlying linear
space. Since the bound depends only on the images of all vectors involved in the
normed quotient space, all properties established in this paper are applicable.
In fact the results can be stated in a slightly stronger form because for a set to
have a convex image in the quotient space it is sufficient but not necessary that
the set be convex. Likewise for a probability measure to induce a symmetric
measure in the quotient space it is sufficient but not necessary that it be symmetric
in the original space.

Another obvious but useful point concerns the case where K is a power of
a norm (or pseudonorm). If one denotes by k(r, p) a bound for the mean of order
pe (1, 0], of the rth power, r = p~ !, of a norm, then the bounds considered in this
paper are those denoted k(1, p) and yield the other bounds by the formula

(88) k(r,p) = k'(1,rp).

Of most interest are the cases k(r, o) = k'(1, o0) and k(r, 1) = k'(1, 7).

4.6. The general one-dimensional bound. The class ' contains only spaces
isomorphic to the real line; the parallelogram law holds; and symmetry yields
trivially a bound 1 for all p. There remain two important problems, the first being
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the determination of
k(p) = k(2*, %', p).

By its definition k(p) is the smallest number k such that for all real random
variables g with finite pth moment and any real numbers u, v one has

lu— gl < v~ gl =(u—q)'" < ko —q?)""”

(with ess sup operation when p = o0). By Lemma 16, k(2) = 1. By Theorem 10,
k(p) = k(p*) for p* conjugate to p. It is known [12] that k(1) = k(co) = 3. There-
fore one need only consider 1 < p < 2. By Lemma 11, one need only consider
v=1,u = —1. By Lemma 13 one need only consider distributions taking values
—a with probability b/(a + b), and b with probability a/(a + b), for a,b > 0.
Hence

(89) kP(p) = sup {Rp(a, b)la> 0,b > 0},
where

. — 14 V4
(90) Rp(a,b)=b [1 — a? + a(l + b)

b1 +ay +a-|1 — b”

Now for 0 <a < 1, Ry1/a,b) > R(a,b), and for b > 1, R(a, 1/b) > R(a, b).
Therefore one need only consider a =2 1, 0 < b £ 1 which resolves the absolute
value signs. For p = 1 the supremum of R is approached as a — oo, with b = 1.
But for 1 < p < 2 the limit as a — oo is 1, for each be (0, 1]. Also dR/db is
negative at b = 1 and 0R/da is positive at a = 1. Hence the maximum of R is
attained for some a, b with 1 < a < 00, 0 < b < 1 and these values must satisfy
the necessary conditions 0R/da = 0R/0b = 0 which can be written

bla — 1)? + a1 + b)?
bla + 1)? + a(1 — by

_(p—Da+1 [a—1\"""
O T (p-1Da-1 (a+1)

_1—(p—1b [1+b\""

14+ @(p-1b \1 —b]

R

This shows that at the maximum a > 1/(p — 1). Let

_ (a+ 1yt o — byt

2 “o-narr PTG -0p

B

then the expression for R can be written, using (91),

_ bla— D[(p — )a — 1]Rax + a(1 + b)[1 + (p — 1)bIRP

©3) bla+ 1)[(p — Da + 1]a + a(l — b)[1 — (p — 1)b]B
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from which o = . Thus it is necessary that

(L+bPt  (@—1p!

(04) I1+p-1Db (p—1a-1
and

rp—1 p—1
95) (1 —b) CES))

l—(p—1b (p—Da+1
By monotonicity (94), (95) determines a as a function of b on (0, 1); and one must
seek the intersections of the curves f; = 0, f, = 0, where
fila,b) = (p — Dlog(l + b) — log(1 + (p — 1)b) — (p — 1) log(a — 1)
+ log((p — Da — 1),
fala,b) = (p — 1)log (1 — b) —log(1 — (p — 1)b) — (p — 1) log(a + 1)
+ log((p — 1a + 1).

(96)

©7)

For 1/(p — 1) <a < oo and 0 < b < 1 one has

(98) oh ok oh _oh

da = Oa >0, ob  ob

< 0.

The curve f; = 0 is a solution of the differential equation

da __afi/ob
db  of,/oa’

99
and f, = 0 is a solution of

da  0f;/0b - of1/ob

db  0f,/oa of/0a’

This differential inequality shows that the curves cannot cross more than once.
Hence the convergence of Newton’s method to a solution of f; = f, = 0 within
the bounds guarantees that the value of k(p) is being approached.

It can be verified that if a, b yield the maximum with exponent p then

(101) a*=(p — )b, b*=(p —1)a

yield the maximum for p* = p/(p — 1).

Computed values of k(p) are given in Table 1. The convexity of log k(p) as a
function of 1/p is apparent in Fig. 1.

As p approaches 1, b approaches 1 very rapidly so that k” may be approx-

imated by the maximum over a of R (a, 1). Furthermore the maximizing a is close
to 2/(p — 1) and therefore

— P 1/p
(102) K(p) ~ L[(l - ”——1) +2p - 1)*’“1]

(100)

p+1 2

for p close to 1.
At p = 2 the values of a and b are immaterial but the limits of the optimal
a, b as p approaches 2 from below are solutions of the asymptotic form of (94),
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(95) which is
(103)

(104)

H. S. WITSENHAUSEN

TABLE 1
Values of k(?*, X!, p)
1 X (for1 <p <2)
p 2 a b
0 1 (4.9252) (.67421)
.01 1.01684854 5.0253 .68765
.05 1.08730938 5.4633 .74028
.10 1.18347748 6.1156 .80297
15 1.29092191 6.9306 .86089
.20 1.41287885 7.9896 91200
.25 1.55377397 9.4388 .95351
.30 1.71978473 11.571 .98227
.35 1.91979017 15.071 99655
.40 2.16766609 21.985 99988
.45 2.49075092 42.460 1.00000
.49 2.85895929 203.78 1.00000
499 | 298096328 2005.9 1.00000
.50 3 0 1
L
10
os |
08
o7t
o6
os}-
04l
03
02}
oi
o ] ! 1 1

o.

0.2

c3
JEG I
P 21 =

0.4

0.5

FI1G. 1. Logarithmic convexity for I: (P>, 2!, p) and I1: k(P*, =*, p)

1-»

1+5b

+log(l —b) =

4
+1

+log(a + 1),

—log(1 + b)=%—log(u— 1).
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The solution 4, b of these equations is given in Table 1. When p = 2 is approached
from above then the optimal a, b tend, by (101), to the limits @ — b, b — 4. Thus a
swap occurs at p = 2, corresponding to the corner in the graph of k.

4.7. One-dimensional bounds with convexity. For the determination of k(p)
= k(#>,Z1,p) one may take v =1 by Lemma 11. Then C, = [0, 1] so that,
again by Lemma 11, one need only consider u = 0.

The interpretation of this bound is thus the following: By what factor can the
mean of a random variable fail to minimize the pth mean deviation? Astoundingly,
it seems that these factors may not have been computed before, though their
determination is very simple.

It is known that k(p*) = k(p) for conjugate exponents (Theorem 10) and that
k(2) = 1, k(1) = k(o) = 2 (see [12]). By Lemma 13 one has k(p) = k(2% X', p)
so that it suffices to consider two-point distributions of zero mean localized at
—a, +b(a,b > 0).

Thus one has to find, for 1 < p < 2,

k?(p) = sup {R(a, b)la, b > 0}
with
p p
(105) Rya,b) = &+ ab

bla + 1 + alb — 1|7

For be(0,1) there exists > 1 such that (1 — b)?/b = (f — 1)’/ and
R, (a, B) = R,(a, b); thus one may restrict to b = 1, resolving the absolute value
sign. The case b = 1 can be eliminated by differentiation and the case a and/or
b — oo yields R — 1. Thus a maximum is reached for finite @ > 0,5 > 1. From the
necessary conditions R/da = dR/db = 0 one can derive

(106) (a+1)”‘1=(b—1)"‘1’
a b

ap—l bp—l
p—-Da—-1 (p-DLb+1
These relations first show that a > 1/(p — 1). Define
(108) fila,b) =(p — 1)log(a + 1) —loga — (p — 1) log(b — 1) + logb,
faa,b) = (p — 1)loga —log((p — Da — 1) — (p — 1) logb
+ log((p — )b + 1).

These functions have the partial derivatives

(107)

(109)

of 2—=pla+1 oy @2-ph-1

oy == aa+ 1) b bb-1)

ary Ye_ _@-D@-pati] 0 G- DIE=pb-1]
oa alp — Da—-1] ° ob bl(p — )b + 1]

These formulas show that the left sides of (106), (107) are strictly monotone,
so that f; = 0 defines a = ¢,(b) and f, = 0 defines a = @,(b) as single-valued
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maps for b > 1. As b — oo so does a, with

b+ 1\®-Di2-p)

¢4(b) > b b———T) )
1+ (p — Db\ =P

¢M””L—@~m

so that
@1(b) < @,(b)
for sufficiently large b.

However, for be(1/(2 — p), o), equations (110), (111) yield an inequality
for the differential equations that ¢, ¢, satisfy:

of,/ob  ofy/ob
(112) “ofjea < " of Joa

Hence ¢,(b) < ¢,(b) holds for b = 1/(2 — p). It therefore suffices to seek solutions
of fy = f, =0intheregiona > 1/(p — 1), 1 < b < 1/2 — p).

In that region (112) holds with the inequality reversed showing that there
can be no more than one solution. Thus when Newton’s method converges one
is assured to have approached the bound. Numerical results are given in Table 2.
The logarithmic convexity is apparent in Fig. 1.

TABLE 2
Values of k(P*, X!, p)
l_'l_l X (for1 <p <?2)
p 2 a b
0 1 'e) o0

.01 1.00035136 127.80 11.602
.05 1.00876825 28.078 2.5485
.10 1.03488172 16.222 1.4696
15 1.07780874 12.896 1.1581
.20 1.13684798 11.925 1.0440
25 1.21156503 12.204 1.00743
.30 1.30265981 13.602 1.00043
.35 1.41315708 16.613 1.00000
.40 1.54973722 23.180 1.00000
45 1.72653600 43.390 1.00000
.49 1.92532002 204.52 1.00000
.499 1.99005234 2006.6 1.00000
.50 2 0 1

As in the previous case, when a, b yield k(p) then a* = (p — 1)b, b* = (p — 1)a
yield k(p*) = k(p).

4.8. Bound with symmetry and quadratic norms. The value of k(p) = kK(#,, £, p)
has a simple closed form expression. By the previous lemmas k(p) = k(%,, {E*}, p)
and geometric arguments in the Euclidean plane could be used. Instead, it may be
worth giving a completely independent proof of the result.
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THEOREM 12. K(&,,Z2,p) = 211"~ 12l for 1 < p < 0.
, Proof. For k > 0 and |u| < 1 the expression
(113) T+uw+0-uw
is even in u, and its derivative
KA +w* ! — (1 — w1

is nonnegative for u € [0, 1], ke [1, o0), nonpositive for ue [0, 1], k €(0, 1]. Hence,
for ue[—1, +1] the range of expression (113) is [2,2*] for k = 1 and [2*, 2] for
k < 1. It follows that for k > 0, |u| £ 1, |v| £ 1 one has

(114) A+ uwf+ 1 —w <2k U+ of + (1 = ).
For a, b, x in an inner product space and |a| < ||b|] let

y=? a-x ) b-x
= — 5, V= _—_—
lal® + x]? 161 + fix)?

and k = p/2 in (114). Then multiply by the inequality
(lal® + Ix[%)P? = (161> + (1x)*)"?
to obtain

(115) la + x|I” + fla = x||? < 2P27 (b + x|” + b — x|1).

By averaging with x a symmetrically distributed random vector of zero mean one
obtains

(116) E{lla + x|} = 2P27HE{|b + x|7},
and the power 1/p gives
(117) J(a) < 21127 1Rl (p),

whenever |la| £ ||b|, showing that the bound holds. To see that the bound is
sharp let |lal| = |b]] = |x|| = 1 and take a parallel (orthogonal) to x and b
orthogonal (parallel) to x for p > 2 (p < 2). For p = oo, a sharp bound of \/5
was established earlier [11].

4.9. Bounds with symmetry, convexity and quadratic norms. In this section the
values of k(p) = k(Z%,,%Z;,p) are investigated. One has k(2) = 1, k(1) = k(o0)
= 2/\/5 (see [11]) and, by Theorem 10, k(p*) = k(p) for conjugate exponents p*, p.
By Lemma 14, k(p) = k(#,%;,p) and since the one-dimensional bound is
trivially 1, k(p) = k{Z,, {E*}, p). Now in E? consider v and u # v, uedC, as per
Lemma 11. The values +q of the random variable may be assumed to lie on the
same side of the line uv by the reflection principle. Now choose the scale so that
the orthogonal projections of g, —q on line uv are distant by 2 (coinciding projec-
tions would give a ratio of 1). Call g, b the distances of —g¢, g to line uv. One may
assume a > b = 0 (a = b) would give a ratio of 1). Let z be the oriented distance
from u to v.
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Then
(@ + 1P + (0> + 1"

(118) WD) = SUP (o (T 2 £ 6 + (1 — 2P

over all z, and a > b = 0. One may first choose z to minimize the denominator
of (118). This being a power of a convex function of z one need only look at the
sign of the derivative at z = 0 which is the sign of

(119) (@ + 121 — (b2 + 12!

to conclude that for p > 2 the optimal z is closer to the farthest point, ie, —1 < z
< 0, while for 1 < p < 2 itis closer to the nearest point, i.e., 0 < z < 1. One may
therefore restrict attention to these ranges of z.

Assume a > b > 0 and z minimizing the denominator with either 1 < p <2
or 2 < p < oo. Then perform the unilateral variation, ¢ > 0,

b-b—c¢g,

b(b? + 1)1z 1

a—->a+———5-7¢
a(a® + 1?21

Then with z held fixed the first order differential of the numerator of (118) is
zero while the denominator has a differential with the sign of

(1200 [@ + (1 + 22 + DP27 —[(b> + (1 — D7) + DP* 7,
that is, the sign of zsgn (p/2 — 1) which by the choice of z is negative. Thus b

may be assumed zero. Then

1+ (14 a7
121 k"(p) =
(121) P)= S0P 2+ 11 = 2 + 7

= sup R ,(a, z).

For 1 <p<?2 or 2<p< oo the extreme cases x - o0, z= 0,1, —1 can be
eliminated. Then a maximum must exist satisfying the necessary conditions
obtained by differentiation:

(122) @+ (=22 = [(1 420711 — ) e,
1+a* |2t
(123) Rp(a, Z) = (m) .

Eliminating a* between these equations yields

(124)  f@) =22 —2) + (1 + 22" D=2 — z)22=P _ (1 — 22)?/2=P =,

which shows that —1 < z <1, and with z determined from (124) a follows by
(122).

Now for 1 < p <2 equation (124) must have a solution in (—1,0). The
solution z = 0 is spurious since dR/dz is not zero there for any positive a. To see
that (124) has no more than one solution it suffices that f(z)/z be monotone on
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(—1,0) or that zf'(z) — f(z) have constant sign. But indeed
zf'(z2) — f(2)

3 — _ /(2= p)
L= 23 TP~ ozpe o g (1 42 4+ 421 E2 — 2
2—-p 2 —-p/\l -z

> (1 _ 2Z)p/(2—p) — 72
because z € (—1,0). However, in that interval
1 —2z>1> 272

and pe(1,2) implies p/2 — p) > 1; hence (1 —2z)"* P > 1 so that zf'(z)
— f(z) > 0. Thus if Newton’s method converges to a solution of f(z) = 0in (0, 1)
the bound is being approached.

Computed values are given in Table 3 while logarithmic convexity can be
observed in Fig. 2.

TABLE 3
Values of k{2, Ly, p)

1 1 (for 1 <p <2)
P2 . k a? —z

0 1 (8.1630) 0
.01 1.00004829 8.3687 02242
.05 1.00121125 9.1114 11704
.10 1.00489560 10.0506 24622
15 1.01120789 10.9550 38641
.20 1.02041526 11.7417 .53455
.25 1.03290380 12.2798 .68404
.30 1.04916350 12.3862 82271
.35 1.06969073 11.8629 93139
.40 1.09466559 10.6554 .98930
45 1.12337816 9.1678 99996
.49 1.14825189 8.2041 1.00000
.499 1.15405165 8.0198 1.00000
.50 1.15470054 8 1

If z, a yield the maximum in (121) for exponent p then for the conjugate
exponent p* the maximum is given by

(125) .
z—1
ES
(126) L2
z z

The values z, z* are in the same relation as the exponents but on the other branch
of the hyperbola.

When x = |1/p — 1/2| is close to % one has the approximation k(p) = (1
+ 3— 1/(2x))x.
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F1G. 2. Logarithmic convexity for k(%,, Z;’f, p)

5. Conclusions.

5.1. Other bounds and their uses. Only a few of the most interesting bounds
have been determined above. The others remain to be computed. Furthermore
the types of bounds considered can be widened in two directions. First, other
classes of sets A, besides all sets and all convex sets, could be considered. Second,
iterated evaluators such as the mean of order p; of means of order p, could be
considered. This would require the set-up of a space one level above space A"

One way in which the bounds can be used is the following. Suppose that the
determination of the optimum J* is too difficult, but that, on any grounds what-
soever, a design a; appears promising and yields J; = J(a;). Then, if g, and
Jo = J(a,) are easy to determine and a bound k holds, one can assert that k~J,
< J*=< J,.Since J; < J, (otherwise a, would be preferred to a,) this may be a
sufficiently narrow range to validate a, from a practical standpoint.

It is worth stating explicitly that some of the bounds considered in this paper
apply to random variables, random vectors, random processes, random fields and
random measures. By Theorem 3, the bounds for p = oo can also be applied to
the nonrandom minimax problems.

5.2. Feedback. The results given here are of interest, by Theorem 1, as soon
as the zig-zag inequality (7) holds. It would be easy to overestimate the range of
applicability on this basis. In fact, as soon as the extensive form of the decision
problem has sequential stages with feedback possibilities the zig-zag inequality
is unlikely to hold, because a wide range of possible feedback laws is allowed.
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In the sequential situation a more detailed analysis must be made and differ-
ent types of bounds become of interest. Nevertheless the first results in that
direction show that there are relations (the ‘““‘conversion theorem” [12]) between
the bounds of the present paper and some of the inequalities for two-stage problems.

5.3. Acknowledgments. The author is very much indebted to C. L. Mallows
who took an active part in suggesting and programming early computer tests
of what was then a duality conjecture. Many useful comments of his and of V. E.
Benes, S. P. Lloyd, L. A. Shepp and A. Tromba were helpful in the development of
a systematic approach. The author owes the numerical results given here to the
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REMARKS ON CONTROLLABILITY OF
SECOND ORDER EVOLUTION EQUATIONS IN HILBERT SPACES*

KUNIO TSUJIOKAT

1. Introduction. We consider controllability of a second order evolution
equation in a Hilbert space E;

d*u
with the initial condition
du
2 = =
@ u0) = 220 = 0,

where A is a self-adjoint operator in E and B is a bounded linear operator on a
Hilbert space F to E. A function f(t) belonging to C*([0, T]; F) is called a control.
The function u(t) is defined on [0, T] and takes values in E.
H. O. Fattorini studied the relation between controllability of a first order
evolution equation in E;
du

3) @i Au(t) + Bf(1), 0<t=T,

with the initial condition
“) u0) =0

and that of (1)-(2) for an operator 4 which is not always self-adjoint (cf. [1]).
When (3)-(4) is controllable for some 4 and for some B, we shall ask for another
operator B which makes (1)-(2) controllable at any finite time.

2. Preliminaries. Let £ and F be two complex Hilbert spaces and let 4 be
a self-adjoint operator semibounded from above with domain D(A4) in E. We
denote by L(X, Y) the set of all bounded linear operators on a Hilbert space X
into a Hilbert space Y. Let B be an operator in L(F, E). The norm and the scalar
product in E are denoted by | - || and (-, - ) respectively. A control f(¢) is a function
belonging to C1([0, T]; F) for some positive T. Since A is sesmibounded from above,
we can find real numbers « and 8, d > 0, such that (—A + o)u, u) = d|u|? for
ue D(A). We denote by A!/2 the positive square root of the positive operator
A, = —A + o D(A}"?) becomes a Hilbert space denoted by H, , with its scalar
product defined by (4, v)y,,, = (43/*u, A}/?v) for u, ve D(4;%). Putting u; = u,
u, = du/dt, the second order evolution equation (1) with the initial condition (2)
is reduced to the first order equation

du, Uy -
®) E( )(t) = QI(u )(t) + Bf (1),

U

* Received by the editors May 28, 1968, and in final revised form June 16, 1969.
T Institute of Mathematics and Department of Pure and Applied Sciences, College of General
Education, University of Tokyo, Tokyo, Japan.
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where
e 0] ol
(6) =14 ol f (1) = Bf (1)
with the initial condition

Uy
™) ( )(0)=0.

u,

We consider (5) in the Hilbert space X = H,,, x E. Let U be the operator in X

. . L3 L33 Uy
with domain D() = D(A) x D(AL/?) such that A = for e D(Y).
U, Auy U,

B is the operator in L(F, X) defined in (6). The operator U is the infinitesimal
generator of a continuous group in X (cf, e.g., [3], [4], [5]). We say that an X-valued

function ul (t)on [0, TTis a solution of (5) with a given initial value o in D(A)if
2 Uzo
L3 Uio
(1) 0) = ,
D) Uzo
u
(ii) 1)(t)el)(m) for0<t<T,
u;
(iii) ul)(z) belongs to C([0, T];X) and satisfies (5) for every te (0, T].
D)

Since A is the infinitesimal generator of the continuous group e™(— o0 < t < o),
the evolution equation (5) with the initial condition (7) has a unique solution

(“1)(t) = f e UG 1 (s) ds
u2 0

for any f(t)e C*([0, T]; F). Let us return to the second order evolution equation (1)
with the initial condition (2). We have a unique solution u(t) of (1)~(2) such that
(i) u(0) = du(0)/dt = 0,
(i) u(t)e D(A), du/dte D(A}*),0 <t £ T,
(iii) u(t) is twice continuously differentiable in E and satisfies (1) for every
te(0, T].
For any T > 0, we define the attainable set R, in X by

Uy T
m,={( )= [ e‘T‘s”‘Bf(S)ds,f(t)eC‘([O,T];F)}-
U, 0

For given A and B, we say that the evolution equation (1) with the initial condition
(2) is completely controllable (completely controllable at time T) if U, , Rt = X
(R; = X). For a given 4 in E, the evolution equation (1) with the initial condition
(2) is called finitely controllable ( finitely controllable at time T) if it is completely
controllable (completely controllable at time T) for some finite-dimensional

linear space F and for some B in L(F, E) (cf. [2]). For the first order equation (3)
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with the initial condition (4) we define the attainable set Ry in E by

T
R, — {u - f eT=94B () ds, f(t) e C(0, T];F)}.
0

Definitions of complete controllability (complete controllability at time T) and
Jfinite controllability ( finite controllability at time T) for (3)-(4) are given similarly
(cf. [2]). We have R; = U, R, for any finite T > 0. In fact, h e (R;)* (the ortho-
gonal complement of R;) is equivalent to

T T
({ eT=914Bf(s) ds, h) = J (f(s), BxeT=94p) ds = 0
0 0

for any f(t)e C*([0, T]; F); that is, B*e'*h = 0 for 0 <t < T, which can be
continued analytically to 0 < t < oo since e'* is a holomorphic semigroup. Thus
(Rp)r = (U,»o R)* and R; = U,., R,. Consequently complete controllability of
(3)-(4) at_some finite time is equivalent to complete controllability. As for R,,
we have R, = U,., R,, but the converse inclusion does not hold in general.

If E is a separable Hilbert space, E has an ordered representation relative to
the self-adjoint operator A (cf. [6]), that is, there exist a positive measure u defined
and finite for a bounded Borel set in (— 00, 00) vanishing outside o(A4), a decreasing
sequence of Borel sets e,, n = 1,2, -+ -, in (— 00, 00) with 6(4) = e, and a unitary
operator U on E into X = Y, L?(e,, p) such that we have DIUAU ') = {f(4)
= (fl(’I)’ e ’.f;l(l)’ o ) € Lz(ena #)a j'f(/l)e ::o= 1 Lz(ena /,t)} and that (UAU— 1f)n(i)
= Af,(A) for f(A)e DIUAU™ ). If u(e,) > 0 and ue, +,) = 0, we say that A has
multiplicity m(A) = m. If u(e,) > O for all n, we say that A has infinite multiplicity.

3. Complete controllability at any finite time of second order evolution equa-
tions. Applying the result of Fattorini [1] to a self-adjoint operator 4 we have the
following theorem.

THEOREM 1. Let A be a self-adjoint operator semibounded from above in a
Hilbert space E. Then in order that the second order evolution equation (1) with the
initial condition (2) be completely controllable it is necessary that the first order
evolution equation (3) with the initial condition (4) be completely controllable. This
condition is also sufficient if the resolvent set p(A) of A intersects the negative real
axis.

Remark 1. As we remarked in §2 complete controllability of the first order
case is equivalent to complete controllability at any finite time. But in the second
order system complete controllability does not always imply complete con-
trollability at some finite time. When (3)-(4) is completely controllable for some
B, we construct in Theorem 2 another operator B which makes (1)~(2) completely
controllable at any finite time.

THEOREM 2. Let A be a self-adjoint operator semibounded from above in E
and let C be a bounded linear operator in E such that:

(@) C(E) = D(A”) = N D(A");

(b) if g € E, " Cg can be extended to a function holomorphic in a neighborhood

of the origin;

(c) C* is one-to-one;

(d) C commutes with A.
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(All these conditions are satisfied, for example, by C = ¢*4, ¢ > 0.) Let the first

order evolution equation (3) with the initial condition (4) be completely controllable.

Then the second order system

d?u

dr?

with the initial condition (2) is completely controllable at any finite time T > 0.
Remark 2. Note that p(A4) need not intersect the negative real axis in Theorem

®) = Au + CBf

2.
LEmMA 1. If he E, then

) ¢iCh= Y, Larch.
n=0M:
Proof. Assumption (b) and the identities
a ., .. 1
atll — gn
dt"(e Ch) t= py Ch

forn=0,1,2, --- imply (9).

0

hy

Ch
LEMMA 2. Let € be the operator in X such that €h = (Chl) for h = (h ) eX.
1

2
Then eCh and €*e"™"h can be extended to a function holomorphic in a neighborhood

of the origin and we have

(10) G — ( F(OChy + G(t)Chz)’
AG(t)Chy + F(t)Ch,

F()C*h, + A7 *AG()C*h
(11) (f*e'm*h — ( ( ) 1 a ( ) 2) ,
A,G(t)C*hy + F(t)C*h,
where
(12 Fiy= S L0 4
) ()—n=0(2n)! ,
o] t2n+1
(13) G(t) = n;) —(2n n 1)!A .

Proof. Assumption (a) implies that ¢ (X) = D(2®) and that ¢™Ch is in C*®.
Since (9) converges, (12) and (13) converge at elements of the form Ch; and the right-
hand side of (11) can be extended holomorphically in a neighborhood of the origin.
As the derivatives at the origin of both sides of (10) coincide, the equality in (10)
holds. Equation (11) is shown easily using (10).

Proof of Theorem 2. If the system (8)—(2) is not completely controllable at

. . h
some time T > 0, then there exists a nonnull & = (hl) such that
2

(CBy*e™h = 0, 0<:<T,
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or, equivalently,

B*¢*e™h =0, 0<t=<T.
Using (11), (12), (13), we have
B*(G(t)A,C*hy + F(t)C*h,) =0

in a neighborhood of the origin which implies that
B*A4,A"C*h, = B¥*A"C*h, =0 foralln = 0.
B*e'*4,C*h| = B*e'AC*h, = 0.

Thus A,C*h, = C*h,e(Ry)* = {0} and h, = h, = 0.

4. Finite controllability of second order evolution equations. On finite control-
lability of the first order evolution equations, Fattorini proved the following.

THEOREM 3 (Fattorini [2]). Let A be a self-adjoint operator semibounded from
above in a separable Hilbert space E. Then in order that the first order evolution
equation (3) with the initial condition (4) be finitely controllable it is necessary and
sufficient that A have finite multiplicity. Moreover if A has finite multiplicity m,
we can choose an m-dimensional linear space F and an operator Be L(F, E) which
makes (3)-(4) completely controllable and such that (3}~(4) is not completely con-
trollable for any F with dimension less than m.

Remark 3. In [2], Fattorini remarked that the result -of Theorem 3 can be
extended further to certain normal operators with connected resolvent. We have
considered finite controllability of the second order evolution equation (1) in its
first order form (5). The operator 2 is normal but it does not always have a con-
nected resolvent and the operator B has a special form given in (6). Therefore
we cannot apply Theorem 3 directly. In Theorem 4, we obtain a result analogous
to Theorem 3 for second order evolution equations.

THEOREM 4. Let A be a self-adjoint operator semibounded from above in a
separable Hilbert space E. Then in order that the second order evolution equation (1)
with the initial condition (2) be finitely controllable it is necessary and sufficient that
A have finite multiplicity. Moreover if A has finite multiplicity m we can choose
an m-dimensional linear space and an operator B in L(F, E) which makes (1)-(2)
completely controllable at any finite time and such that (1}~2) is not completely
controllable for any F with dimension less than m.

Proof of Theorem 4. Let (1)-(2) be completely controllable for F with
dim F < oo and for B e L(F, E); then (3)-(4) is completely controllable for F and
B by Theorem 1. It follows immediately from Theorem 3 that m(A) is finite. Con-
versely let m(A) be finite; then we can find finite-dimensional F and Be L(F, E)
which make (3)-(4) completely controllable. If we replace B by ¢*'B in (1), then
(1)-(2) is completely controllable at any finite time by Theorem 2. The second
statement of Theorem 4 follows from Theorem 3.
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5. Applications.
Example 1. D. L. Russell (cf. [7]) considered controllability of the boundary
value problem for the one-dimensional wave equation

u(x,t) 0%u(x, t)

(14) pre 2

+ q(x)ulx, 1) = g(x)f (1),

O0<t<T O<x<l,

with the boundary condition
(15) agu(0,t) + a,u0,1) = bou(l, t) + byul,t) =0, 0<t<T,

where g(x) e C[0, T], g(x)e L*0, T) and a;, b;, i = 0, 1, are real constants such
that a2 + a? # 0, b3 + b? # 0. Let A4 be the differential operator 6%/0x* — g(x)
with domain D(A) = {u(x) € &3¢, (cf. e.g., [8]); u(x) satisfies the boundary condi-
tion (15) in E = L*(0,])}. Then A is a self-adjoint operator semibounded from
above in E, and A has a sequence of simple eigenvalues 4,,n = 0,1,2, - - -, strictly
decreasing and diverging at — co. The multiplicity of Ais 1. Let ¢,,n = 0,1,2, - -+,
be eigenfunctions corresponding to eigenvalues A,, n = 1,2, ---, which form a
complete orthonormal basis for L%(0,1). For w, =/—4,, n=1,2,---, the
following properties hold ;

.. 1 . n
(16) liminf(w,,, — w,) = —,  lim 2" =D,
n— o D n—»o N
where D is a positive constant (cf.,, e.g., [9]). Let us take L*(0,]) as the set of ad-
missible controls f(f). As in § 2 we treat (14)—(15) in its matrical form and we put

r [0
RHL?) = {J e s"‘"(g) f(s)ds; fe LX0, T)}.

0

Russell considered the following problem.
u
Problem 1. For any ( ) e D(A) = D(A) x D(AL'?), does there exist a control
v

f()e L*(0, T) such that the corresponding solution of (14)-(15) satisfying the
initial condition u(x,0) = u, du(x, 0)/0t = v satisfies the final condition u(x, T)
= Ou(x, T)/ot = 0?
u
For any f(f)e L*(0, T) and any ( 0) € D(A), the solution of (14)—(15) with the
)
initial condition u(x, 0) = u,, du(x, 0)/0t = v, in its, matrical first order form is
given by

(17) (u) = e‘”(uo) + f e“‘sm(o) f(s)ds, 0<t=<T
v 0 0 g

v

Problem 1 is equivalent to Problem 2 given below if (17) represents the solution
of (14)—(15) for any f(t)e L*(0, T).

u
Problem 2. For any ( O) e D(A), does there exist a control f(t) in L*(0, T)

Vo
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o %o

Vo

If we replace f(s) by —f(—s) in Problem 2 and if we take account of the fact
that ¢¥ is a continuous group, then the equation in Problem 2 becomes

u T 0
( 0) = f es"'( ) f(s) ds. Thus Problem 2 is equivalent to the following problem.
Vo 0 8

Problem 3. Does the inclusion D() = Ry(L?) hold?
Under the assumption

such that

+ JJ e‘T_s)‘”(O) f(s)ds = 0?
g

0o

(18) &, ¢, #0,  liminfrl(g,p,) >0,

he solved Problem 2 or equivalently Problem 3 by reducing the problem to a
moment problem in L2(0, l). The result is as follows (cf. [7]):
(i) If T < 2D, then D(A) = R (L?) does not hold.
(ii) If T > 2xnD, then D(A) = R,(L?) holds.
(iii) If T = 2znD, then there are many cases according to the coefficients in

u
(15). If we define the solution of (14)—(15) with an initial data ( 0) by (17), Problem
Vo

1 is equivalent to Problem 2-3. However the function (17) is not always a ““strict
solution” as was defined in § 2 since it does not necessarily belong to D() under
the assumption (18) and the fact that f(t)e L*(0, T). It is in general difficult to
see whether (17) belongs to D(U) for 0 < t < T unless it is known that f(¢) is

0
continuously differentiable or ) f(t) e D(). But the assumption (18) implies that
g

0
( ) never belongs to D(A) and f(¢) may not be continuously differentiable. Taking
g

C1[0, T] as a set of all controls instead of L2(0, T), we consider Problem 4 given
below in which the solution (17) is a strict solution with the approximating final
condition.

u
Problem 4. For any ( 0) e D(A) and ¢ > 0, does there exist a control
Do

f(t)e C'[0, T] such that the solution (17) of (14)(15) satisfies the final condition

em(“o) _ fT e(T—s)QI(O) f(s)ds
Vo 0 g

As we reduced Problem 2 to Problem 3, we can reduce Problem 4 to the
following problem. .

Problem 5. Does the inclusion D(U) < R hold? o

Since D() = X, the above inclusion is equivalent to Ry = X which means
complete controllability of the boundary value problem for the one-dimensional
wave equation (14)—(15) with the initial condition

ou
ot

< ¢g?

19) u(x,0) = —(x,0)= 0.
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To apply Theorem 2 to our problem, we prove the following lemma.
LEMMA 3 (see [2]). The evolution equation

Ou(x, t)

(20) ol

= Au(x’ t) + g(X)f(l), u(x, 0) =0,

0<t<T, 0<x<l,

in L(0, ) is completely controllable if and only if (g, ¢,) # 0 for n = 0,1,2, --- .
Proof. Let he (Ry)*; then we have

0 T
( Yo TIf(s)(g, @npads, h) =0
n=0vJ0

for any f(t)e C'[0, T]; that is,

©

(21) Y. (g @n)(@n, ) =0

n=0

for 1€ [0, T]. By analytic continuation, (21) holds for t€ [0, c0). For any 4 # 4,,
n=0,1273,-.-,withRel > p,

0 © © h_
0= Z o= Mg [t = Z lg"_”l’
n=04v0 n=0"n

where g, = (g, ,), h, = (h, ¢,). By analyticity we have
<y

)

n=0A'n - A’

=0 forl# 4, n=0,1,2,---.

Let T,={zeC;|z — 1] = ¢&,}, where ¢, is a positive number such that
&, <min(d,_; — A,, 4, — 4,4 ). Then we have

1 © g.h,
- UL —
&l = 5 frn m;) P
Thus (R7)* = {0} is equivalent to g, # O forn = 0,1,2, - - - .
PROPOSITION 1. Let g(x) = Y *_ 8,0, where

(22) g #0 and |g| < M

for some M > 0ande > 0,n =0,1,2, --- . Then the initial boundary value problem
for (14), (15), (19) is completely controllable at any finite time T > 0.
Proof. Consider controllability of the second order evolution equation
0%u(t)
or?

23) = Au(t) + gf(t), 0<t<T, u0)= %(0) =0

in L0, ]). If we put g, , = ¢**'?g,, we see that ) |g,/* and g,, # 0 by (22).
It follows from Lemma 3 that the first order evolution equation (20) is completely
controllable at time T if g(x) in (20) is given by g(x) = )2, g,.@,. Thus
g(x) = e*4/?g.(x) makes (23) completely controllable at any time by Theorem 2.
Remark 4. If g(x) is nonnegative, then w, =./—1, =20 for n=20,1,2, ---
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and assumption (22) can be weakened to

g, # 0, Ignl =Me 5, n=20,1,2,---.

0
Proof. First we show that e'Q‘( ) is holomorphic in (— o0, o). In fact, we have
g

0 I\ * sinw,t 0| =
e""()=() (g, @, ,,+() coS W (g, ©,)P,
. 0 ,.go o (g, 0o i) 2, g, P

which is holomorphic by the assumption of Remark 4. As in the proof of Theorem
2, My = RH(L?) is easily verified. Russell’s result (ii) shows that R, = X for any
t>0.

Example 2. Let A be the differential operator 8?/0x? in L*(— co, c0) with
domain D(A) = &2.(— o0, 00). As for finite controllability of (1)-(2) in this case
we have the following proposition.

PROPOSITION 2. The initial value problem for the one-dimensional wave
equation

62 2
(24) 5%:,4“+2gi8(x)fi(z), 0<t<T, —o0<x<o0,
i=1

u(x,0) = u(x,0)=0

is completely controllable at any time T if

© _ 2
gu(x) = F e Fg(x) = 5——J‘ exp("(zl‘_z) )g*y)dy’ =
2 EMV —w 28

where

N
Fg(s) = 8(s) = 2n)~ V2 Lim. e“*g(x)dx for ge L*(— o0, o0)

N—-ow J =N

and g,(x) is anonnull function in L?(— 00, co) with compact support, g,(x) = g,(x — h)
with h # 0.

Fattorini [2] proved Lemma 4 and Lemma 5 given below.

LEMMA 4. The operator A has multiplicity 2.

LEMMA 5. The first order evolution equation in L*(— oo, c0)

2
%=Aw+2&®ﬂ0
i=1

with the initial condition
u0) =0
is completely controllable where the g;, i = 1,2, are given in Proposition 1.

Proof of Proposition 2. The assertion is proved by Theorem 2 and Lemma 5
because g;, = e*g;,i = 1,2.
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SOLUTION OF LINEAR PURSUIT-EVASION GAMES*

YOSHIYUKI SAKAWAf

1. Introduction. This paper treats pursuit-evasion games which are played
by two players and governed by linear differential equations. The pursuit-evasion
games are closely related to differential games of which general theory was
developed by Isaacs [1], Berkovitz [2], Pontryagin [3], Varaiya [4], and others.
If the differential equations describing the evolution of the games are linear, the
problems can be treated more simply in a direct way as shown in [5]-[11].

In this paper, particular attention is paid to the problems of the conditions
under which the game can be completed and of finding a max-min completion time
of the game. Necessary and sufficient conditions for completion of the game are
presented. The optimal controls for both players are derived, respectively. Further-
more, an iterative procedure for computing the max-min completion time and the
optimal controls of both players are given.

2. Formulation of the problem. Let us consider a pursuit-evasion game
described by the linear differential equation:

(1) dx/dt = Alx + Blu - Clv,

where x is a state vector in m-dimensional Euclidean space R™, u is an r-dimensional
control vector of the first player I, v is an s-dimensional control vector of the
second player II,and A, B, and C; arem x m,m X randm X sconstant matrices,
respectively. Let U and V be bounded and closed subsets of R” and R*, respectively.
Further let U be convex. It is assumed that at each time t = 0, u(t) and v(t) must
satisfy the condition

) ut)e U, () eV, t=0.

Let = be an n X m (n < m) matrix corresponding to the orthogonal pro-
jection from R™ onto an n-dimensional linear subspace L, i.e.,

L = {nx:xe R™}.
Further let us define a subset M, of R™ by
M, = {xe R":||nx| < &}.

The pursuit-evasion game is said to be completed from an initial point x(0) = x,
if, no matter what measurable control v(f) may be chosen by the second player 11
such that v(t)e V for all t = 0, the first player I can choose a measurable control
u(t) such that u(t) e U for all t = 0 and such that x(T) e M, for some finite time 7T,
0 T< oo.

* Received by the editors January 9, 1969, and in revised form June 23, 1969.

t Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan. This research was
done while the author was visiting the school of Engineering and Applied Science, University of
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The rank of the matrix = is assumed to be n. Multiplying (1) by the matrix =
from the left yields
3) ndx/dt = nA;x + nB,u — nC,v.
By defining a new n-dimensional vector z in L by
“4) X = z,

a differential equation describing a motion in the n-dimensional linear subspace
L is obtained as follows:

%) dz/dt = Az 4+ Bu — Cv,
where A, B and C are respectively n X n, n X r and n x s matrices defined by
A = nAn'(nr)" 1,

B = nB,, C =nC,.

6)

In (6), ' denotes the transpose of a matrix. Since rank © = rank nn’ = n, it is clear
that the inverse of the n x n matrix nn’ exists.
The solution of (5) at t = T with initial condition z, = 7x, is given by

2(T) = O(T)zo + JT D(T — t)[Bu(t) — Co(t)] dt
0

()
= ®(T)zy + JT(D(t)[Bu(T —t) — Cu(T — t)] dt,
0
where ®@(t) is given by
®) D(t) = &4,

Now, since the terminal condition x(T) € M, of the game is equivalent to the
condition

z2(T)eS, = {zeR":|z| < ¢},

the problem is to choose a control u,(t)e U, t = 0, according to the opponent’s
control v(t)e V, t = 0, such that

© (T,,)z0 + LTM T, — D[Bu,r) — Cu(r)]dteS,

for some finite time T, ,. The subscripts u, v of T,, denote the dependency of
T, , on the controls u(t)e U and v(t)e V, t = 0. If, no matter what measurable
control v(t) e V, t = 0, may be chosen by the second player II, the first player can
choose a measurable control u,t)e U, t = 0, such that (9) holds for some finite
time T, , < co, then the game starting from the initial condition z, is said to be
completed.

3. Main theorems. Before stating theorems on the completion of the game,
it is necessary to introduce an important operation on compact sets. Let U be a
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bounded and closed subset of R". Then a function H () is defined by
(10) Hy(n) = sup nu,

where # is an arbitrary r-dimensional row vector. Since the set U is bounded and
closed, there is a vector u(n) € U such that

(11 Hyn) = sup nu = nu(n).

PropPOSITION 1. The function Hy(n) defined by (10) is continuous with respect
to n. Furthermore, if u(n) is uniquely determined in some neighborhood of #, then
u(n) is continuous in the neighborhood.

Proof. Let A be an arbitrary r-dimensional row vector. From the definition
of u(n), it follows that

Hyn + A) — Hy(n) = (n + Auln + A) — nu(n)
= (n + Auln) — nu(n) = Au(n),

and

Hy(n + A) — Hy(n) = (n + Auln + A) — nuin + A) = Au(n + A).
Hence,
(12) Auln) = Hyln + A) — Hyln) = Auln + A).

Since the set U is bounded, by letting A — 0,
lim Hy(y + 4) = Hy(n.
This proves the continuity of Hy(n).

To prove the continuity of u(y), let us assume #; — #,. Since the set U is
compact, we may assume that u(y;) converges to @i € U, say. Then

nau(n;) = nauno).

Passing to the limit as i —» oo, we have

Holl Z nou(no)-
This shows that .
u(ny) — 4 = u(n,),

which completes the proof.
Analogously, H,(£) and v(&) are defined by

Hy(&) = sup &v = Lu(d),

where ¢ is an arbitrary s-dimensional row vector. For convenience, let us define
the n x r matrix K(t) and the n x s matrix L(t) by

(13) K(t) = ®(t)B, L(t) = ®(1)C.
It is clear that K(t) and L(¢) are analytic. Then (9) is rewritten as

Tu,v Tu,v
(14)  O(T,,)zo +J K(0)u(T,, — t) dt —f LT, — t)dteS,.
0 0
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Now, by using an analogous technique to [13], the following theorem is obtained.
THEOREM 1. In order that, for any measurable control v(t)e V, t = 0, there

exist a measurable control u(t)e U, t = 0, such that (14) holds for some finite time

T,, = 0, it is necessary and sufficient that there be a finite time T = 0 such that

15) —& < A(T)zq + f ' Hy(AK () dt — J ' Hy(AL()) dt
0 0

for all n-dimensional unit row vectors A.

Proof. To prove the necessity, let 1 be an arbitrary n-dimensional unit row
vector. Then, multiplying the left-hand side of (14) by — 4 from the left and using
the Schwarz inequality yields
T

(16) —AD(T,)zo — f

0

v Tu,v
AK(OuT,, — t)dt + f AL@WT, , — t)dt < &.

0

Since the inequality (16) must hold for a v(t) € ¥ such that
ALOUT,,, — 1) = Hy(AL(1)) = sup AL(t)v,
veV

(17)  —e < AT, )z0 + f " K @uy(T,, — 1) di f " L) dr.
0 0

Since

(18) AK(u(T,,, — t) = Hy(AK(1)),

by putting T = T, ,, (15) is obtained.

To prove the sufficiency, suppose that there is a control v(t) e V for which
there exists no control u,(t) € U, such that (14) holds for some finite time T This
means that the compact convex set defined by

{f: KOu(T — t)dt:u(T — t)e U}
does not intersect the compact sphere

—®(T)zy + LT LT — t)dt + S,.
Therefore, there exists an n-dimensional unit row vector A such that the inequality
19) —A0(T)zy + J: ALOWT — t)dt + Aa > LT AK@OuW(T — t) dt

holds for all u(t)e U, te [0, T], and for all a€ S,.
Since the inequality (19) must hold for a u(t) € U such that

AK@Ou(T — t) = Hy(AK(2)) = su}]) AK(t)u

and for a vector a = —¢l’ € S,, by using the inequality

JT H,(AL(t)) dt = f ! AL(OAT — t)dt,
(4] 0
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it follows that

(20) —& > AB(T)zo + f " H K@) dt — f " H L) dt.
0 0

This contradicts (15), and the proof is completed.

From Theorem 1, the following theorem is directly obtained.

THEOREM 2. In order that, for any measurable control v(t)e V, t = 0, there
exist a measurable control u(t)e U, t = 0, such that (14) holds for some finite time
T,, = 0, it is necessary and sufficient that there be a finite time T = 0 such that

(21) inf |:/1(I>(T)zo + JT H,(AK(t)) dt — IT H,(AL(¢)) dt] = —¢,
AeQ 0 0

where Q is a set of n-dimensional unit row vectors.
Theorem 2 here is a similar result to Theorem 1 in Pshenichniy’s paper [6].
However, in this paper further results are obtained on the basis of Theorem 2.

4. Several propositions. The vectors ue U and ve V' which attain the
maximum of AK(t)u and AL(t)v, respectively, will be henceforth denoted by u(t, )
and v(t, 1); i.e.,

(22) Hy(AK(t)) = sug AK(tu = AK(t)ult,A),
(23) H,(AL(t)) = suII/) AL(t)y = AL(t)u(t, A).

In what follows, we assume the following condition.

AssumpTION. For each fixed A € Q, the controls u(t, A) and (¢, 1) are uniquely
determined, respectively, for all t € [0, T] except a finite number of points on the
interval [0, T].

By this assumption and Proposition 1, it is clear that the controls u(t, 4) and
v(t, A) are piecewise continuous on [0, T]. Note that if the sets U and V are compact
and strictly convex, then u(t, A) and (¢, A) are uniquely determined for all t € [0, T']
and continuous on [0, T] (see [12]), and that if the sets U and conv V, conv V
denoting the closed convex hull of V, are compact convex polyhedrons and if
u(t, A) and o(t, ) are uniquely defined by the maximum conditions, respectively,
for almost all t [0, T], then u(t, A) and v(t, A) are piecewise constant on [0, T']
(see [14]).

Let us define a scalar function by

T T
F(T, 2;zo) = AX(T)zo + J Hy(AK(t)) dt — f H(AL(t)) dt

0 0

(24) r r
= ATz + lf K(u(t, Ay dt — 4 f Lol 3) dt.
0 0
PROPOSITION 2. The gradient vector of the function F(T, A; z,) with respect to

A is given by
(25) grad}. F(T, A” ZO) = Z(Ta j'a ZO)’
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where z(T, 4; z,) is defined by
T T
(26) 2T, A;zo) = O(T)zy + f K(u(t, A) dt — f L(t)v(t, ) dt.
0 0

Moreover, grad; F(T, 4; z,) is continuous in T, A and z,.
Proof. Let A be an arbitrary n-dimensional row vector. From the definition
of u(t, 2) it follows that

Hy((A + A)K(t)) — Hy(AK(t)) = (A + A)K(u(t, ) — AK(Hult, A)
= AK(t)u(t, 4),
Hy((A + A)K(1)) — Hy(AK(t)) = (4 + AK@t)u(t, A + A) — AK(thult, A + A)
= AK(t)u(t, A + A).
Thus, the following inequality is obtained :
27 AK(yu(t, 2) < Hy((A + A)K(t)) — Hy(AK(t)) = AK(tult, A + A).
Integration of (27) with respect to t yields

T T T
Af K(tult, A)dt < f Hy((A + A)K(t)) dt — f H (AK(2)) dt

0 0 0

(28) T
< AJ K(t)u(t, L + A)dt.
0
Letty,t;, -, t5(0 <t; <t, < --- <ty < T)be the points on [0, T] except
where the control u(t, 4) is continuous. Let us define subintervals of [0, T] by
Io(e) = [0,8),  In+1(e) =(T — ¢, T],

(29) Ii(8)=(ti_8ati+8)’ i=1""aNa

N+1

1) = [0.T) = U I{o).

By the continuity argument (Proposition 1), it is clear that for sufficiently small
¢ > 0 there is a d(¢) > 0 such that, if |A| < d(g), then for t € I(g),
(30) lu(t, 2 + A) — u(t, )| <e;

while, since U is bounded there is a constant k > 0 such that

N+1
(31) lut, A + A) — u(t, )| <k ifte U Ife).
i=0
Therefore, we obtain
T
(32) f lu(t, A + A) — u(t, A)|| dt < eT + 2&(N + 1)k.
0

Relations (28) and (32) imply that

T T
33) grad, f AK(Ou(t, 1) dt =f K(Ou(t, A) dt.
0 0
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Similarly it can be shown that
T T

(34) grad, f AL(t)(t, A) dt = f L(t)v(t, A) dt.
0 0

Hence (25) has been proved. The continuity of grad, F(T, A; z,) is evident from
the course of the proof. This completes the proof.

For simplicity, when it is clear that the initial condition is fixed to z,, one
writes F(T, A; zo) and z(T, 1; z,) simply as F(T, A) and z(T, 1), respectively.

Now, since the function F(T, 1) given by (24) is continuous in A and the set
Q = {Ae R":|A|| = 1} is compact, there is a 1€ Q which attains the infimum of
F(T, 4). Let us denote the A which attains the infimum of F(T, A) by AT); i.e.,

inf F(T, A) = F(T, AT)).
reQ
PROPOSITION 3.

(33) i‘;ﬁ F(T,4) = F(T, AT)) = —|«T, AT))l,

where z(T, 1) is given by (26).
Proof. Since the minimum of F(T, ), T being fixed, is sought under the
condition ||A|? — 1 = 0, let us define

(36) F(T, 2, ) = F(T, 2) + w(|2I> = 1),
where p is a Lagrange multiplier. Put
(37 oF 04, = z{T, ) + 2uk; = 0, i=1,---,n,

where z; and 4, are ith components of the vectors z and 4, respectively. Eliminating
the Lagrange multiplier u from (37) yields

(38) AT) = —2(T, XT))/|«(T, AT),

where ’ denotes the transpose of a vector. Substituting (38) into (24) yields (35).
PROPOSITION 4. Let us assume that for any time T > 0 and for any A,,1,€Q,

(38) \AT, Al = 14T, A,)]|  implies 4y = 2.
Then it follows that
@o) LD _ 3y Ad(T)ze + Hy(UT)K(T)) — Hy(AT)L(T)).

dT

Proof. Let 6 be an arbitrary real number. In view of the definition (24) of
F(T, 2) and the relation
T+6

(T + 0) = NT) + f AD(t) dt,
T

it follows that
T+o

(40) F(T + §,0) = F(T, 1) + f [LAD(t)z + Hy(AK() — H (AL()] dt.

T
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When 4 = AT + J), by using the relation
F(T, (T + 0)) = F(T, T)) = inf F(T, J),
it follows from (40) that e
F(T + 6, T + 6)) — F(T, AT))
(41) J«T+6

2

[MT + 6)AD(t)zo + Hy(MT + 0)K(¢)) — Hy(A(T + S)L(1))] dt.
T

On the other hand, it is clear that
42) F(T + 6, T + 8)) — F(T, (T)) £ F(T + 6, (T)) — F(T, AT)).

Since F(T, A) is continuous in T, the relations (41) and (42) show the continuity
of F(T, AT)); ie.,

43) F(T + 6, AT + 9)) » F(T, (T)) ifdé— 0.

From (35) it is clear that the assumption (38’) implies uniqueness of the A(T)e Q
which attains the infimum of F(T, A) over Q. Therefore, it follows from (43) that
lim;_, o A(T + J) has a unique limit AT); i.e.,

(44) MT + 8)—» AT) ifé—0.
If 6 > 0, it follows from (41) and (42) that
T+6
%J [MT + 0)AD(t)zg + Hy(MT + 0)K(t)) — Hy (AT + d)L(t))] dt
T
(45)

< [F(T + 6, AT + 8)) — F(T, (T)))/o
= [F(T + 6, AT)) — F(T, AT))/o.

In view of (44) and the continuity of Hy(AK(t)) and H,(AL(t)) in 1 and t (by Proposi-
tion 1), it follows from (45) that

dE(T, AT))

(46) T

= AT AX(T)zo + Hy(AT)K(T)) — Hy(AT)L(T)).

In the case where é < 0, the same result (46) is obtained.

5. Completion of the game. Suppose that ||zy| > ¢ and there exists a time T
(0 < T < o0) such that

47 in£ F(T, 2;zy) = F(T, AT); zo) = —e.
A€

Let T, be the smallest nonnegative time satisfying (47). Then the following theorem
is obtained.

THEOREM 3. No matter what measurable control v(t)e V, t = 0, may be chosen
by the second player 11, the game can be completed in a time not greater than Ty,
where Ty is the smallest nonnegative time satisfying (47). Further, no matter what
measurable control u(t)e U, t = 0, may be chosen by the first player 1, there is a
controlv(t)e V,t = 0, of the second player 11 such that the game cannot be completed
in a time smaller than T,.
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Proof. Corresponding to an arbitrary control v(t)e V, t = 0, let us define
T T
48)  F(T, A;zy) = AD(T)zo + /lf K(t)u(t, A)dt — if L(t)u(T — t) dt.
0 0

In view of (23), it is clear that

(49) F(T,A;z0) =2 F(T, 4;z,) forall LeQ.
Hence,
(50) inf F(Ty, 4;z9) 2 inf F(Ty, A;zo) = —e.
AeQ reQ
From Proposition 3, it is obvious that
(51 }an F(T, A;z0) = F(T, Ap; 20) = — 2T, ADIl,
where
T T
(52) z(T, Ap) = ®(T)zo + f Ktu(t, Ap) dt — f L(tW(T — t)dt,
0 0

and 1, € Q attains the infimum of kF,,(T, A; zp) when T and z, are fixed.
Since z,(T, A4) is continuous in time T, and it holds from (50) and (51) that

(53) —lz/To, Az Il = —e,
there exists a time T* such that
(54) 0 T*<LT,, —zT*, Al = —e.

Equation (54) shows that the game can be completed in a time T* which is not
greater than Tj.
In the same way, let us define

(55)  FJT,1;2y) = AD(T)zo + 4 fT KOu(T — t)dt — 4 f ! L)t A) dt.
0 0

In view of (22), it is clear that

E(T, 4;zy) < F(T, A;z,) forall AeQ.

Therefore,

(56) inf F(Ty, 1;z) < inf F(Ty, A;z9) = —e.
2eQ 1eQ

From Proposition 3, it is obvious that

(57 /illgg F(T, 2;20) = F(T, Ar;20) = — l|zT, A7)l

where

(58) 2T, Ap) = ®(T)zo + LT K@Ou(T — t)dt — f: L(yw(t, Ap) dt,

and A, € Q attains the infimum of F(T, 4; z,). From (56) and (57),
(59) —z/To, Ar )l = —e.
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Equation (59) shows that the game cannot be completed in a time smaller than
T,. This completes the proof.

Theorem 3 shows that the controls u(t) = u(T, — t, A(Tp)) and v(t) = (T, — ¢,
MTy)), tel0, Ty], are respectively optimal for both players, in the sense that the
first player I wishes to complete the game as soon as possible, and the second
player II wishes to prevent the completion of the game as long as possible. The
time T is clearly the smallest max-min completion time of the game.

Now, a natural question may occur. Under what initial condition does a
finite time T exist satisfying (47)? The following theorems give sufficient conditions
for the existence of the finite time T satisfying (47).

THEOREM 4. If the homogeneous differential equation

(60) dz/dt = Az

is asymptotically stable and it holds that

(61) BU = CV,

where BU and CV are subsets of R" defined by

(62) BU = {Bu:ue U}, CV={CviveV},

then the game can be completed, no matter what the initial condition z, € R" may be.

Proof. Since CV < BU, whatever control v(t)e V, t = 0, may be chosen by
the second player I, it is possible for the first player I to choose a control u(t) e U,
t = 0, such that

(63) Bu(t) = Cu(t) forallt = 0.

Since the system described by (60) is asymptotically stable, there exists a finite
time T such that

(64) 12T = e.

This completes the proof of the theorem.
Another sufficient condition for the completion of the game is obtained by
using (39). Since
Q) =et=1+1A+524*+ -,
it is clear that

(65) AD(t) = O(1)A.

Using (65), equation (39) can be rewritten as

(66) w = MT)™(T)Az, + max MT)YD(T)d — max AT)D(T)D.
THEOREM 5. Let us assume that for any time T > 0 and for any A,,4,€Q,

(67) I2(T, Al = (T, 4,)|  implies A, = 4,.

If there exists a 6 > O such that

(68) —Azy + CV + S5 < BU,

(69) IMT)YT)| =6 foral T>DO0,
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where S; is a closed sphere in R" of radius 6 about the origin, then the game starting
from z, can be completed.

Proof. Let u be an arbitrary n-dimensional nonzero row vector such that
lull = 6 > 0. Then it is clear that

max px = ux(p) 2 6%,
where x(u) is a point of S; at which the maximum is attained. From (68), for
arbitrary 9 € CV and x € S;, there is a fi € BU such that
—Azg + 0+ x = 1.
Hence, for all e CV and for all u satisfying ||u]| = 9, there is a fie BU such that
(70) Wit — o+ Azy) = 62 > 0.
Inequality (70) still holds for such a #(u) that
pb(p) = max ud,
PeCV
and it holds that
pi < pdi(p) = max pd.
#eBU
Hence, for all u satisfying ||u|| = 9,
(71) max ufi — max ub + pAzy = 6%

4eBU
Under the assumption (67), it is clear from Proposition 4 that (66) holds. By
putting 4 = AT)®(T), it is evident from (66) and (71) that

(72) dF(T,AT))/dT 2 6> >0 forall T > 0.

Since F(0, 4(0)) = —|zoll < —e& < 0, it is clear that the game which starts from
z, can be completed, if z, satisfies (68).

6. Iterative procedures for determining optimal controls. Let us assume that
the game starting from z, can be completed. The minimum time T, and the vector
MTy) satisfying (47) can be computed as follows:

1. Put 4, = —zp/|lzoll. Compute F(T, A;), T = 0, 1; being fixed, up to the
time T, where F(T;, A,) = —e Clearly, T} < T,.

2. Let F(T;,A) = —¢, i=1,2,---. Minimize F(T;, 2) with respect to 4 by
using the gradient method, T; being fixed. By Proposition 2, the gradient of F(T;, 1)
can be computed easily. Put

miél F(T;,2) = F(T;, Ay y) S —e.
Ae
3. Compute F(T, A;4,), T = T;, 2; 4, being fixed, up to the time T;, ,;, where
F(T,, 1, A+1) = —e& Itis clear that
(73) K(T, 4;+,) 2 F(T,AT)) forall Te[0, T, ,].

4. Iterate procedure 2 and procedure 3.
Since T; < T;yy = Ty, lim T; exists which will be denoted by Tj. Clearly
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o = Ty. It holds that

(74) F(T;+1"1i+1) = F(T;+15'1(T;)) = —&,
and by (43), F(T, A(T)) is continuous in T, hence
(75) F(T,, ATp)) = —e.

Since Ty is the smallest nonnegative time satisfying (47), it follows that T, = Tp,
and 4,1, = AT) - MT, — 0), if AT;) is not unique and AT, — 0) # AT, + 0).
It is clear from Theorem 3 that the controls u(t) = w(T, — ¢, (T, — 0)) and
o(t) = u(Ty — t, (T, — 0)), t e [0, T,], are optimal for both players, respectively.

7. Concluding remarks. As we have seen in the preceding section, (T, — 0)
can be determined for each initial condition z,. Hence, the optimal controls have
been synthesized in the form of u(t) = w(Ty — t,z,) and v(t) = Ty — ¢, o),
respectively. In an actual game, however, it is desirable to synthesize the controls
as a function of the current state of the game. In this sense, u(Ty, z,) and (Ty, zo)
are optimal feedback controls at t = 0. Thus, we can synthesize the optimal
controls at ¢t = ¢ in the form of w(Ty — t, z(t)) and v(T, — t, z(t)), respectively.

In view of Proposition 3, the A which minimizes F(T, 4;z,) under ie Q
depends on z,. Thus, let us define A(T, z) by

(76) ing F(T, 4;z) = F(T, AT, z); z).
A€
Further let us define u%(T, z) by
(77) u(T, z) = w(T, AT, 2)),
where u(T, AT, z)) satisfies
(78) max AT, z2)K(T)u = AT, 2 K(T)w(T, AT, z)).
uel

Pshenichniy [15] proved, under several conditions, that if the first player employs
the control u®(T, z) thus obtained, then the game governed by

(79) dz(t)/dt = Az(t) + Bu®(T, — t, z(t)) — Cu(1), 2(0) = z,,

can be completed in a time not greater than Ty, where T, is the smallest non-
negative time satisfying (47). However, Pshenichniy did not show how to compute
AT, z), Ty, and so on. These computations can be done by using the algorithm
shown in this paper. Therefore, the results obtained in this paper will be useful for
synthesizing the optimal open-loop controls, as well as the feedback controls.
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ON CONTROLLABILITY OF NONLINEAR SYSTEMS*
V. A. CHEPRASOV+t

We consider the problem of steering a continuous mechanical system to a
position of equilibrium, when the system motion is described by a vector differen-
tial equation

1) z =) + Q).

Here z(t) is the vector of the phase coordinates of the system, ¢(z) is some continuous

nonlinear vector function which does not depend explicitly on time, and Q(t) is a

vector of generalized control forces which is to be found. The problem is to find a

force Q(t) such that system (1) is transferred from a given point z(0) of the phase

spaceatt = 0to a position of equilibrium z(T) = Oata previously assigned time T.
Equation (1) can be written

@ z= Az + f(2) + Q),

if we assume that ¢(z) = Az + f(z), where A4 is a constant square matrix and
f(0)=0.

Let us examine the linear system
(3) u = Au + Qt).

The problem of finding the control force for the system (3) has been solved by
Ya. N. Roitenberg [1].

If the interval [0, T] is subdivided into a number of subintervals, on each of
which the components of the vector Q(t) are assumed constant, then the number
of subintervals should be such that the total number of steps of all nonzero com-
ponents of the control force is equal to the order of the system. This condition
ensures uniqueness in the determination of forces from a given class of functions
for a given method of partitioning the interval.

The general solution of the matrix equation (3) is of the form

) u(t) = N()u(0) + Jo N(t — 1)Qo(7) dr,

where N(t) is the fundamental matrix of the homogeneous system # = Au, and
N(t — 1) = N(t)N (1) is the matrix weighting function for the system (3).

Let us assume that the vector Q(t) has only one nonzero component g, .
Then the solution (4) in scalar form becomes

uft) = Y, Np(t)u0) +J Nj(t — 1)qoft)dr, j=1,2,---,r.
k=1 0

* Originally published in Vestnik Moskovskogo Universiteta, Matematika, Mekhanika, 1968,
no. 4, pp. 55-64. Submitted on June 15, 1967. This translation into English has been prepared by R. N.
and N. B. McDonough.

Translated and printed for this Journal under a grant-in-aid by the National Science Foundation.

T Computing Center, Moscow State University, Moscow, USSR.
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By assuming that u(T) = 0, the interval [0, T] is subdivided into subintervals
-t v=12 - ,rty=0,t =T, and the values g3} of the force g, are
considered constant on these subintervals. We then have the system of algebraic
equations

r Ty ¥
(5) Z qu) le(T —1)dt = — Z Njk(T)uk(O)a J=12,---,r,
v=1 ty-1 k=1
for the ¢§}. If the determinant of this system is not zero, then
(6) Qo(t) = —BN(T)u(0),

where the components of the vector Q,(t) are the values i} of the force go, on the
subintervals [t,_{, t,],and Bis the inverse of the matrix of coefficients of the system
(5).

To determine the force Q(t) in (1), we will consider the following process of
successive approximations. Let us pass from the nonlinear differential equation (2)
to the equivalent integral equation

z(t) = N(t)z(0) + fo Nt — 1) f[z(r)] dt + J;) N(t — 1)Q(t)dr,

and define the iterative process

T T
N(T)z(0) +f N(T — 1) f[z(t)] d= + f N(T — 1)Q,(r)dt =0,
) . ’ :
Zp+1(t) = N(1)z(0) + f Nt — O)f [zp+1(D)] dr + f N(t — 1)Q,(7) dr,
° ° n=0,1,2,---

If we take n = 0 in the first equation of (7), and put zy(t) = 0, then from
the condition f(0) = O there follows the equation for determining the force Qy(t)
which takes the linear system (3) from the state u(0) = z(0) to the state u(T)
= z(T) = 0. If the force Q(t) thus determined is applied to the nonlinear system
(2), then we have, from the second equation of (7),

z4(t) = N(#)z(0) +J‘ Nt — 1) f[z\(r)] dT + J:) N(t — 1)Qp(7)dx.
0

Knowing the solution of this, we can calculate the integral
T
[ N = s,

needed to determine the force Q,(t) from the first equation of (7). This first
approximation Q(t) to the required force will allow one to determine the second
approximation z,(t) to the solution, which will determine the second approximation
0,(1) to the force, etc.

An analogous process was examined in [2]. The approximation z,(t) will
result in a certain residual at time T, this being the deviation from the equilibrium
position.

The residual z,(T) of the nth approximation, i.e., the value of the solution
z,(t) for t = T, can be found from the second equation of (7) as

T T
z(T) = N(T)z(0) + JO N(T — 1) f[z,(7)] dt + fo N(T — 7)Q,—(r)dr.
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T
Substituting f N(T — 7)f[z,(7)] dt into the first equation of (7), we obtain
0

T
LNG—0MWh=—Mﬂ, a0) = 0u(0) — Qu_1(0),

which is an equation for determining the supplementary force q,(t) as that force
which transfers the linear system (3) from the equilibrium position u(0) = O to the

position u(T) = —z,(T). The solution of the linear system on which the correcting
stepwise force g,(t) acts is in this case given by the formula
®) q4.t) = —Bz,(T),

and will have the form

©) mn=LNa—ﬂMﬂm,

with u,(T) = —z,(T).

It is seen that for the iterative process under discussion, it is only necessary
to know the value of the solutions of system (1) at the time t = T.

For use in the convergence proof of the suggested method of successive
approximations, we introduce norms for all quantities, vector and matrix, entering
into the system (2). For the norm of a vector function, we take the sum of the
maxima of the absolute values of the functions which are its components, and as
the norm of a matrix, we take the sum of the absolute values of the elements of the
matrix.

Since the process of bringing the nonlinear system (1) to equilibrium is to
take place over a finite interval of time, the solutions of the homogeneous system
corresponding to (3) are bounded on this interval. Thus, we can find a constant
C = 1 such that

INOI = C

for all t € [0, T], where ||N()| is the norm of the fundamental matrix of the homo-
geneous equation. If o is the norm of the matrix B entering into (6) and (8), then the
zeroth approximation Qy(t) to the sought force will satisfy

(10) 1200l = AR 1|z(0)]

where A{) = C.
Further, we assume that, for some number m satisfying

1
C*aT?

there is a closed region R(|z|| £ Ao) in which the nonlinear function f(z) in (2)
satisfies a Lipschitz condition for the norm:

(12) I f(z0) = f(z)] = mljzy — 2,
Introducing the notation

(13) CaT =k, CmT = p,

(11) me™T <
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we determine a number
Cpue*(1
(14) A, ={C+K|:C+M]}e“,
1 — Kue*
and assume that the norm | z(0)| is such that
(15) A4lI20)] < 4o

is always satisfied.
From the condition C = 1, we have

(16) Ay > 1.

From (12) and the condition f(0) = 0, there follows the estimate

(17) /@I = mlz],

for the nonlinear function f(z).

In the future, we will need the following estimate [3]. If for t = 0 a continuous
function z(t) is positive, z(t) = 0, and if we can find two nonnegative numbers
C, and C, such that

z(t) < Cy + f C,z(1) dr,
0

then
(18) 2(t) £ C,e ™.

Let us estimate the first approximation z,(t). From the second formula of
(7) it follows that

(19) z4(t) = N(t)z(0) + fo Nt — 1) f[z,(r)] dt + J;) N(t — 1)Qo(1)dr.

Itis necessary to prove that the action of the force Qy(t) on the nonlinear system
(2) will be such that the solution z,(t) remains within the region R on the entire
interval of interest, i.e., to prove that | z,(¢)|| < A4,,t€[0, T].

Let us assume the contrary. Then by virtue of the continuity of the solutions,
a point t, €[0, T] can be found such that |z,(t)] = A4;lz| on the interval
[0,¢{]. From the condition z,(0) = z(0) and (16) it follows that t;, > 0. If we
estimate the solution z,(t) on the interval 0 < ¢ < t,, where (17) is valid, replacing
the upper limit of the last integral in (19) by T, there results

t T
20) 0] < =0 + fo Cmllzy@) d + fo CadD20) de,  te 0, 1],

From this, using (18), we have
(21) lz10] = AP0,

where A" = (C + kC)e*. But, by hypothesis, on the interval [0,t,], [z,(?)l
= A,||z(0)||. Thus A; £ A", in contradiction to (14); thus such a point t, cannot
exist on the interval [0, T]. Thus, the force Q(t) which brings the linear system (3)
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to equilibrium does not carry the solution of the nonlinear system (2) out of the
region R at any point of the interval [0, T]. Consequently, the estimate (21) is
valid on the interval [0, T].

Let us estimate the residual of the solution z,(t) at t = T. Since the point in

phase space from which the linear and nonlinear systems are brought to equilibrium
is the same for both, from (4) and (19) we have

22) 22(t) — u(t) = fo N(t — 0)f [z4(2)] dr.

In order to make use of inequality (18) in the estimation of the difference (22),
in the integrand we add and subtract the function N(t — 1) f[u(r)]. To distinguish
the solution u(t) of the linear system for a given step of the iteration with the initial
condition u(0) = z(0) from all following solutions, we use the subscript zero.
Then

t t
z4(t) — uolt) = f Nt = ) {f[z1(0] = fluo(®)]} dr + f N(t — 1) fluo(r)] dz.
0 : 0
It must be shown that the solution u(t) lies within the region R. In fact, according
to (4), (10), and (15),
(23) luo)ll = (C + kO)||z(0)] < A[zQ)] < Ao.
Using the estimates (12), (17), and (23), in estimating the difference (22), we

obtain

t T
120 = @l = [ Cmlzi@ = uol de + [ i€ + xC)=00)
0 0
from which, taking into account (18) and the fact that uy(T) = 0, we have
lzi(T)] = A|2(0)],
where
(24) AP = Cu(1 + K)e.

Knowing the estimate of the residual of the first approximation, from (8)
it is possible to estimate the correcting force g;(¢), which in turn allows us to

estimate the first approximation Q4(t) = Qo(t) + q4(¢) of the control force.
The inequality

(25) G2 E O]

holds, where, as before, o is the norm of the matrix B. From this it follows that
1011 £ Qo + llgu()l = a4 | 20)] ;
here,
AP = AD + AP = C + Cue*(1 + x).

Let us estimate the difference between the first and zeroth approximations,
z4(t) — zo(t). Since, in constructing the zeroth approximation, we assumed
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zo(t) = Oin the first of equations (7), at this step of the iterative process the estimate
of the difference z,(t) — z(t) will be the same as the estimate (21) of the first
approximation z4(t). In the following it is convenient to use the notation
AP = AP, Then |z4(t) — zo(t)]| = A 2(0)] .

It remains to be shown that the force Q,(t) which is determined from the
residual z,(T) of the first approximation will not result in a second approximation
which goes outside the region R.

In fact, from (7) we have

Z,(t) = N(t)z(0) + J;) N(t — 1) f[zy(r)] dt + fo Nt — 1)Q,(r)dz.

As before, we assume there exists a point t; > 0 such that ||z,(¢t)| = 4,|/z(0)|
on the interval [0, t,].
Analogous to the estimate (20), we obtain

t T
lz2(0)] = Cllz(0)]] +f Cm|z,(7)] dz +J CoA{||z(0)] de, te[0,1,],
0 0

from which, according to (18),
(26) lza(t)ll = APz(0)],
where

AP = (C + kAD)e* = {C + k[C + Cue*(l + K)]}e*.

But, by hypothesis, there exists a point ¢; such that | z,(t)|| = A,|z(0)|| fort€[0, t,],
from which follows the inequality 4; < A??). However, from (11) and (13) we have
kue* < 1;hence from (14) this last inequality is false. Thus we have a contradiction,
which is to say that z,(t) does not leave the region R anywhere on the interval
[0, T].

In the estimation of the residual z,(T) we need to take into account that
uy(T) + z,(T) = 0, where u,(t) is the solution of system (3) with initial condition
u1(0) = 0. Thus taking into account (7) and (9), we can obtain

27 23(t) = z1(0) — uy(1) = fo Nt = D){f[z2(0] = f[z:(0)]} dr.

For t = T, expression (27) is the residual z,(T). In the integrand of (27), let us add
and subtract the quantity N(t — 1) f[z;(t) + u4(z)]. We obtain

2(0) — 22(t) — uy(t) = fo Nt = D{f[2:00)] = flz1(0) + u ()]} de
(28)

+ f NGt = D{T24(0) + wr(@)] — f[z1(e)]) d.

To make use of the condition (12) in the estimation of (28), we need to show that
the sum z(t) + u4(t) also lies in R. To do this, we estimate the solution u,(t).
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According to (9), u,(t) = f N(t — 1)q4(1)dr, from which, using (25), we have
0

lu ) < xAL) z(0)]| . Using this and (21), we obtain
lz1(0) + us (@)l < lzs@) + Nug(@)l] = (AP + A8 2O)]],
where
AP + kAP = (C + kC)e* + kCue*(l + k).
Since u > 0,
AP + kAP < {C + K[C + Cpue'(l + k)]}e* = AP
As was shown by the inequality (26), 4| z(0)| < Ao. Thus, also, (45" + xkA4Y)

-112(0)]] < Ay, L.e., the sum z,(t) + u,(t) lies in the region R.
It is now possible to write that

t T
22(t) — z4(8) — wa (@)l = L Cmllz5(1) — z4(0) — us (1) dT + L Cmluy(7)|| dr,

from which |z,(t) — z,(t) — u;(O)|| £ kue™ AL |z(0)||. For t = T, we thus have
the estimate ||z,(T)|| £ AP||z(0)||, where AP = kue* 4. Thus we have estimated
the residual z,(T).

Let us now estimate the second correcting force g,(t). From (8), [|g,(t)l
< a4 z(0)] . Since Q,(t) = Q4(t) + q(t), we have for Q,(t) the estimate

10,0 < 24P (0],
where
AP = AP 4+ 4P,

We will now estimate the difference between the second and first approximations:

23(0) — 2,(0) = fo Nt — 0 {flz2(0) — flzy(0]} dr + fo Nt — Dgu(@)dr.

From (12) and (25) we have

t T
I2:(0) — 2,0 < fo Cmllzy(x) — 2, dt + L Cod|(0)] dr.

or, taking into account the estimate (18),
lz2(8) = 210 = AP 2(0)]I,
where
AP = kerAV.
It remains to be shown that z4(t) does not depart from the region R. For this,

we estimate the third approximation to obtain

t T
lz3()] = CllzO)] + fo Cml|z5(7)] dr + fo CaA$|2(0)] dr.
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As before, we assume that this inequality is true only on the interval 0 < ¢ < ¢,
where the point ¢, is defined as before, from which follows the contradictory
inequality 4, < A, since

Cuet(1 1 - ")
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