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DECOUPLING AND POLE ASSIGNMENT IN LINEAR
MULTIVARIABLE SYSTEMS: A GEOMETRIC APPROACH*

W. M. WONHAM" AND A. S. MORSE{

1. Introduction. The current interest in linear multivariable control has
led to several algebraic results with important applications to system synthesis.
In particular, the problem of decoupling of individual system outputs by means
of state variable feedback was studied by Rekasius [1, Falb and Wolovich [23
and Gilbert [33; the problem of realizing arbitrary pole locations in the closed
loop system transfer matrix was investigated by Wonham [43 and Heymann [5].
In the present article, new results are obtained along these lines. In 3, the problem
of neutralizing the effect of disturbances with respect to a specified group of
output variables is solved. In 4, the concept of a controllability subspace is
introduced and its relation to pole assignability is investigated. This material
is preliminary to the formulation of a general problem of output decoupling
in 5. In 6 and 7, necessary and sufficient conditions for decoupling are ob-
tained in two special cases ;the results of 7 complement and extend those obtained
previously in [1], [2] and [3]. In each case, the problem of pole assignment is
solved completely.

Our viewpoint is that such problems are usefully treated in a geometric
framework in which both definitions and results become intuitively transparent.
In this way, entanglement at the outset in a thicket of algebraic calculations is
avoided. Of course, for applications, it is necessary to translate the geometric
criteria into matrix operations suitable for computation. This matter will be
considered in a future article.

2. Notation. The control system of interest is specified by the differential
equation

(2.1) 2(t) Ax(t)+ Bu(t)

with x an n-vector, u an m-vector and A, B constant matrices of dimension, re-
spectively, n x n and n x m. Here and below, all vectors and matrices have real-
valued elements. Script letters denote linear subspaces; g" is real n-space; U+/- is
the orthogonal complement of the subspace f; 0 denotes both the vector zero
and the zero subspace.

If K is a matrix, {K} or is the range of K, and (K) is the null space of
K. If K is of dimension / x v and g", we write K-U for the subspace
{z:zg,Kz} c

The controllable subspace of the pair (A, B), written {AIM}, is defined as

{mlC)} / A / / A"-
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Thus, {AIM} is the largest subspace of o" which the control u(.) in (2.1) can
influence. Observe that {A]} is an A-invariant subspace of g".

With (2.1), we consider the auxiliary equation

(2.2) y(t)-- Hx(t),

where H is a constant q n matrix. The vector y is the output.
Equations (2.1) and (2.2) play no essential role but serve to guide the investiga-

tion.

3. Localization of disturbances. In place of (2.1), consider the perturbed
system

(3.1) (t) Ax(t) + Bu(t) + D,(t),

where D is a constant n d matrix and (. is a disturbance input. If u(t) Cx(t)
+ v(t) (where v(. is an external control input), then the output y(. will be un-
affected by all possible (. if and only if {A + BCI} (H). This suggests
the problem" given A, B, = gn, = g,, under what conditions does there
exist an m n matrix C such that {A + BCI} c dV’? If C exists, the effect of
disturbances is, in an algebraic sense, localized to .

THEOREM 3.1. There exists C such that {A + BC]} dV if and only if, where Y/ is the maximal subspace such that

(3.2) C Y A-I(M + C).

Furthermore Y/ is given by Y/ Y/), where

(3.3) y/o) /’(i) /’(i- 1) A- 1( + y/i-

i= 1,2,...,v,
and v dim .

Here and below, "maximal" ("minimal") mean 1.u.b. (g.l.b.) with respect to
the usual partial ordering of subspaces by inclusion.

To prove the theorem we need two auxiliary facts.
LEMMA 3.1. Let xi6 ", ui gin, i= 1,’", N, and write X (xl,’",

U (ul, "’", us). There exists an m n matrix C such that Cxi ui, 1, ..., N,
if and only if dV(X) rift(U). C always exists if the xi are linearly independent.

The simple proof is omitted.
LMMA 3.2. Let Y/ o". There exists an m n matrix C such that (A + BC)Y/

Y/ if and only if AYl + .
Proof. Necessity is clear. For sufficiency, let v 1,..., v, be a basis of

Then Av--- Bui + w for some u gm and w . Choose C, by Lemma 3.1,
such that Cv -ui, 1,..., #; then (A + BC)v w.

Proof of Theorem 3.1. For sufficiency, (3.2) implies Y/c .A# and AY/

+ Y#.. By Lemma 3.2, there exists C such that (A + BC)C . Then

The maximal property of Y/was not required.
For necessity write {A + BCI} . Then

(3.4) A#+
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If is the class of all d which satisfy (3.4), then clearly 0 and is
closed under addition. Hence, ##contains a (unique) maximal member . Then
@ / and U satisfies (3.2).

To prove the second statement of the theorem, observe that //o) ,
and if .(i-,) , then //(i) CI A-’( + )= %2. Thus, U(i) U for all
i; and since .//(i) /#(i-,), there is a least integer j such that U(0 .(j)if > j.
Since //(J) %" and U(J) satisfies (3.4), "/#(J)= #2. Clearly, 0 _<_ j _<_ v; and if
@Uweevenhave0<j<v-dim@.

Remark 1. Theorem 3.1 depends essentially on the fact that the class /#

determined by (3.4), or equivalently

has a maximal element #i. Furthermore, is defined constructively by means of
(3.3). This fact will be used without special comment in the following sections.

4. Controllability subspaces. In regard to the system (2.1), suppose that a
subspace N" do" is selected and that it is desired to modify the system in such a
way that N’, but no larger subspace, is completely controllable. This aim is to be
realized by feedback of state variables and by forming suitable linear combinations
of control variables" that is, by setting u Cx + Kv, where K is an m m’
matrix for some m’ =< m. Then (2.1) becomes

2=(A + BC)x + BKv

and we require

(4.1) {A + BCI{BK}} N’.

Condition (4.1) can be expressed more neatly by noting that {BK} and the
following.

LEMMA 4.1. If c and {AI} N’, then {AI r3 N’} N’. Conversely, if
{A] f) N’} N’, there exists a matrix K such that {Ai{BK}}

Proof. {AI} N" implies c N’, so c r3 N’, and thus N"
c {A]. CI N’}. Also, AN’ c N" implies A( CI N’) c N’; by induction
= N’,j 1,2,..., and so {A] CI N’} =

For the converse, let b, 1,..., m, be the ith column of B and let {rj,
j 1, -.., m’} be a basis of f’l N’. Then

rj y’, kubi, j 1,..., m’,
i=1

for suitable ku, and we set K [ku]. This completes the proof of the lemma.
By Lemma 4.1, we can pose the synthesis problem as follows"
Given A, B and N’, find conditions for the existence of C such that

(4.2) {A + BCI, rh } ,.
If such a C exists, we call N" a controllability subspace of the pair (A, B). Observe
that N" 0 and N" {AI} are controllability subspaces.

Controllability subspaces can be characterized as follows.
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THEOREM 4.1. Let A, B, " be fixed. is a controllability subspace of
(A, B) if and only if
(4.3) Ao 3 +
and

(4.4) ,
where is the minimal subspace such that

(4.5) ? CI (A + ’).

Furthermore, (P), where p dim and

(o) O,
(4.6)

(i)= VI (A(i-1) + ), 1,2,..., n.

Write C for the class of matrices C such that (A + BC) . To prove the
theorem we need two preliminary results.

LEMMA 4.2. Let . For all C C,

+(A + BC) = (A +).

Proof Let Ce C. Then (A + BC) and A + (A + BC) + .
By the modular distributive rule for subspaces,

(A + ) (A + BC) + ]
(A + BC) + f3 .

(4.7) (A + BC)- l(d ["] ) (i). i= 1,-.., n,
j=l

where the sequence (i) is defined by (4.6).
Proof. Equation (4.7) is true for i= 1. If it is true for i= k- 1, then by

Lemma 4.2,

(A + BC)- 1( f-’l )= f"l #l + (A + BC)(k- 1)

j=l

f3 (A2t- + )
(k).

Proof of Theorem 4.1. By Lemma 3.2, C is nonempty if and only if (4.3) is
true. Let

(4.8) {A / BC[ }.
Then C e C. By Lemma 4.3,

j=l

LEMMA 4.3. If C C then
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Conversely, if N"), then (4.8) is true for every C e C. It remains to show that
(4.5) has the minimal solution N(o). By induction on in (4.6), it is seen that
(i) = , 1, 2, ..., for every solution of (4.5), and that the sequence (i) is
monotone nondecreasing. Hence, there is/ =< p such that (i) (")for >/;
in particular, (P) = and (P) satisfies (4.5).

Remark 2. If is a controllability subspace, then it was proved incidentally
that

for every C such that (A + BC) . This fact will be used later without special
mention.

Consider now the problem of assigning the eigenvalues of the restriction of
A + BC to . It will be shown that there is complete freedom of assignment and
that simultaneously the control v introduced earlier can be made a scalar; i.e., in
(4.1) K can be made an m-vector (m’ 1). For this, recall [4] that a subspace f is
A-cyclic if there exists x 5f such that {Al{x}} f; that is, if f contains a
generator x. Thus we can take m’ if and only if can be made (A + BC)-cyclic
and 1"1 M contains a generator.

THEOREM 4.2. Let (4.3) and (4.4) hold, and let 1,’", be arbitrary real
numbers (p dim ). Then C can be chosen such that (4.2) is true and is (A + BC)-
cyclic with characteristic polynomial

p

(4.9) 2 Z Oi’i- 1.
i=1

If 0 =/= b ] I’) l is arbitrary, C can be chosen so that, in addition, b generates .
Proof. By Lemma 4.3 and Theorem 4.1, C is nonempty and

(4.10) {A + BCI3 t}

for every Ce C. Choose C1 C arbitrarily and write A + BCI A1. Let
b b e fq and let p be the largest integer such that the vectors

bl,Abl, ..., Al-1b1
are independent. Put r bl and rj Arj_l + bl, j 2, ..., Pl. Then rie Yt
and the ri are independent. If p < p, choose b2 e f’l ’ such that rl, "", r,,,
b2 are independent;such a b2 exists by (4.7). Let P2 be the greatest integer such
that

bl Apx’-bl,b2, A2-Xb2
are independent, and define

rp,+i Alrp,+i-1 + be, i= 1, ..., P2"

Then r, .-., rp2 are independent and in . Continuing thus, we obtain eventually
rl,..., rp independent and in , with the property

ri+ Alri + bi, i= 1,...,p- 1,

where/ fq M. Now let C2 be chosen such that

BCeri , i-- 1,.-.,p,
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where /p VI is arbitrary. Since /i Bui for suitable u, and the r are
independent, Lemma 3.1 guarantees that C2 exists. The situation now is that

and
ri+ (A1 -1- BC2)ri,

(A + BC2)rp

i=l,--.,p- 1,

By independence of the r,

{A1 + BC2I{r,}} N;

that is, is cyclic relative to A + B(C + C2) with generator r b fl .
It is well known [4] that now an n-vector c can be found such that A + B(CI + C2)
+ bc’ (restricted to N) has the characteristic polynomial (4..9). Setting b Bg
for suitable g e ", it follows that the matrix

C= C + C2 + gc’

has all the required properties.
Remark 3. The result that any nonzero vector in fl ’ can serve as generator

is an extension of the useful lemma in [5].
Remark 4. If N g", (4.3) holds automatically and (4.4) amounts to

{AIN} g", i.e., complete controllability of (A, B). Then Theorem 4.2 yields the
known result [4] that controllability implies pole assignability. The construction
just used furnishes a simpler proof of this fact than that in [4].

It will be necessary later to compute the maximal controllability subspace
contained in a given subspace 9. For this, let
which is (A + BC)-invariant for some C (recall Remark 1 following Theorem 3.1);
and let C(/7) be the class of C for which (A + BC)

THEOREM 4.3. If C C(/7), the subspace

(4.11) {A + BC[ fl 17"}
is the maximal controllability subspace in 9.

Proof. By (4.2) and Lemma 4.1, is a controllability subspace. Furthermore,
by Lemma 4.3 with C(U) in place of C, is independent of C e C(f) and so is
uniquely defined. Now suppose

{A + B(I’ UI },
Since is (A + B()-invariant and is maximal, there follows c . Let
/7 . By the construction used in proving Lemma 3.2, a matrix C exists
such that

Cx x, x e (A + BC)/
Then C e C(/), and

that is, N is maximal.
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5. Decoupling of output variables: Problem statement. Consider the output
equation (2.2), with

H1

.) /4

Hk

where H is of dimension qi n, 1,..., k, k >= 2, ql + + qk q. Then
(2.2) can be written

(5.2) Yi Hx 1, k,

where Yi is a qrvector. The vectors y may be regarded as physically significant
groups of scalar output variables. It may therefore be desirable to control com-
pletely each of the output vectors y individually, without affecting the behavior
of the remaining yj, j 4= i. This end is to be achieved by linear state-variable feed-
back together with the assignment of a suitable group of control inputs to each
That is, in (2.1) we set

(5.3) u= Cx + Kivi.
i=1

For vi to control Yi completely, we must have

(5.4) H,{A + BCI{BKi}} ,
where is the range of Hi. Since the ith control v is to leave the outputs yj,
j Y= i, unaffected, we require also

(5.5) Hj{A + BCI{BK,}} O, j 4: i.

Recalling the equivalence of (4.1) and (4.2), we can express conditions (5.4)
and (5.5) more neatly as follows. Write g" g and

(5.6) ,A(H,) , i= 1,..., k.

Then our problem is: Given A, B and 4/, t, find a matrix C and controlla-
bility subspaces l, ,, with the properties:

(5.7) , {A + BCI] CI i}, i= 1,..., k,

(5.8) i + g, i= 1,...,k,

(5.9) i f-) U, 1,..., k.

Here (5.8) and (5.9) are equivalent, respectively, to (5.4) and (5.5).
The relations (5.7)-(5.9) provide a geometric formulation of the problem of

simultaneous decoupling and complete control of the output vectors y, ..., y.
Thus stated, the problem definition is both natural and intuitively transparent.

We observe that the output matrices Hi play no role beyond specification of
the subspaces/V’i. Since the Hi need have no special structure, theI/i are similarly
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unrestricted. Nevertheless, we shall rule out trivialities by tacitly assuming:
(i) 4/ 4= g,i -1, k.

(ii) The subspaces A- are mutually independent. In particular, the are
distinct and

(5.10) - 0, i= 1, ..., k.

(iii) The pair (A, B) is completely controllable, i.e., {AIM} g.
For if (i) fails, then for some i, g; that is, Hi 0 and Yi -= 0. If (ii) fails,

then for some i,

or, by taking orthogonal complements,

and (5.8) must fail. For (iii), if {AIM} gl va g we can write g g g2 and
(2.1) as

21 AIX nt- A3x2 nt- Bu,

22 A2x2,

where xieg, i= 1,2, and {AaIM1} gl. The problem is unrealistic unless A2
is stable (i.e., the pair (A, B) is stabilizable [4]). Hence, we may assume Xz(t 0 and
take as starting point

21 A xa + Bu.
The problem can then be reformulated with gl in place of g.

We turn now to the determination of necessary and sufficient conditions for
the existence of a solution to (5.7)-(5.9) in two special, but interesting, cases.

In the following sections, i denotes the maximal controllability subspace
such that

(5.11) i n , i-- 1, ..., k.

The i are constructed according to Theorem 4.3.

(6.1)

6. Decoupling when rank (H) n. Our assumption is equivalent to
k

n =o.
i=1

That is, there is a one-to-one mapping of state variables into output variables.
THEOREM 6.1. If (6.1) holds, then the problem (5.7)-(5.9) has a solution if and

only if
(6.2) i + g, i= 1,..., k.

Equivalently, the row spaces of the Hi are mutually independent.
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Proof. If the problem has a solution i, 1,..., k, then by maximality
of the i, 1, .-., k, there follows i i, and (6.2) follows from (5.8).

Conversely, suppose (6.2) holds. The are mutually independent;for, by
(5.11) and (6.1),

4=i j4:i vl j4:i

Let C be chosen such that

i {A + BCi[3 CI }, i= 1,..., k.

Since the i are independent there exists, by Lemma 3.1, a matrix C such that
Cr Cir (r 6 i, 1, k), i.e.,

(A + BC)r= (A + BC)r, r6, i= 1,...,k.
Then

o, {A + BC[ CI i}, i= 1,..., k;

and C, together with the , satisfy (5.7)-(5.9).
Remark 5. By Theorem 4.2, the C can be chosen so that A + BC, restricted

to ’i, has any desired spectrum. Hence, the same is true for A + BC. Furthermore,
there exists bi I such that, {A + BCl{bi}}, i= 1, ..., k.

7. Decoupling when rank (B) k. Our assumption is equivalent to

(7.1) dim k.

Here the situation has been simplified by narrowing the choice of generating
subspaces I"1 . The same assumption was made in [1], [2] and [3], with the
additional restriction that the outputs y be scalars.

THEOREM 7.1. If (7.1) holds, then the problem (5.7)-(5.9) has a solution if and
only if
(7.2)

and
k

(7.3) N= Vl,.
i=1

Furthermore, if C, 1, "’", k is any solution, then

(7.4) i i, i=l,...,k.

Proof. Part 1. Suppose C, 1,"’, k is a solution. The necessity of (7.2)
follows, as in the proof of Theorem 6.1. To verify (7.3), write
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The i are mutually independent; in fact,

N ,NNN(N,)N =0.
ji ji ji

Recall that the are (A + BC)-invariant. Then

{A + BCI,} + i,
where

Therefore, by (5.8),

{A + XCI,} + g,

and since g there follows 0, 1, ..., k. Therefore

dim i= dimi= k;
i=1 i=1

SO

(7.5)

and

dimi= 1, i= 1,..-,k.

Since Ni c n Ni N i, it follows that (7.3) is true.

Proof. Part 2. To verify (7.4), it is enough to show that the subspaces N n i
are independent. For then,

and so

dim ( N ) 1, i= 1,..., k,

(7.6) N N ,,, 1, ..., k.

Assuming (7.6) is true, let i i 0) i and choose Ci, by Lemma 3.1, such that

(A + BCi)i i, Cir= Cr, r i, i= 1, k.

Then Ci C(i) n C(i), so that, {A + BC,I n
{A + BC,I N

which proves (7.4).
We proceed to show that the n i are independent. Write

= Z.
ji
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It is even true that

(7.7) 3 f3 i f3 0, i= 1,...

On the contrary, suppose (7.7) fails for, say, 1. If dim (M f) ?a) 1, then

(7.8)

If dim ( CI a) >= 2, and

(7.9)

then

and by induction

/ 1, ..., k 1., that is,

a contradiction. Thus (7.9) is false; combining this result with (7.8) there follows

(7.10) f] =
for some a (1, -.-, k). It will be shown below that there exists (, such that

(7.11) (A + B() ; (A + B) .
Assuming (7.11) is true, we have

{A + B,I n } = {A + B,I} = = ,
and therefore (7.2) fails for . With this contradiction, (7.7) is established.
It remains to verify the existence of. For this we need the following result.

LMMA 7.1. Let be arbitrary. There exists C such that

(A + BCW ; (A + BC) =
and only if

A = M + f;

A=M+
A( ) +

Proof. Necessity is obvious. For sufficiency, write

+ =( )
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where /? ,, c . By the construction of Lemma 3.2, C can be chosen such
that

(A + BC)(/ N #/) N ,
(A + BC)U /;

(A + BC) c .
This completes the proof of the lemma.

Consider now , *. Clearly A
N + N *, and so

cN’+; A* cM+*. By (7.3)

A( N *) (2 + ) N ( + *)
+ ( + ,) N *
+ ( n * + ) n *
+ , N *.

By applying Lemma 7.1, the existence of ( is finally established.
Proof. Part 3. We now prove that (7.2) and (7.3) are sufficient conditions for

existence of a solution. Let be the maximal subspace such that

(7.12) A/7 M + 7, n I/j, i= 1,..., k.

It is enough to check that the are compatible, in the sense that there exists C
such that

(A + BC)7 , i= 1,..., k.

We show first that the subspaces

are compatible. From (7.12) there follows

AQc+Q
M + (by (7.3))

=+ , i=l,...,k,

where Mi N /. By Lemma 3.2, there exist Bi with {Bi} M, and C, such
that

i=l,...,k.

Choosing a basis {v l, v,} for + + /7/, we define C such that

BCvv BiCivv, v 1,
i=l

,P.
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Then

(7.13)

(A + BC)’f A + BiCi+ Z BjCj
ji

j

j

i=l,...,k.

This proves compatibility of the f’?. Now define

n 7f,
Clearly, //} 7, 1, ..., k. By (7.13),

(7.14) (A + BCy//} c i,

i=l,...,k.

i=l,...,k,

and, furthermore by the second condition of (7.12),

(7.15) fi n n .,= n V.:

jijm ji

By (7.14) and (7.15), the satisfy the conditions imposed on the in (7.12).
Since the are maximal, there results //} c y7i, and, therefore, 7,
i=l,...,k.

Remark 6. If the conditions of Theorem 7.1 are satisfied, then

(7.16)
,-- {A + BCI N ,} A + BC

i=1 i=1

{A + BCI} {AI} e.

, n ,i}i=1

We turn now to the problem of pole assignment. In contrast to the situation
of 6, it is no longer possible, in general, to vary the spectrum of A + BC on each

independently. The following example shows that certain eigenvalues of
A + BC may even be fixed for all admissible C.

Let g g3, k 2 and

1 1 B= 0

0 1 1

= o =
0

This identity and its dual, n Y’, , are readily established by using the (modular) distributive

rule for subspaces.
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It is easily checked that (5.7)-(5.9) have the (unique) solution

Hi= 0 1

0 0

and that C must have the form

C Icl0
with arbitrary c l, c2. Then

10 C2

det(A +BC-21)=(1 + c-2)(1-2)(1+c2-2).

Observe that the eigenvalue 2 1, belonging to the eigenvector (0, 1, 0)’ ofA + BC,
is fixed.

To discuss the present case in general, we introduce a suitable decomposition
of g. Assume that the problem of (5.7)-(5.9) has a solution C, Ha, ..., k, and
let C denote the class of matrices C for which (A + BC) , 1,..., k.
We know that the spaces i are the unique solutions" for simplicity of notation,
write Hi for i. Define

(7.17) go n H,
i=1

and let gi be any subspace such that

(7.18) Hi gi (Hi n go), 1,..., k.

In the following, J denotes the set of indices (1, ..., k), Jo the set (0, 1, .--, k).
In intersections and summations involving H’s, the index ranges over J; in those
involving g’s, the index ranges over Jo.

LEMMA 7.2. The subspaces gi have the properties

(7.19)

(7.20) (A + BC) r -+- o, Jo, C C.

Proof. Assertion (7.20) is obvious by the fact that the Hi are (A + BC)-
invariant. For (7.19), observe first that

and so, if e J,

(7.21)

H N o i N N ’ N ’ i N
j

0 -] Z J) i N (go +
j4:o

gi N .*,

gi N N

Now for arbitrary subspaces , 1, 2, 3, if, N( +)=+n,
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then
N (5fll + )= N + 2 N.

Applying this fact and using (7.21) we have

and therefore

’0 ’Jr Z ’j 0 ’1 n go + g, n g./,
j=2 j=2

gO n g -t- OtPj OP0 n g nL OtP0 n z
j=2 j=2

o N .
j=2

Repetition of this argument yields, after k 2 steps,

(7.22) go N g + Z gJ gO n g 0.
j=2

Equations (7.21), (7.22) state that the gi, e Jo, are independent. Finally, by (7.16),

i=0 i=1 i=1

Remark 7. If the i are independent, then go 0 and gi , t J.
For it Jo let P be the projection on g along j, gj, and now let C t C be

fixed.
LEMMA 7.3. Let.] N i {bi} t J. Then

(7.23) gi {Pi(A + BC)I{P,b,}}, it a.

Proof By (7.18) and (7.19), d P,. By (7.18) and (7.20),

P,, P (A + BC)J- {b,}
j=l

[Pi(A + BC)]J-
j=l

{P(A + BC)I{Pb,}}.
LEMMA 7.4.

(7.24) N go 0.

Proof. By (7.3)and (7.7),

Ngo= N’ N N
i= j=

NNI+N
i=2

2n&
i=2 j=2

N N o.

k

N ]
j=2
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This completes the proof of Lemma 7.4.
Next let C C be a fixed member of C, let C2 G C, and write D C2 C

thus A + BC2 A --f- BCI + BD. Now biei c g + go (ie J); and (7.20)
yields BDgi c g + go (i Jo); therefore

(7.25) Pibj O, PBDgj O, i,j J, :/: j.

Also, using (7.24)

(7.26) BDgo 1 f’l go O.

Write
k

(7.27) BD Z bd,
j=l

where, as before, {bj} VI j. Then

(7.28) PiBDgj Pbd’gj O, :/: j, J, j Jo.
We can now compute the spectrum A of A + BC2. Define

(7.29) A P(A + BC), Jo,

By (7.26) and (7.29),

(7.30) Po(A + BC2)= Po(A + BC2)(I Po) + AoPo,
and by (7.28) and (7.29),

Pi(A + BC2)= A, + PiBD Pj
(7.31) j=o

Ai + PibidiPi,

Suppose 2 A, with corresponding (complex) eigenvector . A brief calculation
from (7.30), (7.31) shows that either (i) for some J, Pi # 0 and (A + Pbd)Pi

2Pi, or (ii) Poe and Ao 2. Conversely, if Ao 2 for 0 # go, or
(A + Pibidl) 2 for 0 -: e g and some e J, then 2 e A. Therefore

k

A= U Ai,
i=0

where A, Jo, is the spectrum of the restriction of Pi(A + BC2) to gi. By (7.0),
Ao is independent of the choice of C2, i.e., is fixed uniquely by the requirement
C e C. On the other hand, for e J Lemma 7. states that g is the controllability
space of the pair (A, Pbi). Hence, any choice of A can be realized by appropriate
choice of d" indeed, for any w there exists di such that

w’x for x
d’ix

0 forxe
jsi

These results are summarized in the following theorem.
THEOREM 7.2. Let the conditions of Theorem 7.1 be satisfied. If C e C, the

eigenvalues of A + BC can be partitioned into k + 1 disjoint sets

A= {2,,..-, i6Jo,



DECOUPLING AND POLE ASSIGNMENT 17

whcrc

no dim

ni dim (i) dim (i I’) ?’),

The set Ao and the integers ni (i Jo) are fixed for all C C. The sets Ai (i J) can
be assigned freely (by suitable choice of C C) subject only to the requirement
that any 2o with Im 2o =/= 0 occur in A in a conjugate pair.

Remark 8. If basis vectors are chosen in the gi, then the system differential
equation can be put in a simple "normal" form. Let

and

z Pix, Jo,

2 (A + BC2)x + By.

Multiplying through by P and using (7.30), (7.31), we obtain

(7.32,)
?.i (Ai + Pibd)z + PiBv, e J,

o Po(A + BC2)(z1 "+- qt_ Zk q_ Aozo + PoBv"
Let K be an m x m (= k x k) matrix such that BK [b
w (w1,’.’, Wk)’. Since b e gi @ go, we have

bi Pibi + Pobi =- bi + bio.

bk] and put v Kw,

Adopting n-dimensional representations of the zi, etc., we see that (7.32) can be
written as

i (.21i + bidi)z + iWi, e J,
(7.33) k

-o 2oZ + 2oZo + oW.
Equation (7.33) exhibits the system (2.1) as an array of k decoupled subsystems,
each completely controllable by an independent scalar input w, plus one addi-
tional subsystem which is driven by the others and by w. Finally, since

f3 c f, it follows by (5.8) and (7.18) that g + g, that is, Hig

Remark 9. The decoupled system is acceptable in practice only if the eigen-
values in the fixed set Ao are all stable. It is possible to check for stability of Ao
as follows. Recall that N c g + go (i e J) and note from (7.20) that
c g + go + (i J). Furthermore,

+ go I’-] I#), ieJ.

It follows by Theorem 4.3 and the maximality of the (=) that

i, {A qt_ BCI CI (e, + o)}
for any C with the property (7.20). That is, (7.20) is both necessary and sufficient
that C e C. Thus, to compute Ao it is necessary only to compute the spectrum of
A + BCo (restricted to go) where Co is any matrix such that (A + BCo)go c go.
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Concluding remark. This article represents a preliminary investigation of
the general decoupling problem formulated in 5. The results for the special cases
of 6 and 7 suggest the possibility of a complete and detailed geometric theory
of linear multivariable control, in which the concept of controllability subspace
would play a central role. Specific problems for future study include not only that
of 5 but also the problem of decoupling by adjunction of suitable dynamics
(augmentation of the state space), and the problem of sensitivity. As formulated,
decoupling represents a "hard" constraint, an all-or-nothing algebraic property.
Of course, for applications a quantitative approach via "soft" constraints might
also prove rewarding.

It is clear that an adequate qualitative theory of large linear multivariable
systems is currently lacking; and equally clear that, with computers, such a theory
would find wide application.
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TRANSFER EQUIVALENCE OF LINEAR DYNAMICAL SYSTEMS*

MICHAEL HEYMANN’ aND JOHN A. THORPE

Abstract. The concepts of weak and strong transfer equivalence of constant (time-invariant)
linear dynamical systems are defined and analyzed. The analysis leads to a simple new algorithm for

constructing minimal realizations of transfer function matrices. In addition, it provides new informa-

tion on the significance of the polynomial invariants which appear in the Smith-McMillan canonical
form.

1. Introduction. During the past ten years, fundamental advances have been
made in the structure theory of linear dynamical systems [1]-[11]. This basic work,
stimulated in large measure by R. E. Kalman, has led to the development of a
rigorous axiomatic theory of linear systems. In particular, the relationship between
the differential equation (state variable) description and the transfer function
(impulse-response) description of a constant (time-invariant) linear system is now
well understood. Nevertheless, there are still important structural questions in
constant linear systems theory which remain unanswered. In this paper we
investigate some of these.

By a constant linear dynamical system we shall mean a triple (F, G, H), where
F is a real square matrix and G and H are real rectangular matrices of appropriate
sizes so that the matrix product HFG is defined. Thus (F, G, H) is the basic data
required to describe a system of constant coefficient linear differential equations
of the form

=Fx +Gu,
(1)

y= Hx

relating an input vector u u(t) to an output vector y y(t) through a state
vector x x(t).

Assuming that the system (1) starts at rest at time 0, the Laplace trans-
forms Y Y(s) and U U(s) of y and u are related by

Y=ZU,

where Z Z(s) is the transfer function matrix of the system (F, G, H) and is given
by

(2) Z(s) H(Is- F)-1G.
The matrix Z is a proper rational matrix; that is, each entry in Z is a quotient of
polynomials in s with the degree of the numerator lower than that of the denomin-
ator. The matrix Z exhibits the transfer (input-output) behavior of the system
but suppresses the internal (state) behavior.
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Thus, to each system (F, G, H) is associated a unique proper rational matrix
Z, its transfer function matrix. However, to each proper rational matrix Z there
is associated a whole class of systems, called realizations of Z, each having Z as
transfer function matrix. These systems share the same input-output behavior but
can differ internally. In particular, they can differ in the dimension of the state
space (size of F). The realizations of Z having the smallest possible state space
dimension are of particular interest; these are the minimal realizations of Z.

Various algorithms for constructing minimal realizations of transfer function
matrices have been given [4], [5], [8]. One of these, described by Kalman, requires
the reduction of the transfer function matrix by means of elementary row and
column operations to Smith-McMillan form [12], a diagonal form in which
certain divisibility conditions hold. We shall describe a related algorithm for
constructing minimal realizations which requires only the reduction of the
transfer function matrix to diagonal form.

If, in our algorithm, we reduce the transfer function matrix to the Smith-
McMillan form, we obtain the same realization as the one obtained by Kalman [5].
However, our algorithm does not coincide with Kalman’s even in that case.
In fact, our algorithm then yields new information about the significance of the
polynomial invariants ei which appear as numerators in the Smith-McMillan
form. (Indeed, it was the problem of interpreting these invariants which motivated
our research.) We are able to exhibit directly the role played in the output structure
by the proper parts of the polynomials ei; that is, by the remainders obtained
from the numerators e after division by the corresponding denominators in
the Smith-McMillan form. Our results seem to indicate that these proper parts
are more basic to linear systems theory than are the e themselves.

The basic tool which we shall use is transfer equivalence. Systems are called
strongly transfer equivalent if their transfer function matrices have the same
Smith-McMillan form. A more fundamental concept, called weak transfer
equivalence, is also defined. An important property of weak transfer equivalence
is that in each weak transfer equivalence class there are systems which are com-
pletely uncoupled.

This paper is organized as follows. We begin ( 2) by developing the basic
properties of weak and strong transfer equivalence. In 3 we derive the complete
analytic relationship between any pair of controllable and observable systems
which are weakly transfer equivalent. These results are applied in 4 to obtain
our algorithm for constructing minimal realizations. We conclude ( 5) with a
discussion of various related topics. In particular, we discuss two methods for
"realizing" improper rational matrices. We also discuss an interpretation of the
invariants i which exhibits the polynomials i themselves’and not just their proper
parts.

2. Transfer equivalence. Let Z Z(s) be a rational matrix; that is, Z is a
matrix whose entries are quotients of polynomials in s with real coefficients.
Associated with Z is a diagonal matrix A A(s), called the Smith-McMillan
canonical form [12] of Z, obtained as follows. By letting p(s) denote the
monic polynomial (leading coefficient 1) which is the least common denominator
of the entries of Z, the matrix pZ is a polynomial matrix. By applying a sequence



TRANSFER EQUIVALENCE 21

of elementary row and column operations (that is, operations which" (i) inter-
change two rows or columns, (ii) multiply a row or column by a nonzero real
number, or (iii) add a polynomial multiple of one row or column to another) to

kZ we can obtain a unique (independent of the row and column operations used)
diagonal matrix.

(3) F diag [71, 2, "’", R, 0, ..., 0]

such that each diagonal element Yi 7i(s) is a monic polynomial which divides
its successor 7+ 1, 1, ..., R 1. The matrices Z and F are related by

(4) kZ AFt,

where A A(s) and B B(s) are polynomial matrices with constant nonzero
determinants [13]. Dividing both sides of this equation by 0 and reducing each
polynomial fraction 7/0 by cancellation of common factors, we obtain

(5) Z AAB,

where

(6) A diag [1/01,’", R/OR,O,’’’, 0],

and where the ei el(S) and the 0i Oi(s) are monic polynomials, with ei dividing
e+ and + dividing Oi for each i, 1 __< __< R 1, such that each pair (ei, Oi) is
relatively prime. The matrix A is the Smith-McMillan form of Z.

DEFINITION. Two rational matrices Z and 2 are called strongly equivalent
if there exist polynomial matrices A and B with constant nonzero determinants
such that AZB. Two constant linear dynamical systems are said to be strongly
transfer equivalent if their transfer function matrices are strongly equivalent,

Note that, since products and inverses of polynomial matrices with constant
nonzero determinants are again polynomial matrices with constant nonzero
determinants, strong equivalence and strong transfer equivalence are equivalence
relations.

Clearly, each rational matrix is strongly equivalent to a unique Smith-
McMillan canonical matrix; that is, each strong equivalence class contains
exactly one Smith-McMillan form. It follows that the rank R together with the
2R polynomials 1,’", 0R, 1,’’’, eR form a complete set of invariants for
strong equivalence of rational matrices.

A basic handicap, from the system theoretic point of view, of the notion of
strong transfer equivalence is that, although each rational matrix is strongly
equivalent to a Smith-McMillan form, it is not true that each linear dynamical
system is strongly transfer equivalent to a system whose transfer function matrix
is in Smith-McMillan form. This is a consequence of the fact that the Smith-
McMillan form is not, in general, proper; that is, the degrees of the numerators
in the Smith-McMillan form need not be lower than the degrees of the correspond-
ing denominators. However, this drawback can be eliminated by weakening the
notion of equivalence.

First recall that two polynomials e e(s) and fl fl(s) are said to be congruent
modulo the polynomial O(s), written e _= fl (mod ), provided that e and fl
have the same remainder after division by . Similarly, two polynomial matrices
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A A(s) and B B(s) are said to be congruent modulo if, written A _= B (mod if),
provided that corresponding entries of A and B have the same remainders after
division by ft. Thus A B (mod ) if and only if there exists a polynomial matrix
C C(s) such that A B + ffC.

DEFINITION. Let Z and 2 be rational matrices and let ff and be, respectively,
the least common denominators of the entries of Z and 2. Z and 2 are called
weakly equivalent if

(i) q q and
(ii) there exist polynomial matrices A and B with constant nonzero deter-

minants such that ,2 _= A(OZ)B (mod ).
Two constant linear dynamical systems are said to be weakly transfer equi-

valent if their transfer function matrices are weakly equivalent.
It is clear that weak equivalence and weak transfer equivalence are equi-

valence relations. It is also clear that strong equivalence implies weak equivalence
(the equality of the least common denominators and for strongly equivalent
Z and follows from the uniqueness of the Smith-McMillan form (6) and from
the fact that, in (6), 1 ’).

Note that, although a given constant linear dynamical system will not in
general be strongly transfer equivalent to a system which is completely uncoupled,
that is, one whose transfer function matrix is diagonal, each constant linear
dynamical system will be weakly transfer equivalent to a system which is completely
uncoupled. Indeed, one need only take any (possibly improper) diagonal matrix
D which is strongly equivalent to the given transfer function matrix Z and reduce
it by replacing each entry in ,D by its remainder after division by , to obtain
OD’, where D’ is a proper rational diagonal matrix which is weakly equivalent to
Z. Any system with D’ as transfer function matrix will then be weakly transfer
equivalent to the given system.

The matrix D’ will be called the proper part of the matrix D. Note that D’
can also be obtained by replacing the numerator of each entry in D by its remainder
after division by the corresponding denominator. Indeed, if e// is any quotient of
polynomials with / dividing , then the remainder after dividing O(e//) by ,
is just O(e’//), where e’ is the remainder after dividing e by/.

The proper part A’ of the Smith-McMillan form A of a transfer function
matrix Z will be of special importance. If A is of the form (6), then A’ is of the form

(7) A’= diag [e’/,l, "’", er/’r, 0, ..., 0],

where r max {il 1 < R, Oi -# 1 and where e’i is the remainder after dividing
e by ,. We shall call A’ the reduced Smith-McMillan form of Z.

3. External equivalence. In this section we investigate the relationship between
linear dynamical systems which are weakly transfer equivalent. For this we shall
need two facts about the rational matrix (Is F)-1, where F is a square matrix.

(i) Let $(s)= s" + a,_ is"-1 + + a0 denote the minimal polynomial of
F; that is, is the monic polynomial of least degree such that $(F)--0. Then
(Is F)- is given by the formula

(8) (Is F) -1 Z qgk(F)Sk
,(s):0
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where the qk are the polynomials

xn-k-2(9) qk(x) x"-k- + a,_ + + ak+ 1, k=0,1,...,n- 1.

and then right multiplication by (ls F)- yields (8).
(ii) For each nonnegative integer k we have

(10) skt(S)(Is- F)-1 --= vk(s)(Is- F)-1

and

(11) /(s)(Is F)-sk =- /(s)(Is F)-Fk (mod ).

Indeed,

sC/(s)(Is F) -1 F(s)(Is F) -1 (Is F)9(s)(Is F)-’ (s)I 0

(mod ),

so (10) is valid for k 1. An elementary induction argument establishes (10) in
general. Formula (11) is a consequence of (10) and the fact that F commutes with
(Is F)- .

THEOREM 1. Let (if, , if-I) be a constant linear dynamical system. Let A and
B be polynomial matrices (not necessarily square) of appropriate sizes so that the
matrix products A and B are defined. Let A Aisi and B Bjs express
A and B as matrix polynomials. Define (F, G, H) to be the constant linear dynamical
system given by

(12) F if, G J(Bj, H Ai/’.
Then the transfer function matrix Z of the system (F, G, H) is related to the transfer
function matrix 2 of (if, , if’I) by

(13) ,Z A(C/Z)B (mod ),

where is the minimal polynomial of F.
Proof. First note that, by (8), Z and A(C/)B are polynomial matrices so

that it makes sense to ask if they are congruent (mod ). By (10) and (11) we have

Z H(Is F)-’G ( A,ffI’)(Is )-’()B)
=- ( Aisi)(Is )-1(2 sJBj) (mod if)

( Aisi)ffI(Is )-’( Bjsj)

AZB,
as claimed.

DEFINITION. Two constant linear dynamical systems (F, G, H) and (, (,/)
are called externally equivalent if

(14) / F, ( FGB, ffI AHFi,

(mod )

Indeed, an elementary computation shows that

O(s)I O(s)I O(F)= qk(F)sk (Is F),
Lk=O
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where A AiSi and B Bjs are (square) polynomial matrices with constant
nonzero determinants.

An elementary computation shows that external equivalence is an equi-
valence relation. In particular, if (if, , ) is related to (F, G, H) by equations of
the form (14), then (F, G, H) is related to (/, (, ) by equations of the same form.

One consequence ofTheorem 1 is that systems which are externally equivalent
are also weakly transfer equivalent. Thus weak transfer equivalence is a weaker
notion of system equivalence than external equivalence.

Note that the polynomial matrices A and B in the definition of external
equivalence may always be taken to be of degree less than n, the degree of the
minimal polynomial of F. This is because each power of F is expressible as a
polynomial (with scalar coefficients) in F of degree less than n. Thus, given a
system (F, G,H), every system (if, ,) externally equivalent to (F, G,H) is
given by

n-1 n-1

ff F, Z FJGBj, Z AiHFi
j=o i=o

for appropriate polynomial matrices

n-1 n-1

A AiSi and e ejs
i=0 j=o

with constant determinants. These expressions for d and/ can be rewritten as

no

[G, leG, F"- IG] and = IAo,...,A,_I]

B

H

HF

H-
The matrix

(15) [G, FG, F"- 1G]
is known [7] as the controllability matrix of the system (F, G,/4), and the matrix

H

(16)

is known as the observability matrix of the system. Thus externally equivalent
systems are related to one another by certain matrix operations on the con-
trollability and observability matrices.
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An important property of external equivalence is that externally equivalent
systems have the same controllability and observability properties. Recall [7]
that a constant linear dynamical system (F, G, H) is controllable if the controll-
ability matrix (15) is of maximal rank; that is, if the matrix (15) has n linearly
independent rows. Similarly, (F, G, H) is observable if the observability matrix
(! 6) is of maximal rank (has n linearly independent columns).

THEOREM 2. Let (F, G,H) and (if, ,ffI) be externally equivalent constant
linear dynamical systems. Then their controllability matrices have equal rank and
their observability matrices have equal rank. In particular, (, , ) is controllable
if and only if (F, G, H) is controllable and (if, t,/) is observable ifand only if (F, G, H)
is observable.

Proof. Since (F, G,H) and (if, t,) are externally equivalent, we have
F, FJGBj, and AiHF for some polynomial matrices

A As and B Bjs with constant determinants. Suppose c is a row
vector such that

c[G, FG,...,F"-XG] =0.

Then, since each power of F can be expressed as a polynomial in F of degree less
than n, it follows that cFRG 0 for all nonnegative integers k. Hence

cFkj cFk +’iGBj 0

for all k > 0 and so

c[, FffJ, ..., F xJ] O.

Thus, viewing K [G, FG,..., F"-1G] and/ ItS, Ft, ..-, F"-1(] as linear
operators acting on row vectors, we see that the null space of K is contained in
the null space of/. But, since external equivalence is a symmetric relation, it
follows that the null space of/ is also contained in the null space of K; that is,
these null spaces must be equal. By the rank and nullity theorem of linear algebra,
we conclude that the controllability matrices K and/ have the same rank. The
proof for observability is similar.

We shall call two constant linear dynamical systems (F, G, H) and (if, t,/)
internally isomorphic if there exists a nonsingular matrix T such that/ TFT- 1,

TG, and/ HT-1. Clearly, internally isomorphic systems have the same
transfer function matrix. Conversely, it is well known [6] that any pair of con-
trollable and observable systems which have the same transfer function matrix
are internally isomorphic.

THEOREM 3 (Basic equivalence theorem). Two controllable and observable
constant linear dynamical systems are weakly transfer equivalent if and only if
they differ (at most) by an external equivalence and an internal isomorphism.

Proof. The sufficiency part is clear from Theorem 1. To prove necessity,
suppose (/, (,/) and (if, t, ) are weakly transfer equivalent controllable and
observable systems. Then their transfer function matrices 2, and ,, are related by
9, A(q,,)B(modff), where A -’AiSi and B= Z BjsJ are polynomial
matrices with constant nonzero determinants and where ff is the least common.
denominator of the entries both of 2 and of . But it is known l-5] that the least
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common denominator of the entries in the transfer function matrix of any con-
trollable and observable system (F, G, H) is the minimal polynomial of the state
matrix F. (This fact will also follow from our Theorem 4 below.) Thus, is the
minimal polynomial of both and . Let (F, G, H) be constructed from/, if,, , A
and B as in formula (12), and let Z denote its transfer function matrix. By Theorem
1, Z =_ A(,2)B =_=_ 92 (mod ,). But, since Z and , are both proper, this implies
that ,Z ,2 and hence Z 2. Furthermore, by Theorem 2, both (/, (,/) and
(F, G, H) are controllable and observable. It follows that (, (,/-)) and (F, G, H)
are internally isomorphic. Since (F, G, H) and (V, (,/) are externally equivalent,
this completes the proof.

Explicitly, the systems (, (,/) and (, (, ) are related by

P TT- , ffI Z AiiT-

for some nonsingular matrix T.

4. Realization theory. It is well known [3] that a constant linear dynamical
system is controllable and observable if and only if it is a minimal realization of
its transfer function matrix. Thus, in order to construct a minimal realization of a
given proper rational matrix, one must construct a system which is controllable
and observable and has the given matrix as its transfer function matrix. Since
each proper rational matrix is weakly equivalent to a proper rational diagonal
matrix, it suffices (in view of Theorems 1 and 2) to minimally realize proper
diagonal matrices. But this is easily accomplished by taking direct sums of systems
realizing the diagonal entries.

We shall say that a system (F, G, H) is the direct sum of the systems (Fi,
i= 1, -.., k, if

G2 H2

Clearly the direct sum (F, G, H) of the systems (Fi, Gi, Hi) is controllable if and
only if each (Fi, Gi, Hi) is controllable, and is observable if and only if each
(Fi, Gi, Hi) is observable. (Note that our concept of direct sum is different from
that adopted, e.g., by Kalman [5] .)

THEOREM 4 (Realization theorem). Given a proper rational matrix Z, let D’ be
any proper rational diagonal matrix which is weakly equivalent to Z, say
D’= diag [e’/l, ..., e’r/r, 0,..., 0] where, for each i, ’i and i are relatively
prime, e’ :/: 0 and i is monic. Let A and B be polynomial matrices with constant
determinants such that ,Z =_ A(D’)B (mod ), where is the least common
denominator of the entries in Z. Construct a system (F, G, H) as follows.
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(a) For each 1,..., r, let (Fi, Gi, Hi) be the system given by

0 ! 0 0

0 0 1 0

aio ai ai2 ai
17

0

Gi i Hi-- [biO’ bil’’" bi’mi’ 0, ..., 0],

1

where the aij and the bi are the coefficients of b and of respectively (i.e.,
ki o a,jsJ where ai,,, 1 and e’i Z3o bijsJ) (These systems will be minimal
realizations of the 1 1 matrices [e’i/i] .)

(b) Define (, , ) to be the system obtained by taking the direct sum of the
systems (Fi, Gi, Hi) and then augmenting, if necessary, by adding columns of zeros
to and/or rows of zeros to to make B(ls )- of the same size as Z. (This
system will be a minimal realization of D’.)

(c) Let (F, G, H) be obtained from , , , A and B as in formula (12).
Then (F, G, H) is a minimal realization of Z.
Remark 1. The diagonal matrix D’ can be taken to be the proper part of

any diagonal matrix D which is strongly equivalent to Z. In particular, D’ can be
taken to be the reduced Smith-McMillan form (7) of Z. However, we do not
require that D’ be this canonical form (for example, we do not require any divi-
sibility relations among the ff). In fact, the canonical form (3) is not in general
the first diagonal matrix encountered in the standard algorithm [13] for reducing
a polynomial matrix to canonical form and so, in general, the reduced Smith-
McMillan form may not be the most convenient diagonal matrix to use in the
realization procedure described above.

Remark 2. It is clear from Theorem 4 and the fact that two controllable and
observable systems realizing the same Z can differ at most by an internal iso-
morphism, that the dimension of the state space (size of F) for any minimal realiza-
tion ofZ is equal to= n, the sum of the degrees of the denominators ff appear-
ing in D’. This number = n is known as the (McMillan) degree of the rational
matrix Z (see [4], [12]).

Remark 3. Note that the minimal polynomial of the matrix F constructed in
Theorem 4 is the least common multiple of the polynomials appearing in D’,
since each F has minimal polynomial . Thus the minimal polynomial of F is
equal to the least common denominator of the entries in D’ and, by weak equi-
valence, also of the entries in Z. Since minimal realizations of Z differ only by
internal isomorphisms, it follows that the least common denominator of the
entries in Z is equal to the minimal polynomial of the state matrix of any minimal
realization of Z. (This known fact was used in our proof of Theorem 3. Note that
Theorem 3 is not used in the proof given below for Theorem 4.)

In order to prove Theorem 4, we shall need the following lemma.
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LEMMA. Let F be the companion matrix

0 1 0 0

0 0 .:. 0

ao a a2 an-
Sassociated with the polynomial (s) s + an-1 + + ao. Then

(18)

(s)(Is F)
s

[0olS),..., o,_

S

0 0 0

1 0 0

s 1 0

S
n-2

S
n-3 1

0

where the (Dk, k O, 1, ..., n 1, are as in (9).
Proof. Multiply both sides of (18) on the left by Is F and compute.
Proof of Theorem 4. First, using (18) with F Fi and ff ffi, we see that

i(s)Hi(Is Fi)- 1Gi bio + bils + +
and hence the system (Fi, Gi, Hi) of (17) is a realization of the 1 1 proper rational
matrix [e’i/i]. Moreover, it is a minimal realization because, given any realization
(Pi, di,/-i) of [eti/I]li] the matrix Pi must be of size fi fi for some fi >= ni. Indeed,
for i of size fi fi, its minimal polynomial i is of degree <fie and, by (8) (or (18)),

iffli(Is i)- i ,/,)

is a polynomial matrix, so i divides i and hence

fii deg i >= degffi ni.

Thus each (Fi, Gi, Hi) is controllable and observable. Since the direct sum of
controllable and observable systems is controllable and observable, it follows
that the system (if, , ) constructed in (b) is controllable and observable and is
a minimal realization of D’.

Finally, by Theorem 1 (with , replaced by D’), we see that the system (F, G, H)
constructed in (c) is a realization of Z. By Theorem 2, it is controllable and observ-
able; that is, it is a minimal realization of Z.

Remark 4. It may be of interest to decompose step (a) in the realization
procedure into two substeps as follows. First realize the rational matrix
with the system (Fi, Gi, ffli), where F and G are as in (17) and where i [1, 0,
.-, 0]. Then construct Hi from/i by the formula Hi fflie’i(Fi) to achieve the

realization of
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More generally, given a system (F, G, H) realizing a proper rational matrix
Z and given a polynomial e such that eZ is still proper, a system (F, G, H) realizing
eZ is obtained by taking ff F, G and He(F) or, alternatively, by
taking F, e(F)G, and / H. That these systems do realize eZ is an
immediate consequence of Theorem 1.

To illustrate the realization procedure, we consider two examples.
Example 1. Let

[ s+l 2s2 -+- s ] s2--1jZ
-s2 s -s2 -- s s

where ,(s) s3 + 3S2 + 2s s(s + 1)(s + 2). Then we have Z ADB, where

1 2s-1 s-1

0 2 1

0 1 0

Ill(s2 +2s) 0 0010 $2/(S2 + 3S + 2)

Denoting by D’ the proper part of the matrix D we have that D’ is weakly equivalent
to Z and, in fact, OZ A(OD’)B, where A and B are as above. The matrix D’ is
given by

0 (--3s- 2)/(S2 -+- 3s -F 2)

According to parts (a) and (b) of Theorem 4, a minimal realization (if, ,/) of
D’ is given by

0 1 0 0 0 0 0

0 -2 0 0 1 0 0
F-= G-

0 0 0 1 0 0

0 0 -2 -3 0

Since

and

0 2 1 + 0

0 1 0 0

0 0 -2 -3

s Ao + A IS

s Bo + BIS,
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part (c) of Theorem 4 yields the following minimal realization of Z"

0 1 0 0

-2 0 0

0 0 1

0 -2 -3

G=(] 2 +/( 0

1 0

o o /2/vB+ -Example 2. Let

s 2 F3s2 5s 2
Z s 1 [_4s2 2s + 4

0 2

1 -5

0 0

0

0

-2

Then Z ADB, where

1 [ ol I ol 01A + s -- s2 -- s3
-18 -5/24 33 16

D= [(s-2)/(s4- 1) 0

0 (S3 -- S2- 12)/(S2 + 1)

[1/12 1/24 5/24 5/221s+ [ 0
B

122/5 23/53
+
k-3

In this case, the matrix D is the Smith-McMillan form (6) of Z. The proper part
D’ of D is then the reduced Smith-McMillan form (7) of Z and is given by

D,= [(s-2)/(s4- 1) 0

0 (- s 3)/(s + )

Following the realization procedure yields

[-2H=
0

-0

0

0
G=

1

0

0

1 0

0 0

0-

0

0

0

0

1

o o o]0 -13 -1
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-0 1

0 0

0 0

1 0

0 0

0 0

0

-1/8
/24

G--
1/12

-3

22/5

H 14841

0 0 0 0-

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

0 0 -1 0

0

-1/12
:5/24
1/24

-2

23/5
0 0

1 6

-24 0 0 -].
-84 65/24 5/24

Remark 5. As mentioned in 3, the polynomial matrices which are used in
this realization procedure can always be chosen to be of degree less than the degree
of. In practice, however, it may be as easy to make the extra matrix computations
required as to reduce modulo the polynomials involved.

Remark 6. Kalman [5] has described another realization procedure which
will give the same result as ours when D’ is taken to be the reduced Smith-McMillan
form of Z. His procedure is based on the formula

1

(19) O(s)(Is F) -1 [qo(S), q._t(S) (mod ),

S

where F is the companion matrix with minimal polynomial and qgo, ..., q,_
are as in (9). This formula follows immediately from (18). From (19) it follows
that the transfer function matrix Z of a system (F, G, H) (F a companion matrix)
satisfies

1

O(s)Z(s) =- H [Po(S),"’, 99,_,(s)]G (mod._
S

Hence a minimal realization of Z A(e/)B, where A is a 1-column polynomial
matrix and B is a 1-row polynomial matrix, is obtained by taking F to be the



32 MICHAEL HEYMANN AND JOHN A. THORPE

companion matrix associated with and solving the equations

1

(20) H

S

=- A(s)e(s)(mod ,) and [po(s), p,_,(s)]G _= B(s)(mod ,)

for H and G. (Kalman actually puts e with B instead of with A in these equations,
but points out that it can go either place.) A minimal realization of a general Z
is obtained expressing Z AAB, where A is the Smith-McMillan form of Z as
in (6), rewriting this equation as

R

Z A(i) gi Bo
i= // -- i=r+IE A(i)siB(i)

where the A are the columns of A (not the coefficients ofA as a matrix polynomial)
and the B are the rows of B, and observing that the sum (in Kalman’s sense) of
the realizations of the A(e/)B"), 1, ..., r, then gives a minimal realization
of Z. That Kalman’s procedure gives the same result as ours is a consequence
of the fact that, for transfer functions of the form Z A(e/d/)B, our realization
satisfies Kalman’s equations (20). Indeed, takin F to be the companion matrix
of ,, we see that our H satisfies (see (12), (17) and (19))

1

H ..s [(Po(S), n-I(S)J E A,[bo,..., bin,O,..., O]Fd/(s)(Is F) -1

"-
= E Aisi[bo ’’’’, bm,0, O]q(s)(Is F) -1 (by (10))

=- A(s)[bo,..., b,,,O,..., O] [(Po(S), (p,-I(S)]

A(S)g,’(S)[(Po(S), qn-l(S)

=- A(s)e(s)[qo(S),..., q,_,(s)] (mod 6).

Since q,_ l(S) 1, equality (mod ,) of the last columns of the matrices on the left
and the right gives the first of equations (20). The second is derived similarly.

In addition to the computational saving resulting from the option of using
an arbitrary diagonal form of the transfer function matrix, our procedure has a
theoretical advantage over Kalman’s in that it more clearly exhibits the role of the
polynomial invariants which appear as numerators in the Smith-McMillan
canonical form. Indeed, if we take D’ in Theorem 4 to be the reduced Smith-
McMillan form (7) of Z, then the entries in the output matrices Hi of (17) are just
the coefficients of the polynomials obtained as remainders after dividing the
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numerators in the Smith-McMillan form (6) of Z by the corresponding de-
nominators.

Our procedure has the further advantage that it exhibits directly the relation-
ship between the system realizing a given transfer function matrix and the com-
pletely uncoupled system realizing the associated (reduced) Smith-McMillan
form.

5. Further remarks. (a) As was pointed out in 2, a complete set of in-
variants for strong equivalence of rational matrices is provided by the rank R
together with the 2R polynomials, if 1,’", fiR and el,’", eR, which occur in
the Smith-McMillan canonical form. There still remains the problem of finding
a complete set of invariants for weak equivalence. A step toward the solution of
this problem is provided by the following theorem which suggests a possible
candidate for a canonical form for weak equivalence.

THEOREM 5. Let Z be a rational matrix. Then Z is weakly equivalent to a
proper diagonal matrix of the form

diag [I/if 1,..., 1/ff,_l,co/ffr, 0,..-, 0],

where g/l, "", are the polynomials which appear as denominators in the
Smith-McMillan form of Z and where co is a (nonzero) polynomial which is relatively
prime to .

Proof We shall show that, for each with 1 __< __< r, Z is weakly equivalent
to a proper diagonal matrix of the form

’i diag [1/tl, 1/ti_ 1, )ii/Zli,"’, coir/I/tr, 0,’",

where each oi.i, .j i,..., r, is a (nonzero) polynomial which is relatively prime
to the corresponding ,j. Then, taking r and setting co- co will complete
the proof.

Note that each rational matrix is weakly equivalent to a matrix of the form
’1 since each matrix is weakly equivalent to its reduced Smith-McMillan form
(7). We now show that each matrix of the form Y2 for 1 =< < r is weakly equivalent
to one of the form )i+ 1; transitivity of weak equivalence will then imply the
theorem.

We shall alter )i into the form gi + by means of weak equivalence operations,
working only with the ith and (i + 1)st rows and columns. By denoting cou by 0
and coi,i+ by r/, the effect of these operations on the 2 2 submatrix obtained
from the ith and (i + 1)st rows and columns will be as follows (with , 1)"

Each of these operations consists of the addition of some polynomial multiple
of one row or column to another, a congruence modulo , or an interchange of
two columns. The polynomial is chosen so that 0 + 0i 1 for some ; it
exists because 0 and i are relatively prime. The congruence mod is valid since
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O/’i + [3 ’/’i and hence 011/I I[tl (mod ). Note that -q0 is rela-
tively prime to ’i + since both q and 0 are (0 is prime to ’1 and i + divides i).

Clearly, the proper part of the matrix obtained after this sequence of opera-
tions is of the form f + 1, it is weakly equivalent to f, and the proof is complete.

It is clear that the number r together with the r polynomials ’1, "’", ’r are
invariants ofweak equivalence, since any pair of weakly equivalent proper rational
matrices has externally equivalent minimal realizations and the polynomials ,
are the invariant polynomials of the common state matrix F. Hence, if it could be
shown that o9 is also an invariant ofweak equivalence, then f would be a canonical
form for weak equivalence (i.e., there would be one and only one matrix of the
form f in each equivalence class) and {r, 1,’", r, o9} would be a complete
set of invariants for weak equivalence.

There is a polynomial " closely related to o9 which is an invariant of weak
equivalence. Given a rational matrix A, this invariant is obtained as the mod ,
reduction (the remainder after division by ,) of the greatest common divisor of
the r r minors of Z, where , and r are as in the reduced Smith-McMillan
form (7) of Z. For the matrix f of Theorem 5, this invariant " is just the mod
reduction of /1, "’", ’o9/’. The polynomial o9 cannot be determined from a
knowledge of 1,’", ’, and ’; this may be seen by considering the example
f diag 1/s4, 1Is2, (as + b)/s2].

It may be of interest to note that the polynomial o9 obtained in the proof of
Theorem 5 is just the mod reduction of the polynomial (- 1)re1, ..., er, where
el, --., e, and , are as in the Smith-McMillan canonical form of Z. This may be
seen upon close examination of the proof.

(b) The realization procedure described in 4 suggests a way of "realizing"
any (not necessarily proper) rational matrix as follows. Given a rational matrix
Z, let denote the least common denominator of the entries in Z and let 2 denote
the (proper) rational matrix with the property that

that is, 2 is the proper part of Z. Then we can define a realization of the rational
matrix Z to be any realization of .

In terms of this definition of realization of improper rational matrices, our
realization technique ( 4) can be described as follows: first realize any diagonaliza-
tion of Z in the obvious way (parts (a) and (b) of Theorem 4); then construct the
realization of Z itself using formula (12).

(c) Another way of "realizing" an improper rational matrix is by enlarging
the class of linear dynamical systems. As is well known, a regular rational matrix
(one in which the degree of each numerator is less than or equal to the degree of
the corresponding denominator) can be realized by a system (F, G, H, K), where
F, G, H and K are matrices corresponding to equations of the form

"2 Fx + Gu,

y Hx + Ku.

Similarly, any improper rational matrix Z can be realized by a system (F, G, H, K),
where F, G and H are matrices and K is a matrix polynomial corresponding to
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equations of the form
5c Fx + Gu,

(21)
y-- Hx + K(D)u,

where D is the differentiation operator. The system (F, G, H) corresponds to the
"proper part" (the mod reduction 2) of Z and the polynomial K corresponds
to the "improper part" (the polynomial matrix Z- ,) of Z. Physically, the
presence of an improper part alters the system by introducing the input and its
derivatives directly into the output (bypassing the state space).

(d) We consider now the question of when is a Smith-McMillan form (6)
equal to the Smith-McMillan form of some linear dynamical system (F, G, H).
More generally we ask" when is an improper rational matrix strongly equivalent
to a proper one? In view of remark (b) above, this is equivalent to asking" when
is a generalized system of the type (21) strongly transfer equivalent to an ordinary
system of the type (1)? The answer is provided by a degree condition.

THEOREM 6. Let Z be a rational matrix. Then Z is strongly equivalent to a
proper rational matrix if and only if the degree of AR(Z) is less than or equal to

R(n 1), where R is the rank of Z, /is the least common denominator of the entries
in Z, AR(Z) is the greatest common divisor of the R R minors of Z, and n is
the degree of .

Proof. First recall that , R and AR(Z) are invariant under strong equi-
valence. Hence the necessity of the condition is clear, since for a proper rational
Z the maximal degree of the entries in Z is n 1 and hence the maximal degree
of any R R minor is R(n 1).

For sufficiency we may assume that Z is in Smith-McMillan form, since
every rational Z is strongly equivalent to such a form. Then ,Z is of the form (3)
where the degrees d(/i) of the i satisfy

R

(22) d(yi)= d[AR(Z)] <-_ R(n 1).
i=1

Let p denote the largest integer in 1, ..., R} such that 7p is proper (i.e., such that
d(Tp) =< n 1). (Note that 7 is proper since, by the divisibility relations among
the "i, d(Ti) >= d(71) for all and hence d(71) _-< ( d(Ti))/R n 1.) We shall show
that for each k p, ---, R, qZ is strongly equivalent to a matrix Mk of the form

(23) Mk
k+l

R
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where each element in the box is proper, j is some positive integer less than p
(depending on k), and is a (nonzero) polynomial which is of maximal degree
among all the elements in the kth row and all the elements in the kth column and
which satisfies

(24) d() n 1 + [d(7;) -(n 1)].
i=j

Taking k R will then complete the proof.
The proofnow proceeds by induction on k. Taking k p wesee that Mp Z

satisfies (23) and (24) with j p and ?p. So now we assume we have found
Mk (P _--< k < R) and we proceed to construct Mk+ 1.

Let q be a polynomial of degree n 1 d() (ql(s)-- s"-1-() will do).
Dividing 7 + by ql we obtain

(25)

for some polynomials Pl and rl with d(rl) < d(qle) d(ql) + d(cz) n 1.
Multiplying the kth row of M by Pl and adding it to the (k + 1)st row, then
multiplying the jth column of this new matrix by q and subtracting it from the
(k + 1)st column, we obtain a matrix M1) which is strongly equivalent to M
(and hence to OZ) and which is of the form

(26) M1)

where all entries in the two boxes are proper and where pie is an element of
maximal degree in its row and column. Moreover, by (24) and (25),

d(pla) d(Tk+l)- d(ql)= d(7+1)- (n 1) + d(a)
(27) +

=n- + ’, [d(7i)-(n- 1)].
i=j

If p10 is proper, we may take M+ M(1) and we are done. Furthermore,
if j 1 in (26) (i.e., if the square box extends all the way to the upper left-hand
corner of M(1)), then p a is necessarily proper since then, using (22),

R R

d(pl)-- n- 1 + , d(y,)-(k + 1)(n- 1)-
i= i=k+2

<= n- 1 + R(n- 1)-(k + 1)(n- 1)-[R-(k+ 1)](n- 1)
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If Pie is improper (i.e., d(pl > n 1), then we can use yj_ to reduce its
degree. Let q2 be a polynomial of degree n 1 d(yj_ 1). Then

(28) Px-- P2q27j-1 -+- r2,

where d(r2)< d(q2yj_l)= n- 1. Multiplying the (j- 1)st row of M(k1) by P2
and adding it to the (k + 1)st row, then multiplying the (j 1)st column of this
new matrix by q2 and subtracting it from the jth column, we obtain a matrix
M(k2) which is strongly equivalent to M(k1) (and hence to OZ) and which is of the
form

(29) M(2)

j--

0

0

P2j-1

where all the entries in the solid boxes are proper and where P27.i- is an element
of maximal degree in its column. Furthermore, we may assume that P27j-1 is
an element of maximal degree in its row; otherwise we can accomplish this by
multiplying the (j- 1)st column of (29) by appropriate polynomials q and
subtracting from the other columns. (This process will not introduce improper
entries into the solid boxes in (29) since: (i) Pie was of maximal degree in its row
in (26), and (ii) d(ple) > n 1 > d(r2); hence for each element fi in the dotted
box in (29) we have, using (28),

d(fi) _<_ d(pla)= d(p2q27j-1)= d(q2) + d(p27j-
so the polynomial q required to reduce fl will have d(q) <_ d(q2) and therefore
d(qi7j_ 1) <= d(q27j-x) n 1.) Also we have, by (27) and (28),

d27j_,) d) d(q2)= d)- (n 1) + d(7j_ )
k+l

=n-+ [d(,)-(.-).
i=j-1

Hence, if P27- is proper, we may take M+ M2 and we are done. If P2-
is improper, we are again in the same situation as (26) but with a box one row and
one column larger and we may repeat the above process to obtain Ma. Clearly
this process must stop and we obtain M+ M for some N j.

(e) As mentioned in 4, our realization procedure provides new insight into
the significance of the polynomial invariants e of a system which occur in the
Smith-McMillan form of the transfer function matrix Z. Another interpretation
of these polynomials is obtained as follows.
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Instead of the polynomial ek which occurs in the Smith-McMillan form of
Z, we consider the polynomial invariant Ak(ffZ) obtained as the greatest common
divisor of all k k minors of ffZ, k 1,..., R. As is well known, these poly-
nomials A(Z) are related to the polynomials 7 appearing in the canonical form
(3) of OZ by

(30) A(0Z ... .
In particular, the polynomials A(OZ) contain the same information as the poly-
nomials

The polynomial AI(OZ)= /1 has an immediate interpretation, as a conse-
quence of its definition as the greatest common divisor of the entries in OZ: it is
the polynomial whose roots form the set of zeros of the given system (i.e., the set
of frequencies s to which the system is completely unresponsive). A similar
interpretation of the Ak(OZ) (k > 1) can be given by constructing a system whose
transfer function matrix has as entries the k k minors of OZ. We shall carry
out this construction here only for k 2. The generalization to arbitrary k is
straightforward.

We recall first a few facts from multilinear algebra [14]. Recall that to each
vector V is attached another space A2(V), the spaces of bivectors of V. Formally,
A2(V) is the vector space generated by objects of the form u/ v (u, v e V) and
subject to the relations

(cu) /x v c(u / v),

uAv=-vAu,

where u, v e Vand c is a scalar. Given a basis {v, ..., v,} for V, the set {v, A vii < j}
is a basis for A2(V). In particular, A2(V) has dimension n(n 1)/2, where n is the
dimension of V.

Given a pair A, B of linear operators on V, there is induced a linear operator
A A B on A2(V), defined by

A A B(u A v)= 1/2[A(u) A B(v)- A(v) A B(u)].

The following properties of this "wedge product" of operators are easily checked:

(A +B) A C=AA C+BA C,

(cA) / B c(A / B),

AAB=BAA,

(A A B)(C A D)= (AC) A (BD).

It is also easily verified that, given a basis {v, ..., v,} for V, the matrix for the
operator A / A relative to the basis {vi/X vj[i< j} for AZ(v) is a matrix whose
entries are the 2 x 2 minors of the matrix for A relative to {v l, --., v,}.

With slight modifications, the above discussion is also valid in the more
general situation where V is a module over a commutative ring.

Now, given a constant linear dynamical system (F, G,H) with transfer
function matrix Z, we can exhibit a related system whose transfer function matrix
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is Z A Z. Since

Z A Z [H(Is F)-1G] A [H(Is- F)-1a]
H A HI(Is- F) -1 / (Is- F)-I]G / G

H A H[(Is- F) A (Is- F)]-IG A G

H A H[I A Is2 2F A Is + F A F]-IG A G,

it is clear that Z A Z is the transfer function matrix of the second order system

-2F A I/c + F A Fx G A Gu,

y=HAHx.

Transforming this system in the standard way to a first order system, we conclude
that Z A Z is the transfer function matrix of the linear dynamical system (if, (, )
given by

= = = [ o.-FAF 2FAI GAG

Furthermore, the invariant A(0Z) of the original system (F, G, H) is the poly-
nomial whose roots are the zeros of the associated system (, , ).

The blocks appearing in each admit simple interpretations" I A I is the
identity, F A F represents the induced operator on A(V) (V the state space of
(F, G, H)) given by

and 2F A I represents the extension of F to a derivation on A(V), since

2F A I(u A v)= F(u) A v + u A F(v).
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THE VALIDITY OF A FAMILY OF OPTIMIZATION METHODS*

ROBERT MEYER]

Abstract., A family of iterative optimization methods, which includes most of the well-known
algorithms of mathematical programming, is described and analyzed with respect to the properties
of its accumulation points. It is shown that these accumulation points have desirable properties under
appropriate assumptions on a relevant point-to-set mapping. The conditions under which these
assumptions hold are then discussed for a number of algorithms, including steepest descent, the
Frank-Wolfe method, feasible direction methods, and some second order methods. Five algorithms
for a special class of nonconvex problems are also analyzed in the same manner. Finally, it is shown

that the results can be extended to the case in which the subproblems constructed are only approximately
solved and to algorithms which are composites of two or more algorithms.

1. Semicontinuity and mathematical programming. The concepts of upper
and lower semicontinuity for point-to-set mappings have been studied by a number
of prominent mathematicians, including Hausdorff [1], Berge 2] and Dantzig 3.
Several similar definitions of the two concepts have been formulated, and some
comparisons may be found in a recent paper by Jacobs [4]. The following defini-
tions, which are essentially the same as those given in Debreu 5], will be used
in this paper" a point-to-set mapping with domain G and range consisting of
subsets of a set R is said to be (i) upper semicontinuous (u.s.c.) at a point y belonging
to G if Yi Y, {Yi} G, and Z Z with zi e 92(y) for each imply z e f2(y); (ii) lower
semicontinuous (1.s.c.) at a point y belonging to G if z Uz(y), Yi Y, {Yi} G imply
the existence of an integer m and a sequence {z,,, z,,+ 1,’" "} with the properties
that (a) zi f(Yi) for => rn and (b) zi z; and (iii) continuous at a point y if it is
both upper and lower semicontinuous at y. Note that these definitions are meaning-
ful whenever the notion of convergence is defined in both G and R. In particular,
they are valid if G and R are subsets of topological or metric spaces. (If f(y) is a
single point for every y G, i.e., a function, then it is easily seen that 1.s.c. at a point
implies u.s.c, and hence continuity at that point. Similarly, if is single-valued
and R is a sequentially compact subset of a topological space, then it is true that
u.s.c, at a point implies 1.s.c. and hence continuity at that point. However, it is
easy to construct set-valued mappings that are only u.s.c, or only 1.s.c. even when
R is a compact subset of E". Examples displaying this behavior appear below.
These notations should not be confused with numerical upper and lower semi-

continuity for real-valued functions, which have quite different definitions.)
An important class of point-to-set mappings consists of those mappings

that involve the linearization of some or all of the constraints defining a set about
a point. Let M denote the set S f-] {zlu(z) > 0} fq {zlv(z) 0}, where S is a closed
subset of a Banach space B and u and v are continuously Fr6chet differentiable
vector-valued functions. For a point y B, we say that the "linearization" of M
about y is the set

Fm(y) =_ S f’l {zlu(y) + u’(y)(z y) >= O, v(y) + v’(y)(z y)= 0}.
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Note that if y M, then Fm(y) is nonempty, since y e Fm(y). We shall now show
that the point-to-set mapping I’m is u.s.c, at every point of B. For, let y e B, and
let Yi Y. If zi e Fm(yi) for each and zi z, then it follows from the closure of
S that z e S, and it follows from the continuity of u’ and v’ at y that

u(y) + u’(y)(z y)= lim (u(yi) + u’(yi)(zi Yi)) > 0

and

v(y) + v’(y)(z y)= lim (v(yi) + v’(yi)(zi Yi)) O,

so that z e I’m(y), proving u.s.c. Without additional hypotheses, however, it is not
true that I’m is 1.s.c. This fact was demonstrated by Rosen [6], and it can.also be
deduced from the following very simple example where B is taken to be the real
line.

Example. Take S E 1, v 0, and u(z) z3. Let Yi l/i, so that Yi 0 as
i and Fm(yi)= {zly + 3y(z Yi)>-_ 0} {zlz >= 2/3i}. However, I’m(0)
E 1, and it is clear that Fm is u.s.c, but not 1.s.c. at the point 0.
In the case that B E" and S is a convex set consisting of the points satisfying

f(z) >= O, where f is continuous and vector-valued, the next theorem gives sufficient
conditions for 1.s.c. of Fm in the neighborhood of a point. We adopt the con-
vention of calling the inequality constraint f(z) >__ 0 (ui(y) + u’i(y)(z y) > O)
active at the point e I’m(y) if f() 0 (ui(y) + u’i(y)( y) 0). The (possibly
vector-valued) function consisting of active constraint functions at e I’m(y) is
understood to consist of those functions f(z) and ui(y)+ u’i(y)(z- y) which
correspond to active inequality constraints at as well as the function
v(y) + v’(y)(z y).

THEOREM 1.1. Under the preceding assumptions on B and S, the point-to-set
mapping Frn is 1.s.c. in a neighborhood of a point y* /f the set Fm(y*) contains a
point z* at which the gradients to the active constraint functions at z* are linearly
independent.

Proof. See Appendix.
We shall now obtain three basic results relating semicontinuity of point-to-set

mappings to mathematical programming. Similar results may be found in Berge [2]
and Debreu [5]. It will be assumed that f is a real-valued function defined and
continuous on R x G and that the optimal value function t(Y) minn()f(z, y)
is well-defined for every y e G.

LEMMA 1.2. If is U.S.C. at a point y* G and R is sequentially compact, then
# is (numerically) lower semicontinuous at y*.

Proof. Let Yi--* Y*, {Yi} G. Then there exist sequences {y} and {z} such
that #(y,)= f(z,, y,), z, z*, and #(y,) liminf#(yi) as i . It follows
from u.s.c, that z* e f(y*), and thus lim inf/(y) lim/(y,,) f(z*, y*) >=/(y*).

If the compactness hypothesis is deleted, the conclusion is no longer valid.
Examples illustrating this are easily constructed. However, compactness is not
required in the following complementary result.

LEMMA 1.3. If is I.S.C. at a point y* G, then # is (numerically) upper semi-
continuous at y*.

Proof. Let z* eft(y*) be such that /(y*)= f(z*, y*), and let {yi} be an
arbitrary sequence in G converging to y. Choose {y,,} and {z.,} such that #(y,,)
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--.lim sup t(Yi) and z,,- z*, with z,, f(y,,). We then have /(y*)= f(z*, y*)
lim f(z,,, y,,) >= lim/(y,,) lim sup #(y,).
Combining the previous two lemmas, we obtain the following theorem.
THEOREM 1.4. Iff is continuous at a point y* G and R is sequentially compact,

then l is (numerically) continuous at y*.
The next theorem reflects a slightly different viewpoint. It shows that con-

tinuity of f is a sufficient condition for the limit of a set of solutions to solve the
limiting problem. Note that compactness does not enter directly into the statement
of the result.

THEOREM 1.5. Let M(y) denote the subset of f(y) consisting of all points z
such that f(z, y) l(y). If f is continuous at y* G, then the point-to-set mapping
M is u.s.c, at y*.

Proof. Let {Yi} G converge to y*, and let zi M(y) for each i, with z z*.
Since f2 is u.s.c, at y*, it follows that z* f(y*), and thus #(y*) =< f(z*, y*). On
the other hand, by Lemma 1.3, f(z*, y*) lira #(Yi) <- #(Y*).

(The previous theorem and also Theorem 1.1 are similar to results published
recently by Dantzig, Folkman and Shapiro [3]. Theorem 1.1 differs from the
corresponding result [3, Corollary II.3.5] in that the former" (i) allows for the
intersection of the linearized constraints with the convex set S, and also (ii) has a
stronger conclusion. As with Theorem 1.5, the method of proof is quite different
than that used by Dantzig et al. in obtaining similar results. Finally, as noted
previously, Theorem 1.5 is proved assuming only that the notion of convergence is
defined in the spaces dealt with, whereas the analogous Corollary 1.2.3 is stated
for a pair of metric spaces.)

Let us now suppose that R c G and that we have a continuous function to
defined on G with the property that y’ M(y) implies to(y’) < t0(y) unless y M(y).
(This will sometimes be referred to as the strict monotonic property.) Consider the
algorithm defined as follows"

(a) Choose an arbitrary Yo e G.
(b) Let Yi+ Yi if Yi M(y); otherwise let Yi + M(y).
THEOREM 1.6. If {Yi} is contained in a sequentially compact set and y* is an

accumulation point of {Yi} at which f is continuous, then y* M(y*).
Proof. If the conclusion were false, we would have to(y)< to(y*) for all

y; M(y*) by the assumption on to. We shall show that this leads to a contradiction.
Let subsequences {y,,} and {y,,+ 1} be chosen so that y,, y* and Y,,+I Y’. It
follows from the previous theorem that y’ M(y*), so that to(y’) < to(y*). However,
since {to(yi)} is a monotone decreasing sequence we have to(y’) lim to(y,, + 1)

lim to(y) lim to(y,,) to(y*), a contradiction.
The preceding theorem can be looked upon as a special case of a result of

Zangwill [7], who assumes u.s.c, ofM instead of the continuity of f. From Theorem
1.5 it follows that Zangwill’s result is more general than Theorem 1.6; but, from
the standpoint of application, the latter appears to be a more useful formulation
in many cases. In addition by considering the continuity properties of f rather
than M, a sharper result can be obtained in the important case f(z, y) =- to(z).
This result, given in the following theorem, states that in such cases the conclusion
ofTheorem 1.6 continues to hold when the assumptions of sequential compactness
and u.s.c, of f are dropped. (As shown by an example in the Appendix, sequential
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compactness cannot be deleted in the more general case. Simple examples can also
be constructed to show the need for u.s.c, of f in both Theorems 1.5 and 1.6.)

THEOREM 1.7. If q)(z) f(z, y) and y* is an accumulation point of {Yi} at which
f is 1.s.c., then y* M(y*).

Proof. Again suppose that the conclusion is false, and let e M(y*), so that
q)() < q)(y*). Since f is assumed 1.s.c. at y*, there exists a sequence of points
{Z?li} with z,, ’(Yni) for each ni and such that z,li ]. Thus we conclude that
q(y*) > q(y) lim o(z,i > lim q(y,,+ 1) q(Y*), which cannot hold.

2. An application" Reverse-convex programming. Consider the following
problem"

I. Minimize

subject to

q(z)

z F =_ S Cl {zlu(z)>__ 0},

where S is a closed, convex subset of E", u is a vector-valued, convex and con-
tinuously differentiable function, and q is continuous and real-valued on F.
We shall further assume that F is bounded, which is easily seen to imply that F
is compact. The curious feature of problems of the form I is the nonconvexity of
the feasible region F. The convexity of u implies that the region {z[u(z)<= 0}
given by the reverse inequalities is convex (see Fig. 1). For this reason, the sets
U {z[u(z) >__ 0} and F will be called reverse-convex and the problem a reverse-
convex minimization problem.

FIG. 1. A reverse-convex set

Such problems arise, for example, when we wish to determine the minimum
of a function in a region from which an open sphere about a point has been re-
moved.

It is easy to show that even with a linear objective function such a problem
may have a local minimum that is not a global minimum. The numerical methods
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proposed below, like all numerical methods based on local searches for solutions,
can at best be expected to yield local minima for problems of the form I. Global
minimality could be assured only by exhaustive searches over successively finer
grids. Grid search techniques, however, usually require more function evaluations
than would be computationally feasible for most practical problems.

In order to establish iterative procedures for problems of type I, we first
consider a technique for generating convex subsets of F. This is conveniently
done by "linearization." That is, we define W(y) =- {zlu(y) + u’(y)(z y) >= 0},
the "linearization" of the set U about the point y (here u’(y) is the Jacobian of u
evaluated at y); and we let F(y) =_ S f-I W(y). For every y F the set F(y) has the
three important properties: (i) F(y) is convex and compact, (ii) F(y)c F, and
(iii) y F(y). (This was first pointed out by Rosen [6] .) Property (ii) is an immediate
consequence of the convexity of u, and properties (i) and (iii) are obvious. Note
that by the results of 1, the point-to-set mapping F is everywhere u.s.c.

Consider now the following subproblem, R(y), derived from the problem I:
R(y). Minimize

o(z)

subject to

z e r’(y).

If y F, by property (i) above, R(y) has a solution; by property (ii), every point
at which the minimum value is attained must be in F; and by property (iii), if
z* solves R(y), q)(z*) <= q)(y). Of course, it is not likely that a solution of the sub-
problem R(y) can be obtained by numerical means unless the objective function
has some convexity property. (For example, if q) is strictly quasi-convex [8], a
local minimum for R(y) will be a global minimum.) In many problems of interest
the objective function will be linear, so that if S is a polytope (the intersection of a
finite number of half-spaces), the problem R(y) can be solved by linear program-
ming (LP). In any event, the following iterative scheme proposed by Rosen [6]
is mathematically well-defined:

METHOD A.
(a) Choose an arbitrary Yo F.
(b) Given Yi, let yi+ be a solution of
By the above discussion, Method A yields a sequence of feasible points

satisfying o(y+ )=< q(y), with strict inequality holding if y does not solve
R(yi). Because F is compact, {y} must have at least one accumulation point,
and every accumulation point must lie in F. Note that in Method A, unlike the
iterative procedure in 1, we do not require that y+ y if y solves R(yi). This
restriction was included in 1 merely to assure that {qg(y)} satisfied qg(y+ ) __< qg(y).
By an immediate application of Theorem 1.7, then, the following theorem holds.

THFORFM 2.1. If F is l.s.c, at an accumulation point y* of a sequence {y}
generated by Method A, then y* solves R(y*).

There are several aspects of the’ previous theorem that warrant further
discussion. The first point to be noted is that the compactness of F is only used
to guarantee that the subproblems R(y) have solutions and that the sequence
{Yi} has at least one accumulation point. It follows that compactness can be
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replaced by those two hypotheses. In this case we might as well consider q to be a
real functional defined on a reverse-convex subset F of a Banach space, since the
proof of the previous theorem was based solely on Theorem 1.7. It should be
pointed out that while Theorem 1.1 gives a sufficient condition for 1.s.c. of F at
y* when F c E", sharper results have been obtained in [9]. In particular, if S is
determined by constraints of the form g(z)=> 0, where g is vector-valued and
differentiable, it is sufficient that there be a point z* F(y*) such that the gradients
to the active constraints at z* form a positively linearly independent set (i.e., no
nontrivial nonnegative combination of the vectors of the set vanishes). With regard
to the conclusion of the theorem only one observation will be made here. (This
topic is examined in some detail in [9] .) If F(y*) satisfies some fo.rm of constraint
qualification at y* (which is the case, for example, if S is a polytope), then the
fact that y* solves R(y*) implies that the Kuhn-Tucker (K-T) first order necessary
conditions for a solution of I are satisfied at y*. This is obvious, for at y* the K-T
conditions for the two problems R(y*) and I are identical.

If the function q is differentiable on some open set containing F, we can
construct the following subproblem for each point y F:

L(y). Minimize

subject to

Of course, if o is linear affine, the solutions to L(y) coincide with the solutions
of R(y). However, even for the class of quasi-concave functions (which includes
all linear affine functions), we have the crucial property that if y does not solve
L(y), then every solution 2P of L(y) satisfies (p(y) < q(y). This follows from the
(differential) definition of quasi-concavity [8], which requires that q)’(y)(y y) < 0
imply q() < q(y). Consider now the following iterative method.

METHOD B.
(a) Choose an arbitrary Yo F.
(b) Let y + y if y solves L(y); otherwise, let y + be any solution of L(y).
The following is an immediate consequence of Theorem 1.6.
THEOREM 2.2. Let q be quasi-concave and continuously differentiable on some

open set containing F. If y* is an accumulation point of a sequence {y} generated
by Method B and F is continuous at y*, then y* solves L(y*).

A comparison of Theorems 2.1 and 2.2 is in order. The former is valid for all
continuous objective functions (although from a numerical standpoint we can
apply Method A only to objective functions with certain convexity properties),
whereas the latter holds only for continuously differentiable quasi-concave
functions (although Method B is numerically feasible whenever p is differentiable).
Although the last theorem specifies that F be continuous at y*, it follows from a
result of 1 that F is u.s.c, everywhere, so that only 1.s.c. at y* need be assumed
or verified. In order to apply Theorem 1.6 to prove the previous theorem, it is
necessary that F be compact. As noted above, the compactness of F does not play
so crucial a role in the proof of Theorem 2.1. Finally, if we assume again that
F(y*) satisfies some type of constraint qualification at y*, we conclude that if y*
solves L(y*), then y* satisfies the K-T conditions for problem I.
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In the event that o is continuously differentiable but not quasi-concave, it
is still possible to obtain algorithms in which the objective is linearized and which
have the required properties ifwe assume that p is twice continuously differentiable.
These are based upon the observation that the linear part of the objective function
dominates in a region sufficiently close to the point linearized about. Let the
constant R > 0 be chosen so that

1/2(Z2 z1)Tq)"(Z1)(Z2 Z1) R z2 z for all zl, z2 F

(the norm is arbitrary but fixed for the remainder of the section). Given a point
y F, let M(y) be the set of solutions of L(y). Let be a fixed element of (0, 1)
and for z - y define the real-valued function

K(y, z): min {e. (p’(y)(y z). [[z y[[-1. R- 1, [[Z y[[ }.
For the three algorithms below, it is to be understood that: (i) Yo is chosen arbi-
trarily from the feasible set F, and (ii) given Yi, that yi + is selected according to
the rule of the algorithm, unless y itself solves L(y). In the latter case, the rules are
not used, but instead y + is taken to be Yi. Finally, z’ is used below to denote an
arbitrary element of M(y).

ALGORITHM C. Choose yi + to minimize q’(y)z over the set

r(y,) fl {zl IIz y, _-< K(y,, zl)}.
ALGORITHM D. Let Yi+ Yi "+" K(yi, z.*, (z.*, Yi) [[z’ Yi[[ 1.
ALGORITHM E. Choose an element 0 from the fixed interval [fl, 7], where

0 < fl __< 7 < 1, and let y+l Yi + 0J’(z’ y), where is the smallest non-
negative integral exponent for which the inequality

p(y + o. (z.*, y3) <-_ q(y3 + ( )" o. p’(y3(z y)

is satisfied. (It will be shown that the previous inequality is satisfied for all sufficiently
large j, so that the algorithm is well-defined.)

THEOREM 2.3. Let q be twice continuously differentiable on some open set
containing F, and let the sequence {y} be generated by one of the three procedures
above. If y* is an accumulation point of {y} at which F is continuous, then y* solves
L(y*).

Proof. See Appendix.
In general, the three previous algorithms will yield three different points if

applied to a given point. A typical situation is shown in Fig. 2, where the points
C, D and E correspond to the application of Algorithms C, D and E respectively.
The dotted lines represent level lines of the linearized objective function
and the square in the interior of F(yi) represents the set {z[ [[z Yi[[ <= K(Yi, z’)}.
The figure illustrates a case in which we have chosen to’work with a norm whose
level surfaces are the surfaces of similar polyhedra. When these types of norms are
used, and, in addition, S is a polytope, it follows that in order to obtain y+ via
Algorithm C from yi and z’, we need only solve an LP problem. Hence, in this
case we would solve two LP problems in order to move from y to y+l using
Algorithm C. On the other hand, regardless of the norm used, when S is a polytope,
only one LP problem must be solved when Algorithm D is used to obtain a
successor to y. However, for both Algorithms C and D an estimate on the upper
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bound of the norm of the Hessian matrix qg"(z) is needed, and this may not be
easily obtained. For Algorithm E this estimate is unnecessary, and Yi + is obtained
from Yi by solving one LP problem (assuming again that S is a polytope) and
performing a finite number of evaluations of

/

FIG. 2. Successor points

In the case that S is a polytope, Method B and the method corresponding
to Algorithm C are special cases of the MAP method of Griffith and Stewart [10].
For the classes of minimization problems for which they are intended, the former
two methods resolve the previously unsolved problem of step-size limits for
the MAP method. Algorithms D and E can be contrasted with the well-known
Frank-Wolfe algorithm in the special case when F is a polyhedron. (This will
occur if S is a polytope and u is linear, and will mean that F(y) F for all y.) The
Frank-Wolfe algorithm consists of choosing yi + to be a point on the line segment
connecting Yi and z’ which satisfies q)(Yi+ 1) =< q)(Yi) -1- (1 )[(y’) qT(yi)], where
y’ is a point which minimizes 99 on that line segment and [0, 1). Algorithms
D and E require no knowledge of the minimum of the function q9 on line segments,
and hence enjoy something of a theoretical advantage over the Frank-Wolfe
scheme.

3. Applications to other mathematical programming algorithms. In this section
we shall indicate how the results of may be applied to a number of well-known
algorithms of mathematical programming.

3.1. Unconstrained minimization methods. In the notation of 1, let
f(z, y)= q(z) and f(y)= {y + 2-D(qg(y))12 _>_ 0}, where the composite function
D(qg) (which can be thought of as a direction-assigning function) is continuous for
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all continuously differentiable 99 and has the property that q’(y)D(q(y)) <_ 0 with
equality if and only if qg’(y)= 0. (When D(q(y)) is chosen to be (_q(y))T, the
corresponding algorithm (see 1) is the method of steepest descent. If o is twice
continuously differentiable and has a positive definite Hessian matrix at each point,
then we may choose D(q)(y))-- -[(p’(y)qg"-l(y)]T. The corresponding algorithm
is then a modification of the Newton-Raphson second order method.) It is clear
that f is everywhere 1.s.c. and that the iterates have the required monotonicity
property. We thus conclude that an accumulation point y* of such a method
must solve the problem" Minimize (p(z) subject to z e f(y*). This implies that
(p’(y*) 0, and if (p is convex, y* must be the global minimum of the unconstrained
minimization problem.

3.2. Feasible direction methods. Topkis and Veinott [12] recently studied
the properties of a general feasible direction algorithm which contains as special
cases a feasible direction method of Zoutendijk [13], the Frank-Wolfe method
[11], and second order feasible direction methods. We show below how the same
general algorithm can be studied by the techniques of 1. Again we consider a
general minimization problem of the form I, but we shall assume here that the
set U {zlu(z) >= 0} is convex (rather than reverse-convex as assumed in 2).
All other assumptions on the feasible set F, including compactness, are assumed
to hold. We define the set f2(y) to be those pairs (v, z) satisfying

v >= q)’(y)(z y) + 1/2(z y)’H(y)(z y),

v >= -[ui(y) + u’i(y)(z y)] for all i,

and z S f) (B + y), where H is a continuous mapping from E" into the set of all
positive semidefinite n n matrices and B is a compact convex neighborhood of
the origin. Letting #(y)" min {vl(v, z) f(y)}, the iterative procedure proposed
by Topkis and Veinott is as follows"

(a) Choose an arbitrary Yo F.
(b) Given Yi, let y’ be chosen so that (v, y’) (Yi) and v’ (Yi) ;if ].,t(yi) O,

let yi / Yi, and if not, let Yi / be a point in the intersection of F with the line
segment connecting Yi and y’ such that qg(y / 1) <= q(z) for all z in the intersection.

It is shown in the Appendix that the mapping f2 as defined above is continuous
on S and that o(y/ 1) < q(Yi) if kt(y) < 0. By a slight modification of the proof
of Theorem 1.6, it follows that a limit point y* of the iterative procedure just
described has the property that g(y*) 0. If some form of constraint qualification
holds at y* (for a particular case, see [12]), the relation/(y*) 0 implies that the
Kuhn-Tucker necessary conditions for a solution of problem I must be satisfied
at y*. The Kuhn-Tucker conditions are also sufficient for optimality when o is
pseudoconvex and the constraint functions are quasi-concave (see Mangasarian
[14]).

4. Generalizations. Because of such factors as finite arithmetic and rounding
errors, there is little hope of obtaining exact analytic solutions to optimization
problems on digital computers. One can expect at best very good approximations
to the true solutions. In the theory developed in the preceding sections, however,
the availability of exact solutions at each iteration was assumed. We shall now
show how Theorems 1.6 and 1.7, upon which most of the results of this paper are
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based, can be strengthened to provide for a certain type of approximate solution.
(This type of approximation was considered by Dem’yanov and Rubinov [15]
in a paper dealing with a convex programming method in Banach space. Other
approximations, such as the class considered by Topkis and Veinott [12], can be
handled in a similar manner.)

Let be a fixed element of the open interval (0, 1), and, using the notation
and assumptions introduced for the statement of Theorem 1.6, let the sequence
{.i} be constructed in the following manner"

(a) Choose an arbitrary Y0 G.
(b) Let .i+ .i if . M(.i); otherwise let .+ be an element of

satisfying go(.i) go(i+ 1) ->_ " (go() go(Y’)), where y’ M(i).
Roughly this means that at each iteration at least a fixed fraction of the

theoretically possible decrease in go is attained.
THEOREM 4.1. If {.i} and {y’} are contained in sequentia!ly compact sets and

f; is an accumulation point of {.i} at which is continuous, then f; M(y;).
Proof. As in the proof of Theorem 1.6, we assume that the conclusion is

false, and show a contradiction. It follows from the assumptions preceding
Theorem 1.6 that go(y’)< go(.9) for all y’ M(). Now let subsequences
{.,+ 1}, and {y,*,} be chosen so that ,,, y, y.,+ , and y.*, - y*. It follows that
y* M() and that

0 < go()- go(y*)= lim (go(.,,)- go(y*,,))
gg-1. lim (go(gn,) go(gn,+ 1)) 0,

which cannot hold.
By an analogous modification of the proof of Theorem 1.7, we obtain the

following theorem.
THEOREM 4.2. If gO(Z) f(z, y) and ; is an accumulation point of {.9i} at which

) is 1.s.c., then ; M().
Another computational aspect of algorithms that can be easily dealt with

by the techniques of this paper is that of accelerating convergence by periodically
taking a step in a direction other than that prescribed by the basic algorithm
being used or taking slightly larger or slightly smaller steps than those prescribed.
(The validity of procedures so modified has also been discussed by Topkis and
Veinott [12].) It should be observed that the proofs of Theorems 1.6 and 1.7
depended only on the monotonicity of the sequence {rp(y)} and the fact that y*
was the limit of a subsequence {Yn,} whose successor points were constructed by an
algorithm with certain specified properties. Thus, if, with the goal of accelerating
convergence, an algorithm without those properties is used periodically, we can
conclude nevertheless that convergence of the iterates to a point y* at which
is continuous (or 1.s.c. in the case of Theorem 1.7) implies that y* M(y*).

A further extension of Theorems 1.6 and 1.7 can be made if we note that the
proofs still go through if we assume only that {rp(y0} converges (i.e., it need not
be monotonic) and that the strict monotonicity property holds at y* (instead of
everywhere). Such an extension of Theorem 1.7 can be used to prove the validity
of Kelley’s cutting-plane algorithm [16] in the following manner" (i) let {y} be a
set of points generated by Kelley’s algorithm, (ii) let G be the union of {y} and its
accumulation points, (iii) define a point-to-set mapping fl over G by letting
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(Yi), i= 0, 1, 2,..., be the polyhedral set generated by the cutting-plane al-
gorithm over which the objective function was minimized to obtain Yi+l, and
f(y*) =- f-I = o f(Yi) for each accumulation point y* of {Yi}, and (iv) show, making
use of the fact that each accumulation point is feasible, that all of the assumptions
of the generalized version of Theorem 1.7 are satisfied.

Appendix. The following property of sequences in normed spaces will be
needed in the proof of Theorem 1.1.

LEMMA. If z Z as --. and zig---} zi as j , 1, 2,..., then there
exist nj, j 1, 2, ..., such that z,j --} z as j --} .

Proof. Let N(1) be chosen such that Ilzi zll < 1 for >_ N(1), and let N’(1)
be chosen such that ZNl)- ZNl) < 1 for j >= N’(1). Suppose now we have
chosen N(1),N(2), ..., N(k) and N’(1),N’(2), ..., N’(k). Choose N(k + 1) and
N’(k+ 1) so that zi-z < 1/(k+ 1) for i>=N(k+ 1), Zuk+l)--Zuk+l)
< 1/(k + 1) for j >= N’(k + 1), and N’(k + 1) > N’(k). Let N(0) 1 and define
nj N(l) when N’(l) < j < N’(1 + 1). It is easily verified that the sequence so
defined satisfies z,j z as j --} .

Proof of Theorem 1.1. We shall first show that the linear independence
hypothesis is equivalent to assuming that there exists a point z’ such that f(z’) > O,
u(y*) + u’(y*)(z’ y*) > 0, v(y*) + v’(y*)(z’ y*) 0, and that the Jacobian
matrix v’(y*) has full row rank. For, we may choose a vector d such that v’(y*)d 0
and such that the inner product of d with each gradient to an active inequality
constraint function at z* is positive. It is now easily seen that a suitable choice
of z’ is z*+ Od, where 0 is a sufficiently small positive scalar. (Since
v(y*) + v’(y*)(z* y*) 0, the linear independence hypothesis implies that v’(y*)
has full row rank.)

Now partition the variable z into the variables s and (with values s’ and t’
at z’) so that the function defined by (s, t, y) v(y) + v’(y)(z y) has a non-
singular Jacobian with respect to s at the point (z’, y*) (s’, t’, y*). It follows from
the implicit function theorem that there exists a neighborhood N of (t’, y*) and
a differentiable function h defined on N with the properties that h(t’, y*) s’ and
(h(t, y), t, y)--0 for (t, y)e N. Without loss of generality we can assume that
N was chosen small enough so that all of the inequality constraints involved in
defining Fm(y) are satisfied by (h(t, y), t) when (t, y) e N. (This follows from elemen-
tary continuity arguments.) Hence if {yi} is any sequence converging to y*, it
follows that for sufficiently large (say >__ m), we have (t’, yi)e N, so that (h(t’, y),
t’, y) 0, and hence the equality constraints involved in defining Fm(y) are also
satisfied at the point (h(t’, y), t’) =_ z. The sequence {zi} so defined for _> m thus
has the property that z e Fm(yi) and zi --* z’. To complete the proof of 1.s.c. at y*
we must prove the existence of a similar sequence for each z e Fm(y*). In order to
do this, we first note that Fro(y*) is a convex set, so that given any z e Fro(y*),
the line segment connecting z and z’ lies in Fm(y*). Moreover, since

and

z e s C/{zlu(y*)+ u’(y*)(z y)__> 0}

z’e int S f’l {zlu(y*) + u’(y*)(z y) > 0} ",
it follows from a well-known theorem on convex sets (see, for example, [2]) and



52 ROBERT MEYER

a simple computation that all points on that line segment with the possible excep-
tion of z also lie in R. But at each point in g f’l Fro(y*) we can construct the sequence
required in the definition of 1.s.c. by exactly the same method used for z’. Letting
zl (1/i)z’ + (1 1/i)z and performing such a construction for 1, 2, ..., we
obtain a sequence of sequences from which, by the preceding lemma, we can
construct a sequence converging to z and satisfying the requirements in the
definition of 1.s.c. This completes the proof of 1.s.c. at y*.

Now for y sufficiently close to y* we have previously noted that the point
(h(t’, y),t’) lies in Fm(y) and satisfies all of the inequality constraints strictly.
Since there also exists a neighborhood of y* in which the Jacobian v’(y) has full
row rank, it follows that for all y in some neighborhood of y* the point (h(t’, y), t’)
has the same properties with respect to Fm(y) that z’ had with respect to Fro(y*).
Hence the proof of 1.s.c. of Fm at such y may be carried out in the same manner.

The next example illustrates that the compactness hypothesis cannot be
deleted in Theorem 1.6.

Example. Let G R [-2,- 11/2] U 0, 1/2] U [2, + oo),

{y} if y e [- 2, 11/2],
{-2} ify 0,

n(y)
{ 2 + y, 1/y} ifye(0,1/2],

{ 1/(2y)} ifye 2, +);

z+2 ifze[-2,-11/2],
f(z, y) 0 if z e [0, 1/2],

1/z if z e [2, 4-

y + 2 if ye [-2, 11/2],
qg(y) y + 1 if y [0,

1 + 2/(3)) if y [2, + ).

It is easily verified that with the above definitions the conditions stated prior
to Theorem 1.6 are satisfied, that f is continuous on G, and that f and q9 may be
extended to continuous functions on E2 and E respectively. Suppose that we
choose Yo 1/2. It may be verified that M(yo) {-11/2, 2}, so that we can choose
Y 2. Since f(yl) {1/4}, it follows that Y2 1/4" Continuing in a similar fashion,
we obtain the sequence of iterates {1/2, 2, 1/4, 4, ,... }. However, the accumulation
point 0 does not belong to M(0) {- 2}.

Proof of Theorem 2.3. We shall show that all three algorithms have the
strict monotonicity property. Using a second order Taylor expansion and the
definition of R, we obtain for z F the inequality qg(z) __< qg(y) + qg’(y)(z- y)
+ R. IIz Yi 2. If z Yi <= 6. K(yi, z.*,), this becomes

q,(z) <__ q,(y,) + o’(y3(z y,) + I. ,. I(y, z.*,)

<= qg(Yi) + qg’(Yi)(z Yi)

--62" " qg’(Yi)(z Yi) Ilz Yill- 1. K(Yi, z).
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If we denote by y’ the point generated by applying Algorithm D to Yi, we have
y’-yi (z.*, y). z?- Yil-1. K(yi, z.*,), and the inequality reduces to go(z)
<= go(Yi)+ go’(yi)(z- Yi)- 2"e’go’(Yi)(Y’-Yi). Three cases will now be con-
sidered" (i) if z y’, choose 6 1, and the inequality becomes go(z)=< go(yi)
+(1 e)go’(y)(y’ Yi); (ii) if z is generated by Algorithm C, choose 6 1, and
it follows from go’(y)z <= go’(y)y’ that go(z) =< go(y) + go’(y)(y’ yi) . go’(yi)
(y’- y) go(y) + (1 e)go’(y)(y’- y); and (iii)if z y + 09. (y’- yi), where

0 _<_ 09 __< 1, choose 6 o9, yielding

qg(z) go(Yi) + o9. go’(Yi)(Y’ Yi) o92" o. go’(Yi)(Y’ Yi)

o(y3 + ( co). co. o’(y)(y’

go(Yi) + (1 o). co. go’(y,) (y’ Yi).

By the analysis in case (iii), it is easily seen that in Algorithm E the relation

q,(y+ ) <= q(y,) + ( ). o. o’(y3(z’

where Yi+l Yi + Oj. (z Yi) is satisfied if 0j-IIz’ yll _-< K(yi, z.*,), proving
that the algorithm is well-defined. Moreover, since /=< 0, the point z generated
by Algorithm E must satisfy g0(z) _< go(Yi) + (1 ).//. go’(yi)(y’- y). For all
three algorithms, then, {go(y/)} is a nonincreasing sequence.

Let y* be an accumulation point of {y) at which the point-to-set mapping F
is continuous. Choose subsequences {y,,), {y,,+ 1) and {z,*,) such that y,, y*
and the latter two are convergent with limit points y and z* respectively. As a
consequence of Theorem 1.5, z* is a solution of L(y*). If we now suppose that y*
does not solve L(y*), then K(y*, z*) > 0. For Algorithms C and D we thus have

go() lim go(Yn,+ 1) =< lim [go(y,,) + (1 ). go’(Y,,)(Y,,+I

o(y*) + ( ). o’(y*)(y y*)

go(y*) + (1 ). go’(y*)(z* y*). z* y* -1. K(y*,z*)

< p(y*).

This is impossible, however, since {go(Yi)} is a nonincreasing sequence. By inserting
the factor//in the appropriate places, we can prove the conclusion for Algorithm E.
(Alternative proofs have been constructed (see Meyer [9]) for Methods C and D
by establishing the strict monotonicity property and the continuity of certain
point-to-set mappings. In this way the conclusion is obtained as a direct con-
sequence of Theorem 1.6, but at the expense of increasing the complexity of the
proof.)

Proof of assertions in 3.2. By using the continuity of the terms involved, it
is easily shown that f is everywhere u.s.c. To prove 1.s.c. on S, we first observe that
the point-to-set mapping defined by fg(y)= S f’) (B + y) is 1.s.c. on S. This is
seen by noting that interior points of B + y that lie in S also lie in B + y for y
sufficiently close to y, and that a boundary point of B + y that lies in S is the limit
of interior points of B + y contained in S. Now let (v, z) be an arbitrary point of
f(y) and let {y,} be a sequence of points in S converging to y. By the preceding
argument, there exists a sequence of points {z,} with z, f’(y,) converging to z.
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It is clear that a sequence {v,} converging to v can now be chosen so that (v., z.)
e f(y,), completing the proof of 1.s.c.

To simplify notation, we shall drop the subscripts in the following proof of
the monotonicity property asserted in 3.2. Suppose that there exists a point
(v*,z*)ef(y) with v* < 0. We show that for sufficiently small positive 2, the
point y + 2(z* y) belongs to F and satisfies (p() < tp(y). It is clear that
e S f’l (B + y) for 2 e [0, 1], so to prove feasibility we need only show that

u() >__ 0. If Hi(y) > 0, then clearly u() > 0 for 2 sufficiently small; and if Hi(y) O,
then 0 > v* >_ -[ui(y) + u’i(y)(z* y)] implies u’i(y)(z* y) > 0, and again it is
true that u() > 0 for sufficiently small positive 2. Since H(y) is assumed positive
semidefinite, 0 > v* >= q)(y)(z* y) + 1/2(z* y)H(y)(z* y) implies 0 > (p’(y)
(z* y), and the required result follows.
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ON PERFORMANCE BOUNDS FOR UNCERTAIN SYSTEMS*

H. S. WITSENHAUSEN’

1. Generalities.
1.1. Introduction. A central problem with uncertain systems is to choose one

element out of a set A of possible decisions (designs, strategies, policies, con-
trollers, estimators, coding schemes etc.). The performance is measured, at first,
in terms of a function K" A B [0, ] where K(, fl) is the cost incurred with
decision if the uncertain quantities affecting the system have the (system of)
values denoted by fl from set B (see [8]).

In principle the case of randomized decisions can be included in this frame-
work by considering A to be the set of all possible randomizations and defining
K accordingly, say by the expectation of an underlying cost function. But the
intended interpretation for the sequel is the case where rar]domization is considered
undesirable.

Two designs (X1, (X2 in A are said to be equivalent if and only if K(ea, fl)
K(e, B) for all/3 in B. Equivalence classes of designs are partially ordered in the

obvious way, writing e _<_ e2 when K(a,/3) <_ K(o2, fl) for all fl in B. A dominant
choice * (an element of A such that e* _<_ e for all e in A) rarely exists. One way
to proceed to a decision is to define a supercriterion J’A- [0, oe] and seek
designs which minimize J over A, either exactly or within e. A priori, the minimal
requirement on J is that it be compatible with the partial order, e =< e2 implying
J() J(2). This leaves room for a wealth of possibilities, such as the regret
criterion of Savage [9]"

(1) J() sup (K(, fl) inf K(, fl)),
flO fiA

where Q B is given. With the latter definition the sign of J(al)- J(2) can
change when a third element a3 is dropped from the set A. If such phenomena are
not desired it becomes necessary to put further restrictions upon J. An important
class of supercriteria is obtained by requiring that J(a) be defined to depend only
on the function K(,. )" B [0, ], by way of a functional V called an evaluator.
That is

(2) J() V(K(a, )).

The problem (A, B, K, V) is then to determine the infimum J* of J over A,
with J defined by (2), and to determine an element of A for which this value is
attained exactly or within e.

Because of the difficulty of this task, suboptimal procedures are often used.
One consists of selecting an element flo in B as being "typical" and seeking o
to minimize K(a, rio) over A. In this paper bounds on J(o)/J* are sought. Such
bounds require of course more detailed assumptions about K, V and the notion
of typical element. This motivates the following definitions.
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1.2. Basic definitions.
DEFINITION 1. An evaluator for the problem (A, B, K) is a function

(3) V:D - [0, oo3,

where D is a subset of [0, oo]B, and which satisfies the following three conditions"
(i) K(a,. )e D for all a e A;

(ii) if fl, f2 e D and, for all fl in B, fl(fl) __< f2(fl) then V(f) <= V(f2)
(iii) if f(fl) a > 0 for all fl in B then f D and V(f) a.
DEFINITION 2. Evaluator V is weakly subadditive when f e D, a _>_ 0 imply

f + a D, V(f + a) <_ a + V(f). It is subadditive when f, g D imply f + g D,
V(f + g) <= V(f) + V(g).

DEFINITION 3. An element rio of B is called a representative element for
problem (A, B, K, V) when K(a, rio) =< 0r(a) for all a in A.

This generalizes beyond the stochastic realm a definition of Fr6chet
itself a generalization of a definition by Doss [2] of one mean value concept for
random elements of metric spaces.

1.3. Examples of evaluators. The most common evaluators are the following.
The stochastic mean of order p => is defined by specifying a a-field on B

and a probability measure on this field. Then, for p > 1, f measurable,

(4) Vp(f) (E{ fP(fl)}) 1/p

and

(5) Vow(f) ess sup f(fl).

One nonstochastic evaluator is obtained by specifying a subset f of B with

(6) Vn(f) sup f(fl)lfl e f}.

Then every element of f is representative. In general, evaluators can be composed
by applying first an evaluator containing a parametric element and applying
another evaluator to the parameter set, a process which can be continued through
any number of stages. For example, if M is a set of probability measures on a
common a-field on B then an evaluator is defined by

VM(f) sup E{f(fl)}.

All of the above examples are subadditive evaluators.

1.4. The zig-zag inequality.
DEFINITION 4. K satisfies the zig-zag inequality when for all a l, a2 in A and

all fl, 2 in B

(7) K(al, ill) < K(al, f12) nt- K(a2, f12) + K(a2,

The importance of this notion derives from the following fact.
THEOREM 1. Let K’A x B -- [0, ). Then a necessary and sufficient condition

for the existence of a real normed linear space L, and of maps m’A L,
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n’B --. L such that

(8) K(,/) IIm()- n(/3)ll

is that K satisfy the zig-zag inequality.
Proof. First, one may assume that the sets A and B are disjoint (otherwise

one lifts the definition of K to a pair of disjoint copies of A and B). On the union
P of A and B define a pseudometric d in the following way:

If A, fl B then d(, fl) d(fl, ) K(, fl).
If a 6 A, a’ A then

(9) d(a, a’) sup IK(a, fl) K(a’, fl)l.

Iffl B, fl’ e B then

(10) d(fl, fl’) sup IK(a, fl) K(a, fl’)[.

Note that (9) and (10) are the definitions of Wald’s intrinsic pseudometric [10]
on A and B. Because of the zig-zag inequality, d is a pseudometric on the union P.
The equivalence relation d(x, y) 0 on P defines a quotient space of equivalence
classes on which d defines a metric. Let M be this metric space and q the quotient
mapping. Let L be the linear space of bounded, continuous real functions on M
with the supremum norm and let 0 be an arbitrary fixed reference element of M.
Define, according to a well-known technique 6], the mapping p :M - L which
sends an element of x ofM into the element of L which, as a function f:M R, has
the values: f(z) d(z, x) d(z, 0).

Then p maps M isometrically into L. Denote by ia:A P and iB:B P the
injection maps of A, B into their disjoint union. Then the compositions
m p q iA n (D q i prove sufficiency. The triangle inequality implies the
zig-zag inequality, proving necessity.

1.5. A general bound for suboptimal performance. For problem (A, B, K, V)
let J be defined by (2) and J* inf {J(a)la A}. Assume flo is a representative
element as per Definition 3, that is, for all a in A,

( ) K(,/o) =< V(K(, ));

and assume that ao is optimal versus flo, that is, for all a in A

(12) K(o,/30) =< K(,/30);

and let

(13) Jo J(ao) V(K(ao," )).

Then one has the following result.
THEOREM 2. If V is weakly subadditive and K satisfies the zig-zag inequality,

then Jo <- 3J* and this bound is sharp.
Prooj By Definition 4, for all a e A, fl B,

K(ao, fl) =< K(ao, rio) + K(a, rio) + K(a, fl)

_<_ 2K(o,/o) + K(,/) by (12).
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By Definition (ii),

V(K(o,. )) __< V(2K(a, fl0) + K(a,. ))

=< 2K(a, flo) + V(K(,. )) (by Definition 2)

<= 3 V(K(a, )) by (11),

or J0 J(ao) _-< 3J(a); and, taking the infimum over all a in A, Jo =< 3J* as claimed.
The bound is attained already under much more special conditions, as was shown
earlier [11 ].

1.6. Synopsis. In view of Theorems and 2, most of the remainder is devoted
to the case where K(a, fl) is defined as Ila fill in a general normed space N. The
stochastic mean of order p is taken as the evaluator. Theorem 3 below shows that
the bounds for p also apply to the nonstochastic minimax problems.

A direct geometric interpretation for the bounds is constructed, first in N
and then in a space of random vectors with values in N. In this way a simple and
general proof of the equality of the bounds for conjugate exponents p is obtained
(Theorems 4 to 10). An alternative approach by Lagrange multipliers is described
in 4.2 for its computational value. But since the bound is the supremum of an
expression which is neither concave nor (in general) differentiable and need not
be attained, the direct approach is preferable.

The consequences of various assumptions are explored: The distribution
of fl may be symmetric about its mean; the constraint set for a may be convex.
The normed space N may be a pre-Hilbert space; the dimension of N may have
a given finite value. Lemmas 11 to 16 make explicit some of the simplifications
upon which actual calculations are based.

A few of the bounds are then computed either in theorems or by machine.
In the latter case the problem is analyzed to the point where one can guarantee
that convergence of the computer program will be convergence to the correct
solution. Some asymptotic formulas are derived and a logarithmic convexity
conjecture is stated.

1.7. Relations between supremum and essential supremum evaluators. Let B
be provided with Wald’s intrinsic (pseudo-) metric d according to (10). By lifting
the definition of K to the quotient space, if necessary, one can assume that d is a
metric, (B, d) a metric space.

In view of Definition 3, two evaluators that produce the same supercriterion
J, in (2), from a given K are equivalent for the purposes of this paper.

TI-IEOrtEM 3. If (B, d) is separable, then any supercriterion J produced from K
by taking the essential supremum under a probability measure on the Borel sets oj
(B, d) can also be obtained by taking the supremum over some nonempty set Q in B,
and vice versa.

Proof. Any separable metric space is a second-countable Hausdorff space.
For all a in A, K(a,. is Lipschitz-continuous on (B, d) with constant one, by
virtue of (10). Hence Theorem 3 is a special case of the following lemma.

LEMMA 1. Let T be a second-countable Hausdorff space. Then for every
probability measure P on the Borel sets of T there is a set S T such that for every
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real function f continuous on T

(14) sup f(x) P-ess sup f(x).
xS xT

Conversely, for every nonempty set S in T there is a P such that (14) holds for all
continuous f.

Proof. Let P be given. By the Lindel6f property of second-countable spaces
the union of all open null sets is equal to a countable subunion and is therefore a
null set. Its complement S, the closed support of P, is the smallest closed set of
probability one. Then sup f > ess sup f because S has probability one. If sup f
> ess sup f a, then the closed set f-1([_ v, a]) (3 S would be a closed proper
subset of S of probability one, a contradiction.

Now assume S given. Since continuous f are considered one may assume
S closed. As a subspace of a second-countable space, S is separable. With {xi S[i

1,2, ...} dense in S let P({x}) 2-i; then S is the closed support of P so that
(14) holds.

1.8. Uncertainty cost and clairvoyance premium. If the assumption that

fi flo were actually correct, then the cost with decision would be just K(a, fi0)
instead of J()= V(K(,. )). The difference J()- K(a, fl0) may therefore be
considered as the cost of uncertainty.

The interpretation of Definition 3 is that an element fl0 is representative
when the cost of uncertainty is nonnegative for all possible decisions; that is, for
every decision, one is better off with/3 fixed at fl0 rather than uncertain.

Now imagine that just before must be selected, a medium (spy, instrument)
reveals the actual value of ft. Then the decision can be chosen to yield, exactly or
within e, the cost

m(fl) inf K(a,/3).
A

Before the medium speaks out, though, m(fl) is an uncertain quantity. Thus the
merits of this imaginary situation must still be evaluated. Assume m belongs to
the domain of evaluator V. Then, since for all and fl, m(fl) <= K(, fl),

2 V(m(. )) <= V(K(,. )) J(),

and taking the infimum over

2_<J*.

The difference J* 2, the premium for clairvoyance, can therefore not be negative
but it can be zero. If it is positive, then part of this premium might be collected by
partial clairvoyance, that is, by some increase in data gathering (feedback) during
the decision process. Note that (A, B, K) is the reduced canonical form of the
problem as opposed to the extensive form in which the time sequence of events
is displayed.

In this paper, following [1], certainty equivalence is said to hold for a class
of cases if Jo J* for all these cases. This does by no means imply that the premium
for clairvoyance or the cost of uncertainty need be equal to zero.

2. Means of order p of norms.
2.1. Construction of spaces. The sequel will be devoted to the case where K
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can be defined by a norm and the evaluator is the stochastic mean of order p,
with l __< p __< c.

Let N, be a real normed linear space. N serves as the set B of 1.1, while
the set A is a nonempty subset of N.

Consider the cost function

(15) K(e,/) I -/11.

Let (fL -, P) be a probability space, i.e., f is a nonempty set, a a-algebra
of subsets of

For fixed p in [1, oe] consider the Bochner integrable [7] functions q "f --, N
such that"

(i) g/-- E{q(co)} belongs to N, not just to the completion of N.
(ii)
The set of all functions q satisfying the above requirements is a linear space

under pointwise addition and scalar multiplication, and the same is true for the
set of all equivalence classes of these functions, modulo almost sure equality. In
the sequel, equivalence classes will, abusively, be referred to as functions. Their
linear space will be normed by letting

(16) IIIqlll (E{ q(co)

or, for p

(17) Illqlll ess sup Iq(o)ll,

where triple bars are used to avoid confusion with the norm of N.
This normed space will be denoted
One may always consider N as a dense subset of its completion N. The

Bochner integrable functions with values in R satisfying requirement (ii) above
form a Banach space. In this space, those functions which have an N-valued version
form a subspace. Another subspace is the set of functions whose mean belongs to
N. W is isometrically isomorphic to the intersection of those two subspaces,
under the natural embedding.

It is important to note that W contains all simple functions, that is, all
functions of which a version has finite range, each of the values being taken on a
measurable set. Since P is a finite measure and all functions in W are Bochner
integrable, the linear subspace of simple functions is dense in W in the sense of
convergence in measure. It is norm dense in

2.2. Geometric interpretation in N. Any choice of a normed space N, an order
p >= 1, an element q of t# and a subset of A of N defines a decision problem with
the cost (15) and the pth order mean evaluator. The resulting supercriterion
J’N [0, ) is given by

(18) J(x)-- (E{llx q(o)) p})X/p,
or, for p co, by

(19) J(x) ess sup IIx q(o)
That is, (4) and (5) are applied with the probability structure induced on B N
by q. The optimal performance is J* infA J(x).
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LEMMA 2. The mean ?/= E{q(o)} is a representative element in the sense of
Definition 3.

Proof. Let S be the set of all linear functionals tp on N with induced norm

sup-- <= 1,
,u Ilxll

where, as usual, the occurrence of 0/0 under the supremum sign is ignored because
sup {num./den.[conditions} is interpreted as inf {klconditions num. =< k den.}.
This interpretation is used throughout the sequel.

Then [Ixl sup{{cp, x)lcpS} (because the norm-dual is always norm
determining). Since q is Bochner integrable, q and {cp, q) are integrable. Thus
one has, for flo F/and any N,

sup (q, z g/)lq 6 S}
sup {E{(q, z q(o))}lq S}
E{sup {(q, q(co))lq S}}

({II q(o)ll})

_<_ ess sup IIo q(co)ll,

where the last two inequalities hold by the monotonicity in p of the pth order mean.
Hence K(g, flo) _-< J(cz) for all cz in N and, in particular, for in A, satisfying

Definition 3 as claimed.
With flo ?/, a suboptimal choice o is one that satisfies (12), i.e.,

(20) o e A and V oee A’llOeo 11 II /I.

The least value of k such that Jo J(o) <- kJ*, i.e., the supremum of Jo/J*,
is sought under various assumptions concerning f, , P, N, A. A bound k holds
on a set A when the conditions (20) imply Jo <= kJ*. This means that on a set
where no suboptimal o exists any bound holds and on a set where several choices
for o exist k must be valid for every possible choice in order to qualify.

The parallelogram law. One important possible assumption is that the
parallelogram law

(21) Ilx yll 2 + IIx + yll z 2llxl + 211yll 2

holds in N. Then N is a real inner product (pre-Hilbert) space with the inner
product given by

(22) x.y 1/4(I x + y 2 IIx yllZ).

In this connection, one has the so-called "certainty equivalence" property for
quadratic criteria 1].

LEMMA 3. If the parallelogram law holds in N and p 2, then this law holds
in U and Jo J*.
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Proof. For x, y in t/ (21) holds pointwise, and by integration with

(23) IIIxlll 2 E{ x(co)ll 2}
it is seen to hold in . Because is now an inner product space one has

(24)
j2() E{ lie q(co)ll 2}

a_q 2 +e{ q(o)- 0 2},
where E{q(m)}. If ao minimizes a in A, then it minimizes the right side
of (24) and thereby also J(a). Hence J(ao) J*.

Convexity. For a fixed element q e W(, if, P, N, p) the bound k, for all
nonempty sets A in N, is just

(25) k sup
[J(v)

u, v e N, u O Iv -.011
Indeed if u eo satisfies (20) on some set A, then for any point v A, J(u) kJ(v)
by (25); whence.Jo N kJ* showing that the bound holds. But for any pair of
points u, v satisfying u O N Ilv O one possible choice of A is {u, v}, with
eo u; hence the bound is sharp. If the bound kc holding over all convex sets A
is sought, then

supa(U) u veu, v0e[0 ]" u-O < Ou+(1-O)v-O}(26) kc (j()

because if u eo satisfies (20) on a convex set A and v is another point of A, the
segment uv belongs to A, and by (26), J(u) kcJ(v), implying that the bound holds.
For u, v satisfying the condition in (26), the segment uv is a convex choice for A
with eo u, and therefore the bound is sharp.

When the parallelogram law holds, the condition

(27) u O Ou + (1- O)v O for all0e[0,1]

is equivalent to

(28)
v+q 1

For fixed g/and v, equation (28) restricts u to a sphere, while in general the set Cv
of all u satisfying (27) need not even be convex, though it is always star shaped
with respect to both g/and v.

Symmetry. The symmetry assumption is that the probability measure
generated in N by q is symmetric. More precisely, the involution x 2?/- x on
N is assumed measure preserving. This implies J(x)= J(2g/- x). The resulting
simplification is great. First, since J is convex, g/minimizes J on N, regardless of
the value of p. Most important is the following.

LENNA 4. Let the space N, the class of subsets A and the order p be fixed.
Let k be the supremum of Jo/J* over all those choices of fL , P and of q U(,,
P, N, p) that generate a symmetric distribution in N. Let k’ be the supremum over
all q with the fixed choice f {o91,602} - 2n, P(col) P(co2). Then k k’.
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Proof. With that choice of (fL , P), every q generates a two-point symmetric
distribution and all such distributions can be so generated (all functions on f are
simple functions, hence belong to rift). Therefore k’ <= k by inclusion. To show
the reverse inequality let # be any probability measure on the Borel sets of N,
symmetric about some point g/, which is taken as the origin without loss of gen-
erality. Then J is finite everywhere if finite somewhere, and when eo satisfies (20)
inAandl__<p< oe, onehas

Jg JP(ao) E{ Ila0 q(co)l[ p}

E{l[ao + q(co)ll p}

1/2g{ll% q(co)ll p + lifo + q(co)l

(by symmetry)

However, by definition of k’ one has pointwise

lifo q(co)ll p + Io + q(co)ll p k’P( I- q(co)[[P + 1 + q(co) P)

for all co e f and cz A. Integration gives

Jg <= k’P1/2(E{II q(o)ll p / I1 / q(og)llP})

k’PE{ll q()ll p} (by symmetry)

k’’j(a)p.

Taking the infimum over in A, then the power 1/p yields Jo <= k’J* or k < k’,
establishing the claim for p < . For p

Jo ess sup eo q(co)II

ess sup leo + q(co)ll (by symmetry)

ess sup max (1 o
By definition of k’ one has for all in A and co in f,

max (I ao q(co)l[, o + q(co) _-< k’ max (lie q(co) + q(co)1).

Taking the essential supremum gives

Jo -<_ k’ ess sup max (lie q(co)ll, Icz + q(co)l

k’esssup a-q(co)

k’J(a).
(by symmetry)

Taking the infimum over in A yields Jo <= k’J* hence k =< k’, thus completing
the proof of the lemma.

Since the simplification of the probability space is valid by Lemma 4 for
any fixed choice of N it is automatically valid for bounds over any given class of
normed spaces.

2.3. Geometric interpretation in 4. A natural embedding of N into Y is
obtained by assigning to in N the function (i.e., equivalence class) on f almost
surely equal to . This is an isometric isomorphism between N and the subspace
U of almost surely constant functions in A/.
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Let M be the linear operator on 4: which maps q into the constant function
with value g/= E{q(co)}. Then M is a projection operator with range U. The
complementary projection T 1- M translates a distribution in N to have
zero mean. Let Q be the subspace of determined by the condition E{q(co)} 0,
i.e., let Q be the kernel of M.

Then M and T are the canonical projections associated with the direct sum
decomposition

(29) 4/’= U + Q

so that MT= TM 0, M + T= I, U rangeM kernelT, Q rangeT
kernel M.
Since the criterion K as well as the classes of constraint sets A to be considered

are translation invariant, one may, without loss of generality, restrict attention to
the zero mean case, that is, consider only q in subspace Q. Now if u is the image
in U of N, under the natural embedding, then J() ]llu qll].

On the other hand, the distance in N of e to the mean is cz Illu]ll. Hence
(20) becomes" Uo is suboptimal in a subset A of subspace U if and only if for Uo e A

(30)

Then

(3)

while

(32)

Illuolll IIIvlll for all v e A.

Jo --IIIq Uolll

J* inf Ilia viii.
vA

The fact that the mean, according to Lemma 2, is always a representative element
can be expressed by the inequality (for all q Q and for all u e U)

(33) III ulll -< III q / ulll
which is equivalent to, for all x , IIIMxlll _-< IIIxlll, that is, to

(34) iIIMIII 1.

In the very special case where the parallelogram law holds in ,4, relations (33) or
(34) imply orthogonality of U to Q and therefore III Till as well.

In the symmetric case, with Y the space of two-point symmetric distributions
in N, as per Lemma 4, one has (for all u U and all q Q)

Iliu / qlll Illu qlll
from which

(35) IIIqlll 1/2111(q / u) / (q u)lll _-< 1/2(lllq / ulll / Ilia ulll)= Ilia / ulll
so that III Till 1 in that case also.

However, in general, from IIIMIII 1 and the triangle inequality (for operators)
one only obtains
(36) 1 _<_ Ill Till -<_ 2,

and these bounds are sharp.
Finally since T and M are bounded, the subspaces U and Q are closed in .
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2.4. Geometric expression for the sharp bounds. For fixed (fL o,/9, N, p) the
sharp bound on 3o/.1" for all sets A in N and all random vectors in f can be
expressed by combining the translation to zero of the mean, the geometric in-
terpretation of 2.3 and the expression (25) of the bound for fixed q. The result is

III q + ulll(37) k sup sup sup
Q v so IIIq + viii

where

(38) s {u uI Illulll IIIvlll},
When only convex sets A are considered one obtains likewise, from (20),

an expression

III q + ulll(39) kc sup sup sup

where

(40) Cv {u UI for all 0 s [0, 1], Illulll III0u + (1 0)viii}.
2.5. Sharp bounds on classes. The most useful bounds for applications are

those that hold under general, readily verifiable conditions and make the fullest
use of these conditions. Therefore one seeks sharp bounds on classes of cases.

Let ’ denote a nonempty class of probability spaces, let 2; denote a non-
empty class of normed spaces and let 1 =< p <_

Then k(, E, p) will denote the smallest number k such that Jo < kJ* for
all cases where N E, (fL -, P) , q V(f, -, P, N, p), A N and J is defined
by the pth order mean.

Similarly kc(, 2, p) will denote the number defined as above but with the
additional condition that only convex sets A are considered.

By inclusion and Theorem 2, one has

(41) 1 <= kc(, E, p) <= k(, Z, p) <_ 3.

A class 2; will be called quadratic when each of its members satisfies the parallelo-
gram law.

The two most important classes of probability spaces are:
00: the class of all probability spaces,

and
: the class having as its only member the two-point symmetric probability

space of Lemma 4.
Other classes of interest are those containing only probability spaces of finite
cardinality. Among these is

": the class of all probability spaces with card f n, , 2n.
The most important classes of real normed spaces are:
2;: the class of all normed spaces,
2;" the (quadratic) class of all normed spaces in which the parallelogram

law holds (the pre-Hilbert spaces),
E, Zep the classes defined like E, respectively 2;, except that only spaces of

dimension not exceeding the positive integer d are included.
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3. Duality theory.
3.1. Simple duality. Assumptions concerning completeness, reflexivity and

separability are unwise and unnecessary for most of the results on inequalities.
For this reason a weaker form of duality than usual should be used here.

DEFINITION 5. Two real normed spaces N, N* with a bilinear product
(., :N* N R are said to be in simple duality if and only if the two following
relations hold:

(x*,x5
(42) Ilxl] sup for all x e N,

(x*,x5
(43) IIx* sup for all x* N.

In other words, N* is (isometrically isomorphic under the natural embedding
to) a norm-determining subspace of the norm-dual of N and vice versa. Afortiori,
each of the spaces
xinN

(44)

and for x* in N*

(45)

"is" a total set of linear functionals on the other; that is, for

(for all x* e N*, (x*, x) 0) x 0,

(for all x e N, (x*, x) 0) - x* 0.

When N is finite-dimensional (a "Minkowski space") then Definition 5 implies
that N* "is" the norm-dual of N and vice versa, but otherwise the natural em-
bedding of N* into the norm-dual of N need not even have an everywhere dense
range.

It is crucial for the sequel that the simple duality between N and N* transfers
itself automatically to f’, A/* when the latter are constructed with a common
probability space and with conjugate exponents. Because the present set-up is
slightly weaker than the usual one it may not be redundant to give the proof in
extenso.

LEMMA 5. Let N, N* be in simply duality, (D,,P) a probability space,
1 < p, p* <= oo with p-1 + p,-1 1. Then A(D,,P,N,p) U and
A/’(f, , P, N*, p*) t/* are in simple duality with the bilinear product defined,
for x* A/*, x A, by

(46) ((x*, x>> e{(x*(o)),

Proof By symmetry only one of the two relations in Definition 5 need be
proved, say

(47) IIIxlll- sup

This holds for x 0 so that one may assume x va 0 below.
By the simple duality of N and N* one has pointwise

(48) {x*(o), x(o)5 = x*(o)l x(o)
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Integrating this relation gives

((x*, x)) :{(x*(o),
(49) =< E{ x*(co)]l. Ix(co)}

_-< IIIx*lll- IIIxlll,

where the last step holds by H61der’s inequality for real functions.
Thus (47) holds with the >= sign. The reverse inequality will first be proved

for x s, a simple function taking values si in N on sets fi with probabilities w,
i= 1,..., n.

By the simple duality of N and N* there exists, for all/3 > 0, and s e N, a
ray in N* such that for any s’ on that ray

(S,Si) (1 -/3) Is;ll ]lsi]

where the length Is’ll can be chosen as desired.
Let s*e * be the simple function taking the values s’ on the set fi,
1, .--, n; then

i=1

(1 /3) Z Wi IS IS, II"

For p 1, choose IIs’ 1, giving Ills*Ill 1 and

((S*, S)) (1 ,) 2 Wi Si

(1 )llls*lll"

proving the assertion.
For 1 < p < o, choose Is? Ilai P/P*;then

Z W S SI] 2 Wi S p Z W S]I p*

from which

as before.
For p v let j be one of the indices for which the maximum in

IIIslll- maxwi>o sill is attained, and choose s]l 6i. Then Ills*Ill- Yg wg s’
w and

(s*, s)) __> (1 ) wi s.*, Ilai

(1 e)w2 sj

(1 )llls*lll" IIIslll,

completing the duality proof for simple functions.
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Now for 1 =< p < the simple functions are norm-dense in V’, and for
x - 0, e > 0, one can choose s such that Ills xIII _-< lllxlll, Then IIIslll->_ IIIxIII
-Ills xlll _-> (1 )lllxlll and constructing s* as above, one has s* - 0 and

(( s* x)) (( s* s )) + (( s* x

>= ((s*, s)) I((s*, x

(1 )llls*lll" IIIslll Ills*Ill" II1 xlll
_>_ (1 3 / 2)llls*lll. IIIxlll,

proving that equality holds in (47).
Finally for p o, x V, e > 0 the probability that

(1 )lllxlll x(o) IIIxlll
is positive by definition of Illxlll ess sup IIx(o)

Since x is Bochner integrable it is almost separably-valued. Then the inter-
section of the above shell with the range of a version of x is separable so that, for
all e > 0, it can be covered by a countable collection of spheres of radius e centered
at a separating set. By countable additivity at least one of these spheres has
positive probability.

Hence there exists at N such that (1 )lllxlll _-< ]a =< Illxlll and such that
the set F c f on which x(o) a <_ lllxlll has positive probability P{F} w.

Choose b - 0 in N* such that (b, a) >= (1 e)Ilbll" Ila[I from which (b, a)
>= (1 )2111xlll. Ilbll. Let x*(o9) b for o9 in F, 0 otherwise. Then x* 4: 0, x* e Y*
and

However, on F

so that

((x*, x )) e{ (x*(o), x(co))

fv P(do)(b, x(o9)).

(b, x(co)) (b, a) + (b,x(co)- a)

(1 )2111xlll. lib x(o)- a l" Ibll
_>_ (1 Be + 2)lllxlll. Ibl

((x*,x) >= (1 3e + 2)lllxlll. Ilbll" w

(1 3 + 2)lllxlll. IIIx*lll,

establishing (47) in the case p oe and completing the proof of Lemma 5.
The definitions of the projections M, T and subspaces U, Q in as per 2.3,

when applied in V*, yield entities denoted by M*, T*, U*, Q*. That is, M* is the
mean value projection, T* 1 M*; U* consists of the almost constant func-
tions Q* of the functions of zero mean.

The notation is justified by the following lemma.
LEMMA 6. M* is the operator adjoint to M; T* is the adjoint of T; U* is the

annihilator of Q; Q* is the annihilator of U and vice versa.
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Proof. First, by Lemma 5, ff* is norm determining and, a fortiori, total
on A/ and vice versa. Hence the adjoint of an operator is uniquely defined.

Since Bochner integration commutes with bounded linear operations"

((M*x*, x))

(50)
(x*, )

{<x*(),
<<x*, Mx>),

and of course

((T’x*, x} ((x*, x>) ((M’x*, x} ((x*, x} ((x*, Mx} <<x*, T

(51)

and for u* e U* range M*, q e Q kernel M,

(52) (u*,q) ((M’u*, q} {u*,Mq)= ((u*, O} O,

and likewise ((q*, u)) O.

3.2. Duality lemmas for support functions. Now for u in U, u* in U*, the dual
product ((u*, u)) is just (*, ), where , * are the preimages of u, t* in N, N* under
the natural embedding.

More precisely, we have the following lemma.
LEMMA 7. When (( .,. )) is restricted to U* U it establishes a simple duality

between these subspaces.
Indeed

<*, 5 <<u*,u55
(53) Illulll I1- sup sup

and vice versa. For this reason one can use the same symbols for elements of
N, N* and U, U* without inconsistency. From Lemmas 5 and 7 follows the
next obvious but important lemma.

LEMMA 8. For v U, v* U* and Sv, Sv, defined as in (38), one has

sup ((v*, u)) lily*Ill" IIIvlll sup ((u*, v)).
uSv u*Sv,

With the convexity assumption it is necessary to consider the sets Cv and
C, defined as in (40).

LEMMA 9. Suppose the parallelogram law holds in N; hence also in N*. Then

sup (v*, u)) sup (u*, v)
uCv tt*Cv,

1/2(v*, v> + 1/2111*111" II1111.

Proof. By Lemma 7 one need only establish it for the preimages in N, N* of
the vectors and sets involved.

In N, Cv is the sphere

(54) C ul u __< Ilvll
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by virtue of (28). That is,

c= v+--
For v* in N* the support function of Cv is

sup(v*,u) sup v*, v + n
uc _-<

IIv sup (v* n)(55)
2
(v*, v) + - I1,11 =<1

1
(v*, v) + v*-2 v,

and the symmetry of this expression establishes Lemma 9.
When the parallelogram law is not assumed, the convexity assumption

becomes more difficult to exploit. For the first time it will be useful then that N*
consist of all bounded linear functionals on N, i.e., be the norm-dual of N.

In the case where N is finite-dimensional this follows from the simple duality.
But in infinite dimension the assumption is made in the next lemma to enable the
use of the Hahn-Banach theorem.

LEMMA 10. Assume N* contains all bounded linear functionals on N. Then
for all v U, v* U* one has

sup ((v*, u)) __< sup
uCv u*Cv*

Proof. One need only consider the preimages in N, N*. For any v e N,
v* eN*, ue Cv either (v*,u) =< 0 and then for u* 0e C, one has (u*,v)
>_ (v*, u) or else (v*, u) > 0, implying u 4 0.

Then the ball {x e NI x < Ilu } is disjoint from the segment {Ou + (1 O)v[
0 =< 0 __< 1 }, and by the Hahn-Banach theorem there exists a nonzero linear func-
tional which separates them.

Such a functional can be taken to have unit norm and, by assumption, is
represented in N*. Hence there exists n* e N* such that

(i) Iln*l]- 1,
(ii) IIx < u (n*, x) =< (n*, u),

which entail {n*, u) u and
(iii) {n*, v) _> {n*, u).

Let

u*
(v*’ u)

n*.
u

First u* belongs to C, because, for all 0,

ul)n*, u + (1 O)(v*, u)
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(v*, u)/llull Ilu*ll.

Second,

which shows that

(V*, U><u*, v> --<n*, v>

>_ --(n*,u)
ull

(v*, u),

(56) sup (u*, v) sup (v*, u),
u*Cv* uCv

establishing Lemma lO.
COROLLARY. If N, N* are complete reflexive, i.e., mutually norm-dual Banach

spaces, then the conclusion of Lemma 10 holds with equality.

3.3. Elemental duality theorems. Given a probability space (, , P), an ex-
ponent p [1, ], a pair of normed spaces in simple duality N, N* define U
+Q as in 2 and ’* U* + Q*. Then without the convexity assumption, the
bounds k, k* are defined by (37) and its dual. These bounds are equal.

THEOREM 4. For " U + Q and ’* U* + Q* constructed above, the
three following expressions are numerically equal:

Ill q + ulll
(i) k -= sup sup sup

t, . IIIq / viii

(ii)
IIIq* + u*lll

k*-= sup sup sup

(iii) sup sup sup sup

Proof. By virtue of the symmetry of expression (iii) one need only show that
it equals k.

By Lemma 5, U and * are in simple duality; hence

((x*, q +
sup

(57) sup sup
q*Q* v*U*

((q* + v*, q + u))
Iq* -4- v*ll

sup sup
q*Q* v*U*

(q*, q)) + ((v*, u))
IIIq* + v’ill
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Thus,

((q*, q)) + ((v*, u))
k sup sup sup sup sup

qQ ov s Q, ,v, IIIq* + v*lll" IIIq + viii
((q*, q)) + sup {((v*, u))lu e S}

sup sup sup sup
Q ** ** q* + v*lll. Illq + viii

and by Lemma 8 this reduces to expression (iii), proving Theorem 4.
When the bound is over convex sets only, then (39) must be used. Two cases

are distinguished according to whether the parallelogram law does or does not
hold in N.

THEOREM 5. Assume the parallelogram law holds in N, N* and let U, * be
constructed as in Theorem 4. Then the following three expressions are equal:

IIIq / ulll
(i) k sup sup sup

qQ v .co IIIq + viii
IIIq* + *111(ii) k*= sup sup sup

((q*, q*)) + ((v*, v))/2 + lily*Ill" Illvlll/2
(iii) sup sup sup sup

qa q*a* v o,v* IIIq* + v*lll" IIIq + viii

Proof. The only change as compared to the proof of Theorem 4 is that
Lemma 9 is invoked instead of Lemma 8.

TIJEOREN 6. Suppose N* is the norm-dual of N and let k, k* be the same ex-
pressions as in Theorem 5. Then k <= k*.

Proof. Using expressions for k, k* derived as in Theorem 4, one has

(58)

k sup sup sup sup
qeQ q*eQ* veU v*eU*

=< sup sup sup sup
qQ q*eQ* vU v*U*

((q*, q)) + sup {((v*, u))lu Cv}
IIIq* + v*lll-Illq + viii

((q*, q)) + sup {((u*, v))lu* e cv,}

where the inequality is due to Lemma 10.
The inequality of Theorem 6 will be enough to obtain equality for bounds

holding on classes of normed spaces, as in the sequel.

3.4. Duality for bounds on classes. Since bounds on classes are the most
important, the duality of such bounds is of greatest interest. It requires some
form of duality between the classes of normed spaces involved.

This motivates the next two definitions.
DEFINITION 6. Two classes of real normed spaces are said to be in simple

duality if for each N e E there exist an N* E* and a bilinear function N x N* --, R
such that N, N* are in simple duality, and conversely for each N* 2;* there
exist an N s 2; and a bilinear function such that the same holds.
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DEFINITION 7. Two classes of real normed spaces are said to be in full duality
if for each space N in E there exists in E* a space isometrically isomorphic to the
norm-dual of N, and conversely.

Note that the members of Z and Z* need not all be complete and none need
be reflexive. Indeed it is sufficient that whenever N e E each even order iterated
norm-dual of N be represented (modulo isometric isomorphism) in Z and each
odd order iterated norm-dual be represented in Z* and conversely for each space
in 2;*.

The duality theorems for classes can now be readily obtained. The exponent
conjugate to p is denoted by p*.

THEOREM 7. If the classes 2; and 2;* are in simple duality then

k(, 2;, p) k(, 2;*, p*).

Proof For each (, -, P)e and N e 2; there is, by Definition 6, an N* in
Z* for which Theorem 4 applies. Hence, any value of Jo/J* that can be approached
with , 2; and p can be approached or exceeded with , Z* and p*. This shows
that k(, 2;, p) =< k(,Z*,p*) and a symmetric argument yields the reverse
inequality, establishing the theorem.

THEOREM 8. If the classes 2; and 2;* are quadratic and in simple duality then

k(, 2;, p) k(, 2;*, p*).

Proof The proof proceeds as for Theorem 7 with appeal to Theorem 5
instead of 4.

THEOREM 9. If the classes 2; and 2;* are in full duality then

k(, Z, p) kc(, Y*, p*).

Proof For each (fL , P) in and N in 2; there is, by Definition 7, a repre-
sentation N* of the norm-dual of N in the class 2;*. By Theorem 6 any value of
Jo/J* that can be approached with YL if, P, N, p and convex sets in N can be
approached or exceeded with YL -, P, N*, p* and convex sets in N*. This estab-
lishes kc(, Z, p) _<_ kc(, E*, p*). For the symmetric argument, one needs only the
symmetry built into Definition 7; the unsymmetric Theorem 6 is simply applied to
the representative in E of the norm dual of a space in E*. This yields the reverse
inequality and proves the theorem.

Applying these results to the classes considered in 2.5 leads to the next
theorem.

THEOREM 10. If 2; 2; or 2; or Ed or 2;dp, if is any class of probability
spaces and if 1 <= p, p* <_ are conjugate exponents, then

k(, X, p) k(, Z, p*).

Proof. Each of the classes E listed in the statement is in full duality with
itself because the norm-dual of a normed space is a normed space, the norm-dual
of a pre-Hilbert space is a Hilbert space, the norm-dual of a space of dimension
d has the same dimension. Hence, Theorems 7 and 9 suffice to establish Theorem 10.
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Applying Theorem 10 with Z oo, a aoo, with E Z, , with
Z o, a ao, and with Z, a as, and letting p 1, p* oo, one
obtains eight equalities which provide a complete explanation of the phenomena
that were reported earlier [11], [12] and were a motivation for the present study.

4. Properties and values of bounds.
4.1. Auxiliary lemmas. For a specific normed space and probability space

the bounds may be very difficult to compute, but for broad classes of spaces their
determination is often easier because the extreme situations tend to be quite
simple.

Attempts to determine the bounds are facilitated by a number of elementary
lemmas.

LEMMA 11. The values of expressions (37), (39) for the bounds are unchanged
if one or more of the following simplifications are made:

(i) Replace S by dSv, where

d& {u UI Illulll Illvlll}.
(ii) Replace C by dC, where

dC {u UI Illulll inr Ill0u + (1 0>Ill}.
0_<o<1

(iii) Remove point v from S, C, dSv or dC.
(iv) Strengthen v U by the condition
Prooj For Uo in S(C), a straight line through Uo and the origin intersects

S(Cv) in an interval whose endpoints u l, u2 belong to dS(dC). Since the ratio in
(37) or (39) is convex in u for fixed q and v, the maximum of the ratio for u u l,

u2 cannot be less than the ratio for u Uo. This establishes (i) and (ii). Since
u v gives a unit ratio this case can be disregarded as in (iii). From v 0 follows
u 0; hence, one may assume v 0 and by homogeneity [llvl[I 1, that is, (iv).

For comparing bounds on different classes an appropriate subordination
relation among classes is needed.

DEFINITION g. The subordination =< ]2 holds if and only if for any
normed space in class E1 there exists an isometrically isomorphic subspace in a

space in class E2.
DEFINITION 9. The subordination 5a 5a2 holds if and only if for all

("1, 1, P1) in a there exists ("2, 2, P2) in /2 and f:2 -+ 1 such that for all
sets S e the set f-1(S) belongs to o2 and PI(S) P2(f-*(S)).

LEMMA 12. One has

(ii) 2 ’ <-- 2,
(iii) Z1 =< X2, 1 5 2 imply, jbr 1 <= p <=

and

kc(Xl, il, P) kc(X2, 2, P)"

Proof. (i), (ii) and (iii) for a 2 are obvious. However, (iii) with X 2
holds because for any N in X 2 and any (a,, P1) in #1 one can choose
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(r"2, 2, P2) in 2 and f as in Definition 9. Then for any ql in /1/’("1 1, P1, N, p)
the function q2 ql of belongs to Y(2,, P2, N, p) and generates the same
function J on N. Thus any ratio feasible with 1 is feasible with 2.

LEMMA 13. Assume E <= Z" and 0+ <= then, for 1 <= p <= ,
k(, , p) k("+1, x, p)

and

Proof. Any space N e E is of finite dimension d N n. For p , (fL -, P) e ,
q e (fLff, P, N, ) choose a finite e-net on a ball in N of radius greater than
I[]qlll. Then quantize q to the nearest net-point to obtain a simple function s which
satisfies Ills qlll < e. For 1 __< p < such an s can be found even in the infinite-
dimensional case. Thus one need only consider simple functions, and, by transla-
tion, only those of zero mean. The set of all probability measures on a fixed finite
set in N is convex and compact. Hence the main theorem of Dubins [3] applies;
that is, any such measure with zero mean is a convex combination of measures
supported on subsets of cardinality at most d + 1 and also of zero mean. If a
bound holds for class + 1, it holds for all these measures and as in Lemma 4
for their convex combinations. This establishes ktc)(, E, p) <= ktc)("+ 1, ., p).
Lemma 12 implies the reverse inequality, completing the proof.

For a class E of normed spaces, (Z)d will denote the class of all normed spaces
of dimension not exceeding d that are subspaces of spaces in E, provided with the
induced norms. With this notation one has, within isomorphism, Ed= (2)d,
Edp (E)a and always (E)a __< E.

LEMMA 14. If <= , then

(59) kc)(, E, p) kc)(, (E)"+ 1, p).

and if in addition Z is quadratic, then

(60) kc)(, Z, p) kc)(, (E)", p).

Proof. Any random vector q of zero mean has a range of at most n points
and this set of vectors spans a space of dimension not exceeding n 1 because
of the zero mean condition. Thus for any choice of u, v all points involved are
contained in an (n + 1)-dimensional subspace of a space in Z. This establishes
the first equality. If E is quadratic then the (n + 1)-dimensional space is Euclidean.
The range of q and point u are contained in some n-dimensional subspace H.
With expression (37), replace v by the point in H obtained by a rotation leaving
the span of range q fixed. Then IIIq / lll IIIq / viii and Ill’Ill [llvlll so that u e Sv
and the ratio is unchanged. With expression (39), replace v by its orthogonal
projection upon H. Then u Cv implies uC and one has IIIq / 111 =< I[Iq / viii
so that the ratio is not decreased. This shows that in either case one need only
consider n-dimensional subspaces, as claimed.

The bounds for infinite-dimensional spaces are limits of bounds on finite-
dimensional spaces as can be seen from the previous lemma in conjunction with
the following one.
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LEMMA 15. For <= p < o and any class Z one has

kc)( 2, p) sup kc)(" 2 p)
n>0

and if there exists a class E* with which E is in full duality then this holds for p
as well. (Simple duality suffices without convexity or with quadratic

Proof. The first part of the lemma follows from the fact that the simple
functions are norm-dense in any space formed with 1 p < . The second
part follows by duality from the first part with p 1.

Finally Lemma 3 can be restated as follows.
LZMMA 16. For any class and any quadratic class E one has

k(, 2, 2) kc(, 2,2) 1.

4.2. Smooth norms and duaty. When the norm in is differentiable except
at the origin, denote by gx the linear functional which is the gradient at point x
of the norm. One has for all x 0 in

(61) gxl a,
and, by Euler’s theorem on homogeneous functions,

(62) ((g, x lxl
Now assume that for exponent p and U + Q one has found u, v in U and
q in Q to yield a maximum in the expression for the bound. Then, without con-
vexity, one may assume ul vii by Lemma 11. Thus one has found a maximum
of

log IIIq + ulll- log Illq +
subject to

and
Mq=Tu=Tv=O.

Assume * is the norm-dual of 4/. Then the Lagrange multipliers are a real
number 2 and three vectors e,/, 7 in * such that

(63)
log IIq + ulll- log Ilia + viii + 2(lllull[- Illvll[)

+((, Mq)) + ((//, Tu)) + ((3;, Tv))

is at an unconstrained extremum.
Setting to zero the differentials with respect to q, u, v yields these equations

in V*:

gq+u q+v(64) Iq+u q+ v
+M-e=0’

gq+u
(65) I[Iq + u[l[ + 2g, + T*fl O,

gq+v(66) IIIq + viii
+ 2gv- T*7 0.
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Note that because u, v belong to U and ]IIMI] 1, the gradients gu, gv belong to
U*. Define

(67) u* M*gq+v
=--(E U*

IIIq + viii

(68) v* M*gq+.-- U*,
Illq /

(69) q* T*gq+u T*gq+v Q*.IIIq +
Then

(70)

(71)

(72)

and

(73)

u* -2g,

v* -2gu,

IIIq* + v*lll IIIq + viii
so that q*, u*, v* yield the maximum in Y*.

With the convexity assumption, the condition

Illulll IIIOu + (1 O)vll for all 0 e E0, 1]

is equivalent, by convexity of the norm, to the requirement that the directional
derivative of the norm at u in the direction from u to v be nonnegative. When the
gradient exists this is just

(74) g., v u)) >= 0

and at the maximum equality will hold. Thus one has an unconstrained maximum
of the function

(75)
log

+((o, Mq)) + ((fl, Tu)) + ((7, Tv)).

Now assume the norm twice continuously differentiable, except at the origin. Then
the Hessian Hx of the norm at point x is a self-adjoint linear mapping of Y into
*. Because of the homogeneity of the norm one has, for all x,

(76) Hxx O.

Using this Hessian one obtains three equations in 4/*"

gq+u gq+v M*(77)
Illq / ulll- [llq + viii

+ cz- 0,

(78) gq+ 2gu + 2H,,v + T*fl O,

(79)
gq+v

IIIq + vii
-2g.- T*7= O.
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Now defining u*, v*, q* by the formulas (67)-(69) as before one still has

(80)
Illq* / u*ll[. [llq / ulll
q* + v*ll IIIq + v

but now

(81) u*

and

(82) v* -2g. + 2M*H,v.

The gradient of the dual norm at g. is u/[ lu[ because u/illull[ and ((u/ll ul g.))

Hence the gradient at u* 2g. is +_ u/[ {u{[. Therefore

(83) ((g.., v* u*)) ((u, M*H.v))

and the dual constraints are satisfied since

(84) ((u, M*H,v}} ((Mu, H,v}} ((u, H,v}} ((H,u, v}} ((0, v}} 0.

Note that the proportionality of u* to g, can be seen also from the fact that with a
smooth norm in N the only possible choice of n* in Lemma 10 is the gradient of
the norm at u.

4.3. Smetry. With the symmetry assumption one need only consider
by Lemma 4. Since 2 one need only, by Lemma 14, consider

classes Z subordinated to E3 or, in the quadratic case, to Z. Since E is isomorphic
to {E, E2} and since k(, {E1}, p) 1 for all p, the only quadratic bounds that
can be considered are k(, {E2}, p) and kc(, {E2}, p) which will be computed
later.

Without the parallelogram law there are an infinity of possibilities, essentially
as many as there are classes of convex bodies in R 3. When the conditions defining
such a class are involved, the determination of the bounds could be very difficult.
All such bounds are upper bounded by k(, E3, p).

THEOREM 11.

k(,E,p)= k(,E3,p)= 2 forl p .
Proof. For ulll vii one has, by (33) and (35),

Illq + ulll IIIqlll + Illull IIIqll+lllll 2llq + 1
which shows that k(, E, p) 2.

To see that k(,E3, p) 2 consider N R3 with /-norm. Let q(l)
(1, 1, 0), q(2) (- 1, 1, 0), u (1, 1, 0), v (0, 0, 1). Then Ilul I111 1,

q(a)- ul IIq(2)- ul 2 giving [llq u 2, while IIq(l)-
I[q(2) vii 1 giving ]l]q vll 1 which completes the proof.

4.4. Logarithmic convexity. According to expression (iii) of Theorem 4 the
bound k for given spaces and *, without convexity, can be written, with
x=q+v,x* =q* +v
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(85) k sup (( T’x*, Tx) + M*x*ll IIIMxlll
subject to x e,/V, lllxtll _-< 1, x* *, IIIx*ll __< and using the dual expression
for the norm"

k sup ((T’x*, Tx)) + ((M’x*, y))((y*, Mx))(86)

subject to

x*, y* *, x*lll 1, lily*Ill 1.

Similarly the expression (iii) of Theorem 5 can be written as

(87) k sup ((T’x*,

subject to the same conditions.
These expressions for the bounds satisfy all but one of the requirements of

Lemma VI.10.7 as extended by Exercise VI.11.39 in Dunford and Schwartz [4].
The missing feature is the field of complex rather than real scalars.

Hence, to prove that log k is convex as a function of p- 1, as is the case in all
examples known to the writer, one would have to construct an extension of the
entire set-up to the complex field and show furthermore that this extension does
not increase the bound. This will not be attempted here, but it is conjectured that
the Riesz-type convexity holds at least for all quadratic classes.

Note that logarithmic convexity can hold for a class 2 even if it does not
hold with some (in principle, any) of the normed spaces in E, because the supremum
of a set of nonconvex functions can be convex.

4.5. Powers of norms and pseudonorms. The criterion K may at first be ex-
pressed by a pseudonorm rather than a norm. This would be due to the presence
of "don’t care" subspaces (in particular, components) in the underlying linear
space. Since the bound depends only on the images of all vectors involved in the
normed quotient space, all properties established in this paper are applicable.
In fact the results can be stated in a slightly stronger form because for a set to
have a convex image in the quotient space it is sufficient but not necessary that
the set be convex. Likewise for a probability measure to induce a symmetric
measure in the quotient space it is sufficient but not necessary that it be symmetric
in the original space.

Another obvious but useful point concerns the case where K is a power of
a norm (or pseudonorm). If one denotes by k(r, p) a bound for the mean of order
p e [1, o ], of the rth power, r __> p- , of a norm, then the botnds considered in this
paper are those denoted k(1, p) and yield the other bounds by the formula

(88) k(r, p) U(1, rp).

Of most interest are the cases k(r, ) U(1, ) and k(r, 1) U(1, r).

4.6. The general one-dimensional bound. The class E contains only spaces
isomorphic to the real line;the parallelogram law holds;and symmetry yields
trivially a bound 1 for all p. There remain two important problems, the first being
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the determination of

(p) k(,, p).

By its definition k(p) is the smallest number k such that for all real random
variables q with finite pth moment and any real numbers u, v one has

lu ql < Iv ql = (lu q]P)’/P <= k(lv -q]P)’/P

(with ess sup operation when p ). By Lemma 16, k(2) 1. By Theorem 10,
k(p) k(p*) for p* conjugate to p. It is known [12] that k(1) k() 3. There-
fore one need only consider 1 < p < 2. By Lemma 11, one need only consider
v 1, u 1. By Lemma 13 one need only consider distributions taking values
-a with probability b/(a + b), and b with probability a/(a + b), for a, b > 0.
Hence

(89)

where

kP(p) sup {Rp(a, b)]a > 0, b > 0},

(90) Rp(a, b) b.ll-alp+a(1 +b)
b(1 +a)p+a.ll-blp"

Now for 0 < a < 1, Rp(1/a, b) > Rp(a, b), and for b > 1, Rp(a, 1/b) > Rp(a, b).
Therefore one need only consider a >= 1, 0 < b =< 1 which resolves the absolute
value signs. For p 1 the supremum of R is approached as a - , with b 1.
But for 1 < p < 2 the limit as a is 1, for each b e(0, 1]. Also OR/c3b is
negative at b 1 and OR/Oa is positive at a 1. Hence the maximum of R is
attained for some a, b with 1 < a < , 0 < b < 1 and these values must satisfy
the necessary conditions OR/Oa c3R/c3b 0 which can be written

(91)

b(a- 1)" + a(1 + b)v

b(a + 1)V + a(1- b)p

(p- 1)a+ 1
(p 1)a- 1

1 (p 1)b
1 + (p 1)b

p-1

p-1

This shows that at the maximum a > 1/(p 1). Let

(a + 1)p-
(92) =(p- 1)a+ 1’ fl=

(1 b)p-1

1 -(p 1)b’

then the expression for R can be written, using (91),

(93) R
b(a- 1)[(p- 1)a- 1IRa + a(1 + b)[1 + (p- 1)b]Rfl
b(a + 1)[(p 1)a + 1] -4- a(1 b)[1 (p 1)b]fl
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from which e ft. Thus it is necessary that

(94)

and

(1 -I- b)p-1 (a- 1)p-1

1 +(p-1)b (p-1)a-1

(95)
(1 b)p-1 (a + 1)p-1

1-(p- 1)b (p- 1)a+ 1

By monotonicity (94), (95) determines a as a function of b on (0, 1); and one must
seek the intersections of the curves fl 0, f2 0, where

(96)

(97)

f(a,b)=(p- 1) log(1 +b)-log(1 +(p- 1)b)-(p- 1)log(a- 1)

+ log ((p 1)a 1),

fz(a,b)=(p- 1) log(l- b)-log(1-(p- 1)b)-(p- 1) log(a+ 1)

+ log ((p 1)a + 1).

For 1/(p- 1)<a < oeand0<b< 1 one has

(98) c3fl > c3f2 Of2 < c3f
c-- -0-a-a >0’ Ob -<0.

(99)

and f2 0 is a solution of

The curve f 0 is a solution of the differential equation

ga fl/b
db t?f,/c3a’

(100)
da cf2/c3b > cf/c3b
db c3f2/ca t?fl/c3a"

This differential inequality shows that the curves cannot cross more than once.
Hence the convergence of Newton’s method to a solution of f f2 0 within
the bounds guarantees that the value of k(p) is being approached.

It can be verified that if a, b yield the maximum with exponent p then

(101) a* (p 1)b, b* (p 1)a

yield the maximum for p* p/(p 1).
Computed values of k(p) are given in Table 1. The convexity of log k(p) as a

function of lip is apparent in Fig. 1.
As p approaches 1, b approaches 1 very rapidly so that kp may be approx-

imated by the maximum over a of Rp(a, 1). Furthermore the maximizing a is close
to 2/(p 1)and therefore

(102) k(p)
p + 1 2

+ 2(p 1)P

for p close to 1.
At p 2 the values of a and b are immaterial but the limits of the optimal

a, b as p approaches 2 from below are solutions of the asymptotic form of (94),
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0
.01
.05
.10
.15
.20
.25
30
35
40
.45
.49
.499
.50

TABLE
Values of k(, Ex, P)

1.01684854
1.08730938
1.18347748
1.29092191
1.41287885
1.55377397
1.71978473
1.91979017
2.16766609
2.49075092
2.85895929
2.98096328
3

(4.9252)
5.0253
5.4633
6.1156
6.9306
7.9896
9.4388
11.571
15.071
21.985
42.460

203.78
2005.9

2)
b

(.67421)
.68765
.74028
.80297
.86089
.91200
.95351
.98227
.99655
.99988
1.00000
1.00000
1.00000
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FIG. 1. Logarithmic convexity.for l" k(, Yx, p) and II." kc(, yl, p)

(95) which is

b a
(103) l_-L-- + log(1 b)= - log(a + 1)

a+l

(104)
b a

1 +b
log(1 +b)=a_l log(a- 1).
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The solution 4, of these equations is given in Table 1. When p 2 is approached
from above then the optimal a, b tend, by (101), to the limits a b, b 4. Thus a
swap occurs at p 2, corresponding to the corner in the graph of k.

4.7. One-dimensional bounds with convexity. For the determination of k(p)
kc(’,E1,p) one may take v 1 by Lemma 11. Then Cv [0, 1] so that,

again by Lemma 11, one need only consider u 0.
The interpretation of this bound is thus the following" By what factor can the

mean of a random variable fail to minimize the pth mean deviation? Astoundingly,
it seems that these factors may not have been computed before, though their
determination is very simple.

It is known that k(p*) k(p) for conjugate exponents (Theorem 10) and that
k(2) 1, k(1) k(oo)= 2 (see [12]). By Lemma 13 one has k(p)= kc(2, E 1, p)
so that it suffices to consider two-point distributions of zero mean localized at
-a, +b (a, b > 0).

Thus one has to find, for < p < 2,

with

kP(p) sup {R,(a, b)la, b > 0}

bap + abp
(105) Rv(a, b)

b(a + 1)p + a[b- 1] v"

For be(0, 1) there exists fl > 1 such that (1- b)P/b (fl- 1)P/fl and
Rv(a, fl) >= Re(a, b); thus one may restrict to b >__ 1, resolving the absolute value
sign. The case b can be eliminated by differentiation and the case a and/or
b - yields R - 1. Thus a maximum is reached for finite a > 0, b > 1. From the
necessary conditions cR/?a c?R/cb 0 one can derive

(106)
(a + 1)-1 (b- 1)p-1

a b

(107)
ap- bp

(p- 1)a- 1 (p- 1)b+ 1"

These relations first show that a > 1/(p 1). Define

(108) f(a, b) (p 1) log (a + 1) log a (p 1) log (b 1) + log b,

(109)
f2(a,b)=(p- 1)loga-log((p- 1)a- 1)-(p- 1) logb

+ log ((p 1)b + 1).

These functions have the partial derivatives

c3fl (2-- p)a + 1 cOf
(110) ca a(a + 1) cb

63f2 (p 1)[(2 p)a + 1] Of2(111) ca a[(p- 1)a- 1] gb b[(p- 1)b + 1]

These formulas show that the left sides of (106), (107) are strictly monotone,
so that fa 0 defines a o(b) and f2 0 defines a 2(b) as single-valued

(2--p)b-- 1

b(b 1)

(p- 1)[(2- p)b- 1]
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maps for b > 1. As b oo so does a, with

so that

b + 1) (p 1)/(2 p)

0x(b --* b b- 1

tp2(b)
(p )b]

q,(b) < (P2(b)

for sufficiently large b.
However, for be(l/(2- p), oo), equations (110), (111) yield an inequality

for the differential equations that q91 (192 satisfy"

t?f2/c3b t?fl/ab(112) ---<Of2/c3a Of,/Oa"
Hence q01(b) < q92(b holds for b > 1/(2 p). It therefore suffices to seek solutions
offa =f2 =0intheregiona> 1/(p- 1),1 <b< 1/(2-p).

In that region (112) holds with the inequality reversed showing that there
can be no more than one solution. Thus when Newton’s method converges one
is assured to have approached the bound. Numerical results are given in Table 2.
The logarithmic convexity is apparent in Fig. 1.

0
.01
.05
.10
.15
.20
.25
.30
.35
.40
.45
.49
.499
.50

TABLE 2
Values of kc(, Z1, p)

1.00035136
1.00876825
1.03488172
1.07780874
1.13684798
1.21156503
1.30265981
1.41315708
1.54973722
1.72653600
1.92532002
1.99005234
2

(for p 2)

127.80
28.078
16.222
12.896
11.925
12.204
13.602
16.613
23.180
43.390

204.52
2006.6

11.602
2.5485
1.4696
1.1581
1.0440
1.00743
1.00043
1.00000
1.00000
1.00000
1.00000
1.00000

As in the previous case, when a, b yield k(p) then a* (p 1)b, b* (p 1)a
yield k(p*) k(p).

4.8. Bound with symmetry and quadratic norms. The value ofk(p) k(, Z, p)
has a simple closed form expression. By the previous lemmas k(p) k(, {E2), p)
and geometric arguments in the Euclidean plane could be used. Instead, it may be
worth giving a completely independent proof of the result.
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THEOREM 12. k(s,Z,/9)--- 2I1/p- 1/21 for 1 p o0.

Proof. For k > 0 and lul 1 the expression

(113) (1 + u)k + (1 u)k

is even in u, and its derivative

k( + u)- ( u)-’]
is nonnegative for u [0, 1], k [1, ), nonpositive for u [0, 1], k (0, 1]. Hence,
for u [-1, + 1] the range of expression (113) is [2,2k] for k >= 1 and [2k, 2] for
k =< 1. It follows that for k > O, ]ul =< 1, Ivl =< 1 one has

(114) (1 + u) + (1 u) _<_ 2I*-’1[(1 + v) + (1 v)k].
For a, b, x in an inner product space and a _-< []bl] let

a.x b.x
u=2 v=2

Ilall 2 / Ix[ 2, ilbll 2 / ilxll 2

and k p/2 in (114). Then multiply by the inequality

to obtain

(115)

(llall 2 + Ilxl12)p/2 (llbll 2 + I[xl12)p/2

Ila + xll p + Ila xll p 21p/2-11(llb + xll p + b xllP).

By averaging with x a symmetrically distributed random vector of zero mean one
obtains

(116) E{lla + xll p} 2Ip/2-11E{ ]b + xllP},
and the power 1/p gives

(117) J(a) < 2]l/2-1/PlJ(b)

whenever Ilall lib I, showing that the bound holds. To see that the bound is
sharp let al b xl 1 and take a parallel (orthogonal) to x and b
orthogonal (parallel) to x for p > 2 (p < 2). For p oo, a sharp bound of x//
was established earlier [11].

4.9. Bounds with symmetry, convexity and quadratic norms. In this section the
values of k(p)= kc(s,Z,p) are investigated. One has k(2)= 1, k(1)--

2/x/ (see [11]) and, by Theorem 10, k(p*) k(p) for conjugate exponents p*, p.
By Lemma 14, k(p)= kc(,Z,p) and since the one-dimensional bound is
trivially 1, k(p) kc(as, {E2}, p). Now in E2 consider v and u g= v, u dCv as per
Lemma 11. The values +__ q of the random variable may be assumed to lie on the
same side of the line uv by the reflection principle. Now choose the scale so that
the orthogonal projections of q, -q on line uv are distant by 2 (coinciding projec-
tions would give a ratio of 1). Call a, b the distances of -q, q to line uv. One may
assume a > b >= 0 (a b) would give a ratio of 1). Let z be the oriented distance
from u to v.
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Then

(a2 + 1)p/2 + (b2 + 1)pie
(118) kP(p) sup

(az + (1 + z)2)p/2 + (b2 + (1 z)2)p/2

over all z, and a > b _>_ 0. One may first choose z to minimize the denominator
of (118). This being a power of a convex function of z one need only look at the
sign of the derivative at z 0 which is the sign of

(119) (a2 + 1)p/2-1 (b2 + 1)p/2-1

to conclude that for p > 2 the optimal z is closer to the farthest point, i.e., 1 < z

< 0, while for 1 < p < 2 it is closer to the nearest point, i.e., 0 < z < 1. One may
therefore restrict attention to these ranges of z.

Assume a > b > 0 and z minimizing the denominator with either < p < 2
or 2 < p < oo. Then perform the unilateral variation, e > 0

b--+b-,

b(b2 + 1)p/Z-1
a a + a(a2 + 1)p/2_

g"

Then with z held fixed the first order differential of the numerator of (118) is
zero while the denominator has a differential with the sign of

(120) [(a2 -+-(1 q-z)2)(b2 -}- 1)]p/2-1 [(b2 2r-(1- z)2)(a2 -+- 1)]p/2-1,

that is, the sign of z sgn (p/2- 1) which by the choice of z is negative. Thus b
may be assumed zero. Then

1 -+-(1 "-}-a2)p/2
(121) kP(p) sup sup R,(a z)

.,= l1 / zl p + [(1 z)2 q- a2]p/2

For 1<p<2 or 2<p< oo the extreme cases x--+oo, z-0,1,-1 can be
eliminated. Then a maximum must exist satisfying the necessary conditions
obtained by differentiation"

(122) a2 + (1 z)2 [(1 + z)P-l(1 z)-]2/p-2),

(123) R,(a, z)
1 +a2

(1 z)2 nt- a2

p/2-

Eliminating a2 between these equations yields

(124) f(z) =_ z(2 z) + (1 + z)2(v-)/(-2)(1 Z)2/(2 p) (1 2Z)2/(2- p) 0,

which shows that -1 < z < 1/2, and with z determined from (124) a follows by
(122).

Now for 1 < p < 2 equation (124) must have a solution in (-1, 0). The
solution z 0 is spurious since cR/cz is not zero there for any positive a. To see
that (124) has no more than one solution it suffices that ]’(z)/z be monotone on
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(- 1, 0) or that zf’(z) f(z) have constant sign. But indeed

zf’(z) f(z)

3 p
2Z)p/(2_1 -2-} pZ (1-

(1 22)p/(2- p) Z2

P) + (1 - 2)2 - 4
2

because z e (- 1, 0). However, in that interval

1 2z > 1 > z2

and p e(1,2) implies p/(2- p)> 1; hence (1- 2z)P/(z-P)> so that zf’(z)
-f(z) > 0. Thus if Newton’s method converges to a solution off(z) 0 in (0, 1)
the bound is being approached.

Computed values are given in Table 3 while logarithmic convexity can be
observed in Fig. 2.

0
.01
.05
.10
.15
.20
.25
.30
.35
.40
.45
.49
.499
.50

TABLE 3
Values of kc(s, E, p)

(for p 2)

1.00004829
1.00121125
1.00489560
1.01120789
1.02041526
1.03290380
1.04916350
1.06969073
1.09466559
1.12337816
1.14825189
1.15405165
1.15470054

(8.1630)
8.3687
9.1114
10.0506
10.9550
11.7417
12.2798
12.3862
11.8629
10.6554
9.1678
8.2041
8.0198
8

0
.02242
.11704
.24622
.38641
.53455
.68404
.82271
.93139
.98930
.99996
1.00000
1.00000

If z, a yield the maximum in (121) for exponent p then for the conjugate
exponent p* the maximum is given by

(125) z*

a* a
(126)

z-g z"

The values z, z* are in the same relation as the exponents but on the other branch
of the hyperbola.

When x I1/p- 1/21 is close to 1/2 one has the approximation k(p)w, (1
+ 3- 1/(2x))x.
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FIG. 2. Logarithmic convexity for kc(,, p)

0.5

5. Conclusions.
5.1. Other bounds and their uses. Only a few of the most interesting bounds

have been determined above. The others remain to be computed. Furthermore
the types of bounds considered can be widened in two directions. First, other
classes of sets A, besides all sets and all convex sets, could be considered. Second,
iterated evaluators such as the mean of order P of means of order P2 could be
considered. This would require the set-up of a space one level above space .

One way in which the bounds can be used is the following. Suppose that the
determination of the optimum J* is too difficult, but that, on any grounds what-
soever, a design a appears promising and yields J1 J(al). Then, if ao and
Jo J(ao) are easy to determine and a bound k holds, one can assert that k-1Jo

=< J*=< J1. Since J1 < Jo (otherwise ao would be preferred to al) this may be a
sufficiently narrow range to validate al from a practical standpoint.

It is worth stating explicitly that some of the bounds considered in this paper
apply to random variables, random vectors, random processes, random fields and
random measures. By Theorem 3, the bounds for p can also be applied to
the nonrandom minimax problems.

5.2. Feedback. The results given here are of interest, by Theorem 1, as soon
as the zig-zag inequality (7) holds. It would be easy to overestimate the range of
applicability on this basis. In fact, as soon as the extensive form of the decision
problem has sequential stages with feedback possibilities the zig-zag inequality
is unlikely to hold, because a wide range of possible feedback laws is allowed.



PERFORMANCE BOUNDS 89

In the sequential situation a more detailed analysis must be made and differ-
ent types of bounds become of interest. Nevertheless the first results in that
direction show that there are relations (the "conversion theorem" [12]) between
the bounds of the present paper and some ofthe inequalities for two-stage problems.

5.3. Acknowledgments. The author is very much indebted to C. L. Mallows
who took an active part in suggesting and programming early computer tests
of what was then a duality conjecture. Many useful comments of his and of V. E.
Benes, S. P. Lloyd, L. A. Shepp and A. Tromba were helpful in the development of
a systematic approach. The author owes the numerical results given here to the
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REMARKS ON CONTROLLABILITY OF
SECOND ORDER EVOLUTION EQUATIONS IN HILBERT SPACES*

KUNIO TSUJIOKA"

(1)

with the initial condition

1. Introduction. We consider controllability of a second order evolution
equation in a Hilbert space E;

d2u
dt2

Au(t) / Bf(t), 0 < T,

(2) u(O) (o)= o,

where A is a self-adjoint operator in E and B is a bounded linear operator on a
Hilbert space F to E. A function f(t) belonging to ca(J0, T]; F) is called a control.
The function u(t) is defined on [0, T] and takes values in E.

H. O. Fattorini studied the relation between controllability of a first order
evolution equation in E;

(3)
du
dt

Au(t) / Bf(t), 0 < < T,

with the initial condition

(4) u(O) 0

and that of (1)-(2) for an operator A which is not always self-adjoint (cf. 1]).
When (3)-(4) is controllable for some A and for some B, we shall ask for another
operator B which makes (1)-(2) controllable at any finite time.

2. Preliminaries. Let E and F be two complex Hilbert spaces and let A be
a self-adjoint operator semibounded from above with domain D(A) in E. We
denote by L(X, Y) the set of all bounded linear operators on a Hilbert space X
into a Hilbert space Y. Let B be an operator in L(F, E). The norm and the scalar
product in E are denoted by I]" and (.,.) respectively. A control f(t) is a function
belonging to Ca(J0, T] F) for some positive T. Since A is semibounded from above,
we can find real numbers a and 8, 6 > 0, such that ((-A + a)u,u) > 61[//I] 2 for
u D(A). We denote by A/2 the positive square root of the positive operator
As -A + . D(A/2) becomes a Hilbert space denoted by H1/2 with its scalar
product defined by (u,v)I-I,/2 (A/Zu, A/2v) for u, v e D(A/2). Putting ul u,
u2 du/dt, the second order evolution equation (1) with the initial condition (2)
is reduced to the first order equation

d
(5)

dt
(t)-- 9.1 (t) + f(t),

bl2 bl2
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where

{6)

with the initial condition

A
f{t)

Bf(t)

{7) u)(o) o.
U2

We consider (5) in the Hilbert space Hx/2 E. Let 9.1 be the operator in

with domain D(91) D(A) x D(A/2) such that 91 for e D(gA).
u2 Aul bl2

B is the operator in L(F, Y) defined in (6). The operator oA is the infinitesimal
generator ofa continuous groupin (cf., e.g., [3], [4], [5]). We say that an -valued

function (t) on [0, T] is a solution of (5) with a given initial value
U2 U20

(i)
U

U2
(0) Ul0)

U20

(ii)

in D(9.1) if

Ul
(t)6D(9A) for 0 < =< T,

U2

ull(t belongs to C1([0, T];3) and satisfies (5) for every t(0, T].
U2

(iii)

Since oA is the infinitesimal generator of the continuous group e’( oe < < oe),
the evolution equation (5) with the initial condition (7) has a unique solution

(t) et’-)f(s) ds
bl2

for any f(t) e C1([0, T]; F). Let us return to the second order evolution equation (1)
with the initial condition (2). We have a unique solution u(t) of (1)-(2) such that

(i) u(0)= du(O)/dt O,
(ii) u(t)6 D(A), du/dt D(A/2), 0 < T,

(iii) u(t) is twice continuously differentiable in E and satisfies (1) for every
(0, T].
For any T > 0, we define the attainable set T in by

r er-Bf(s) ds, f(t) C([0, T]; F
U2 0

For given A and B, we say that the evolution equation (1) with the initial condition
(2) is completely controllable (completely controllable at time T) if U>o Nt
(r ). For a given A in E, the evolution equation (1) with the initial condition
(2) is called finitely controllable (finitely controllable at time T) if it is completely
controllable (completely controllable at time T) for some finite-dimensional
linear space F and for some B in L(F, E) (cf. [2). For the first order equation (3)
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with the initial condition (4) we define the attainable set RT in E by

u d-f(sl ds, f(O e C([0, r; F

Definitions of complete controllability (complete controllability at time T) and
finite controllability (finite controllability at time T) for (3)-(4) are given similarly
(cf. [2]). We have Rr U >o R for any finite r > 0. In fact, h (Rr)+/- (the ortho-
gonal complement of Rr) is equivalent to

e-Bf(s) ds, h (f(s), B*e-h) ds 0

for any f(t)e C([0, T];F); that is, B*eh 0 for 0t T, which can be
continued analytically to 0 < < since e is a holomorphic scmigroup. Thus
(R) (>o R) and R >o R. Consequently complete controllability of
((4) at some finite time is equivalent to complete controllability. As for ,
we have >o , but the converse inclusion does not hold in eneral.

If E is a separable Hilbert space, E has an ordered repreetatio relative to
the self-adjoint operator A (c [6]), that is, there exist a positive measure p defined
and finite for a bounded Borel set in (- , ) vanishing outside a(A), a decreasing
sequence of Borel sets e,, n 1, 2, ..., in (-, ) with a(A) e and a unitary
operator U on E into X ff= L(e,, ) such that we have D(UAU-) {f(2)

(f1(2),..- ,f,(2),...) L2(en, p); 2f(2) e= LZ(en, p)} and that (UAU- lf),(2)
2f,(2) for f(2)e D(UAU-1). If P(em) > 0 and p(em+ ) 0, we say that A has

multiplicity re(A) m. If p(e,) > 0 for all n, we say that A has infinite multiplicity.

3. Complete controllability at any fiNte time of second order evolution equa-
tions. Applying the result of Fattorini [1] to a self-adjoint operator A we have the
following theorem.

THeOreM 1. Let A be a selj:adjoint operator semibounded from above in a
Hilbert space E. Then in order that the second order evolution equation (1) with the
initial condition (2) be completely controllable it is necessary that the first order
evolution equation (3) with the initial condition (4) be completely controllable. This
condition is also sufficient the resolvent set p(A) of A intersects the negative real
axis.

Remark 1. As we remarked in 2 complete controllability of the first order
case is equivalent to complete controllability at any finite time. But in the second
order system complete controllability does not always imply complete con-
trollability at some finite time. When (3)-(4) is completely controllable for some
B, we construct in Theorem 2 another operator B which makes (1(2) completely
controllable at any finite time.

THOgM 2. Let A be a self-adjoint operator semibounded from above in E
and let C be a bounded linear operator in E such that"

(a) C(E) = D(A) = D(A");
(b) if g E, etaCg can be extended to a function holomorphic in a neighborhood

of the origin;
(c) C* is one-to-one"
(d) C commutes with A.
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(All these conditions are satisfied, for example, by C e’4, , > 0.) Let the first
order evolution equation (3) with the initial condition (4) be completely controllable.
Then the second order system

d2u
(8)

dt2
Au + CBf

with the initial condition (2) is completely controllable at any finite time T > O.
Remark 2. Note that p(A) need not intersect the negative real axis in Theorem

2.
LEMMA 1. If h e E, then

(9) etACh ,o . A"Ch.

Proof. Assumption (b) and the identities

for n 0, 1, 2,... imply (9).

dtn(etACh)
1

t=o n!A"Ch

Ch
for hLEMMA 2. Let fg be the operator in Y, such that (h

Chl h2
Then etU(h and *et*h can be extended to a function holomorphic in a neighborhood
of the origin and we have

(10)

(11)

F(t)Ch + G(t)Ch2ett(fh
AG(t)Ch + F(t)Chz]’

ff2,et,h (F(t)C*h + A;1AG(t)C*h21
AG(t)C*h + F(t)C*hz ]’

where

(12) F(t) .o t"
(2n)! A"’

(13) nO t2n +
A".G(t)=

(2n+ ])!

Proof. Assumption (a) implies that if:(30 c D(9,1oo) and that eUffh is in C.
Since (9) converges, (12) and (13) converge at elements of the form Chi and the right-
hand side of (11) can be extended holomorphically in a neighborhood of the origin.
As the derivatives at the origin of both sides of (10) coincide, the equality in (10)
holds. Equation (1,1) is shown easily using (10).

Proof of Theorem 2. If the system (8)-(2) is not completely controllable at

some time T > 0, then there exists a nonnull h such that
h2

(CB)*e*h 0, 0 <__ <= T,
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or, equivalently,

**etg"l*h 0, 0 =< T.

Using (11), (12), (13), we have

B*(G(t)AC*h, + F(t)C*h2) 0

in a neighborhood of the origin which implies that

B*AzAnC*hl B*AnC*h2 0 for all n > 0.

B*etaAoC*hl B*etac*h2 O.

Thus AoC*h C*h2 (RT)+/- {0} and hx h2 0.

4. Finite controllability of second order evolution equations. On finite control-
lability of the first order evolution equations, Fattorini proved the following.

THEOREM 3 (Fattorini [2]). Let A be a self-adjoint operator semibounded from
above in a separable Hilbert space E. Then in order that the first order evolution
equation (3) with the initial condition (4) be finitely controllable it is necessary and
sufficient that A have finite multiplicity. Moreover if A has finite multiplicity m,
we can choose an m-dimensional linear space F and an operator B L(F, E) which
makes (3)-(4) completely controllable and such that (3)-(4) is not completely con-
trollable for any F with dimension less than m.

Remark 3. In [2], Fattorini remarked that the result-of Theorem 3 can be
extended further to certain normal operators with connected resolvent. We have
considered finite controllability of the second order evolution equation (1) in its
first order form (5). The operator 9.1 is normal but it does not always have a con-
nected resolvent and the operator/ has a special form given in (6). Therefore
we cannot apply Theorem 3 directly. In Theorem 4, we obtain a result analogous
to Theorem 3 for second order evolution equations.

THEOREM 4. Let A be a self-adjoint operator semibounded from above in a
separable Hilbert space E. Then in order that the second order evolution equation (1)
with the initial condition (2) be finitely controllable it is necessary and sufficient that
A have finite multiplicity. Moreover if A has finite multiplicity m we can choose
an m-dimensional linear space and an operator B in L(F,E) which makes (1)-(2)
completely controllable at any finite time and such that (1)-(2) is not completely
controllable for any F with dimension less than m.

Proof of Theorem4. Let (1)-(2) be completely controllable for F with
dim F < and for B L(F, E); then (3)-(4) is cgmpletely controllable for F and
B by Theorem 1. It follows immediately from Theorem 3 that m(A) is finite. Con-
versely let m(A) be finite;then we can find finite-dimensional F and B L(F, E)
which make (3)-(4) completely controllable. If we replace B by eAB in (1), then
(1)-(2) is completely controllable at any finite time by Theorem 2. The second
statement of Theorem 4 follows from Theorem 3.
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5. Applications.
Example 1. D. L. Russell (cf. [7])considered controllability of the boundary

value problem for the one-dimensional wave equation

(14)
2u(x, t) 2u(x, t)

c3t2 63X2
+ q(x)u(x, t)= g(x)f(t),

0<<r, 0<x</,

with the boundary condition

(15) aou(O, t) + aux(O, t) bou(l, t) + bu(l, t) O, 0 < <= T,

where q(x)e C[0, T], g(x)e L2(0, T) and a,, b,, i= 0, 1, are real constants such
that a + a 4: 0, b + b2 0. Let A be the differential operator c32/cx2 q(x)

2 (cf., e.g., [8])" u(x) satisfies the boundary condi-with domain D(A) {u(x)e gL2(0,l)
tion (15) in E L2(0,/)}. Then A is a self-adjoint operator semibounded from
above in E, and A has a sequence of simple eigenvalues 2,, n 0, 1, 2, ..., strictly
decreasing and diverging at oe. The multiplicity ofA is 1. Let qg,, n 0, 1, 2, .-.,
be eigenfunctions corresponding to eigenvalues 2,, n 1, 2,..., which form a
complete orthonormal basis for L2(0,1). For m. w/-2., n 1,2,-.., the
following properties hold;

1
lim 9" D,(16) lira inf (o, + o,)

n- D’ n-, n

where D is a positive constant (cf., e.g., [9]). Let us take L2(0, l) as the set of ad-
missible controls f(t). As in 2 we treat (14)-(15) in its matrical form and we put

9tr(L2) e(r-a f(s) ds;f e L2(0, T)
g

Russell considered the following problem.

Problem 1. For any } D(9.1) D(A) x D(A2/2), does there exist a control

f(t)eL2(O, T) such that the corresponding solution of (14)-(15) satisfying the
initial condition u(x, O)= u, c3u(x, 0)/c9t v satisfies the final condition u(x, T)

3u(x, r)fi?t 07

For any f(t) e L2(0, T) and any e D(9.1), the solution of (14)-(15) with the
v0

initial condition u(x, 0)= uo, c3u(x, 0)/c3t Vo in its, matrical first order form is
given by

(17) (t) et + e(t- f(s) ds, 0 <= <_ T.
Vo g

Problem 1 is equivalent to Problem 2 given below if (17) represents the solution
of (14)-(15) for any f(t) L2(0, T).

(uo)Problem 2. For any e D(9.1), does there exist a control f(t) in L2(0, T)
/3o
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such that

+ er-)ga f(s) ds 0?
Vo g

If we replace f(s) by -f(-s) in Problem 2 and if we take account of the fact
that etga is a continuous group, then the equation in Problem 2 becomes

0)ega f(s) ds. Thus Problem 2 is equivalent to the following problem.
Vo g

Problem 3. Does the inclusion D() r(L) hold?
Under the assumption

(18) (g, ,) 0, lim inf hi(g, ,)l > 0,

he solved Problem 2 or equivalently Problem 3 by reducing the problem to a
moment problem in L(0, 1). The result is as follows (cf. [7])"

(i) If r < 2nD, then D() r(L2) does not hold.
(ii) If T > 2riD, then D() c r(Lz) holds.
(iii) If T 2riD, then there are many cases according to the coefficients in

Uo
(15). If we define the solution of(1415) with an initial data by (17), Problem

Vo
1 is equivalent to Problem 2-3. However the function (17) is not always a "strict
solution" as was defined in 2 since it does not necessarily belong to D(N) under
the assumption (18) and the fact that f(t)e L(O, T). It is in general difficult to
see whether (17) belongs to D() for 0 N N T unless it is known that f(t) is

0)continuously differentiable or f(t) e D(N). But the assumption (18) implies that
g

0} never belongs to D(N) and f(t) may not be continuously differentiable. Taking
g
C[0, T] as a set of all controls instead of L2(0, T), we consider Problem 4 given
below in which the solution (17) is a strict solution with the approximating final
condition.

Problem 4. For any e D() and e > 0, does there exist a control
Uo

f(t)e C[0, r] such that the solution (17) of (14(15) satisfies the final condition

.o) ;; 0)eTM er-) f(s) ds < e?
Vo g

As we reduced Problem 2 to Problem 3, we can reduce Problem 4 to the
following problem.

Problem 5. Does the inclusion D() c r hold?
Since D(N) , the above inclusion is equivalent to r which means

complete controllability of the boundary value problem for the one-dimensional
wave equation (14(15) with the initial condition

Ou
(9) u(x, o) N(x, o) o.
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To apply Theorem 2 to our problem, we prove the following lemma.
LEMMA 3 (see [2]). The evolution equation

(20)
3u(x, t)

Au(x, t) + g(x)f(t), u(x, O) O,

0<t<T, 0<x</,

in L2(0, l) is completely controllable if and only if (g, o) 4:0 for n O, 1, 2,
Proof. Let h (R)- then we have

e"(r-)f(s)(g, 0,)o, ds, h 0
n=O

for any f(t)e C[0, T] that is,

(21) et"’(g, go,)(qg,, h) 0
n=0

for e [0, T]. By analytic continuation, (21) holds for e [0, or). For any
n 0, 1,2, 3, ..., with Re 2 > #,

0 e("-)g,h-,dt
2’

where g, (g, qg,), h, (h, q),). By analyticity we have

2, 2
0 for22,, n=0,1,2,....

0

Let F, {z C;Iz- 2,1 e,}, where e, is a positive number such that
e, < min (2,_ 2,, 2, 2,+ 1). Then we have

 z=0.
n=0

Thus (Rr) {0} is equivalent to g 0 for n 0, 1, 2,....
Pooso 1. Let g(x) =o go, where

(22) g 0 and gl Me

for some M > 0 and > 0, n 0, 1, 2, .... Then the initial boundary value problem
for (14), (15), (19) is completely controllable at any finite time T > O.

Pro@ Consider controllability of the second order evolution equation

Ouou(0
u(0+f(0 0<<r, u(0=N(0=0(23) t2

in L2(0, 1). If we put g,, eeZ"/2gn, we see that =o Ig,,[ 2 and g,, - 0 by (22).
It follows from Lemma 3 that the first order evolution equation (20) is completely
controllable at time T if g(x) in (20) is given by g(x)= =o g,,qg,. Thus
g(X) eeA/Zge(X) makes (23) completely controllable at any time by Theorem 2.

Remark 4. If q(x) is nonnegative, then co. w/-2, _>_ 0 for n 0, 1, 2,...
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and assumption (22) can be weakened to

g, 4: O, Ig,I <= Me-’’, n =0,1,2,...

Proof. First we show that e’ 0|\ is holomorphic in (- o, ). In fact, we have
g

(0 1 (01) 0etm Ont.g, qn)qn + COS OOnt(g, qn)qn
0 O’)n

which is holomorphic by the assumption of Remark 4. As in the proof of Theorem
2, r r(L2) is easily verified. Russell’s result (ii) shows that 9 for any
t>0.

Example 2. Let A be the differential operator c32/cx2 in L2(-, )with
domain D(A) g2(-c, ). As for finite controllability of (1)-(2) in this case
we have the following proposition.

PROPOSITION 2. The initial value problem for the one-dimensional wave
equation

(24)
t2/,/ 2

6t2
Au -+- E gi(x)fi(t), 0 < < T, -o < x < ,

i=1

u(x, O) u,(x, O) 0

is completely controllable at any time T if

where

gi(x) - e-a2gi(x
2x/

exp 2e gi(y) dy, 1,2,

N

g(s) ,(s) (2n)- 1/2 1.i.m. ei"g(x) dx for g

and g (x) is a nonnullfunction in L2(- o, o) with compact support, g2(x) g x(x h)
with h :/: O.

Fattorini [2] proved Lemma 4 and Lemma 5 given below.
LEMMA 4. The operator A has multiplicity 2.
LEMMA 5. The first order evolution equation in L2( z,

c3u 2

Au + gi(x)fi(t)
Ot i=1

with the initial condition

u(O) o

is completely controllable where the gi, 1, 2, are given in Proposition 1.
Proof of Proposition 2. The assertion is proved by Theorem 2 and Lemma 5

because gi eAgi, 1, 2.
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SOLUTION OF LINEAR PURSUIT-EVASION GAMES*

YOSHIYUKI SAKAWA"

1. Introduction. This paper treats pursuit-evasion games which are played
by two players and governed by linear differential equations. The pursuit-evasion
games are closely related to differential games of which general theory was
developed by Isaacs [1], Berkovitz [2], Pontryagin [3], Varaiya [4], and others.
If the differential equations describing the evolution of the games are linear, the
problems can be treated more simply in a direct way as shown in [5]-[11].

In this paper, particular attention is paid to the problems of the conditions
under which the game can be completed and of finding a max-min completion time
of the game. Necessary and sufficient conditions for completion of the game are
presented. The optimal controls for both players are derived, respectively. Further-
more, an iterative procedure for computing the max-min completion time and the
optimal controls of both players are given.

2. Formulation of the problem. Let us consider a pursuit-evasion game
described by the linear differential equation"

() dx/dt Alx + Blu Clv,

where x is a state vector in m-dimensional Euclidean space Rm, u is an r-dimensional
control vector of the first player I, v is an s-dimensional control vector of the
second player II, and A 1, B1 and C are m x m, m x r and m x s constant matrices,
respectively. Let U and V be bounded and closed subsets of R and RS, respectively.
Further let U be convex. It is assumed that at each time >= O, u(t) and v(t) must
satisfy the condition

(2) u(t) U, v(t) V, >= O.

Let n be an n m (n =< m) matrix corresponding to the orthogonal pro-
jection from R onto an n-dimensional linear subspace L, i.e.,

L {nx’x R’}.
Further let us define a subset Ms of R by

M {x s Rm" llnxll e}.
The pursuit-evasion game is said to be completed from an initial point x(0) Xo
if, no matter what measurable control v(t) may be chosen by the second player II
such that v(t) V for all >= 0, the first player I can choose a measurable control
u(t) such that u(t) U for all __> 0 and such that x(T)M for some finite time T,
0<T<.
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The rank of the matrix n is assumed to be n. Multiplying (1) by the matrix n
from the left yields

(3) n dx/dt nAx + nBu nCv.
By defining a new n-dimensional vector z in L by

(4) nx z,

a differential equation describing a motion in the n-dimensional linear subspace
L is obtained as follows:

(5) dz/dt Az + Bu- Cv,

where A,

(6)

B and C are respectively n x n, n x r and n x s matrices defined by

A nA n’(nn’)- x,
B nB1, C nC.

In (6),’ denotes the transpose of a matrix. Since rank n rank nn’ n, it is clear
that the inverse of the n n matrix nn’ exists.

The solution of (5) at T with initial condition z0 nXo is given by

(7)
z(T) (T)zo + ff

O(T)zo + f:
(T- t)[Bu(t)- Cv(t)] dt

(t) [Bu(T t) Cv(T t)-I dr,

where I)(t) is given by

(8) (t) e’A.

Now, since the terminal condition x(T)M of the game is equivalent to the
condition

z(T) eS {zeR"" ]z[ < e},

the problem is to choose a control uv(t)e U, >_ 0, according to the opponent’s
control v(t) V, >= O, such that

(9) (T.,.)Zo + (T.,. t)[Buo(t) Cv(t)] dt e S

for some finite time T.,o. The subscripts u, v of T., denote the dependency of
T., on the controls u(t) U and v(t) V, >= O. If, no matter what measurable
control v(t) V, >= O, may be chosen by the second player II, the first player can
choose a measurable control uv(t) U, >= O, such that (9) holds for some finite
time T., < , then the game starting from the initial condition z0 is said to be
completed.

3. Main theorems. Before stating theorems on the completion of the game,
it is necessary to introduce an important operation on compact sets. Let U be a
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bounded and closed subset of Rr. Then a function Hv(rl) is defined by

(10) Hv(rl) sup r/u,
uU

where q is an arbitrary r-dimensional row vector. Since the set U is bounded and
closed, there is a vector u(r/) U such that

(11) Hv(rl) sup qu rlu(rl).
uU

PROPOSITION 1. The function Hv(q) defined by (10) is continuous with respect
to rl. Furthermore, if u(rl) is uniquely determined in some neighborhood of rl, then
u(rl) is continuous in the neighborhood.

Proof. Let A be an arbitrary r-dimensional row vector. From the definition
of u(q), it follows that

and

Hu(r + A)- Hu(rl)= (q + A)u(q + A)- qu(q)

>= ( + A)u(,)- ,u(,)= 6u(n),

/-/( + 6)- Hdn) _-< ( + A)u(n + a)- nu(, + 6)= Au(n + 6).

Hence,

(12) Au(r/) __< Uv(rl + A)- Uv(q)< Au(q + A).

Since the set U is bounded, by letting A 0,

lim Hv(rl + A)= Hv(ri).

This proves the continuity of Hv(rl).
To prove the continuity of u(q), let us assume r/i--, r/o. Since the set U is

compact, we may assume that u(rli) converges to fi U, say. Then

u(n) => u( o).

Passing to the limit as --, oo, we have

o _-> oU(rto).
This shows that

u(3--, U(o),

which completes the proof.
Analogously, Hv() and v() are defined by

H() sup v v(),
vV

where is an arbitrary s-dimensional row vector. For convenience, let us define
the n x r matrix K(t) and the n x s matrix L(t) by

(3) K(t) ,(t), L(t) O(t)C.

It is clear that K(t) and L(t) are analytic. Then (9) is rewritten as

(14) (T,)Zo / K()u(T,, t) & L(Ov(T,, ) d e S.
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Now, by using an analogous technique to [13], the following theorem is obtained.
THEOREM 1. In order that, for any measurable control v(t) e V, >= O, there

exist a measurable control uv(t)e U, >= O, such that (14) holds for some finite time

T,,v >_ O, it is necessary and sufficient that there be a finite time T > 0 such that

(15) =< 20(T)zo + Hv(2K(t)) dt Hv(2L(t)) dt

for all n-dimensional unit row vectors ).

Proof. To prove the necessity, let 2 be an arbitrary n-dimensional unit row
vector. Then, multiplying the left-hand side of (14) by -2 from the left and using
the Schwarz inequality yields

(16) -20(T.,,)Zo 2K(t)u(Tu,o t)dt + 2L(t)v(T.,. t)dt <= e.

Since the inequality (16) must hold for a v(t) V such that

(17)

Since

(8)

2L(t)v(T.,v t)= Hv(2L(t)) sup 2L(t)v,
vV

fTOU’V fToU’V-e =< 20(T.,)z0 + 2K(t)u(T., t)dt- Hv(2L(t)) dt.

2K(t)u(T.,v t) <= Hv()K(t)),

by putting T T.,, (15) is obtained.
To prove the sufficiency, suppose that there is a control v(t) V for which

there exists no control u(t) U, such that (14) holds for some finite time T This
means that the compact convex set defined by

{f: K(t)u(T-t)dt "u(T-t) e U}
does not intersect the compact sphere

o(r)zo + L(t)v(r t) dt + S.

Therefore, there exists an n-dimensional unit row vector 2 such that the inequality

(19) -20(T)zo + 2L(t)v(T- t)dt + )a > )K(t)u(T- t)dt

holds for all u(t) U, [0, T], and for all a
Since the inequality (19) must hold for a u(t) U such that

2K(t)u(T- t)= Hv(2K(t))= sup 2K(t)u
uU

and for a vector a -e2’ S, by using the inequality

H(2L(t)) dt >= 2L(t)v(T t) dr,



104 YOSHIYUKI SAKAWA

it follows that

(20) e > 2q)(T)zo + Hv(2K(t)) dt Hv(2L(t)) dt.

This contradicts (15), and the proof is completed.
From Theorem 1, the following theorem is directly obtained.
THEOREM 2. In order that, for any measurable control v(t) V, >= O, there

exist a measurable control My(t) U, >= O, such that (14) holds for some finite time

T,,v >= O, it is necessary and sufficient that there be a finite time T >_ 0 such that

(21) inf 20(r)zo + Hv(2K(t)) dt Hv(2L(t)) dt > e,

where Q is a set of n-dimensional unit row vectors.
Theorem 2 here is a similar result to Theorem 1 in Pshenichniy’s paper [6].

However, in this paper further results are obtained on the basis of Theorem 2.

4. Several propositions. The vectors u 6 U and v 6 V which attain the
maximum of 2K(t)u and 2L(t)v, respectively, will be henceforth denoted by u(t, 2)
and v(t, 2); i.e.,

(22) Hv(2K(t)) sup 2K(t)u 2K(t)u(t,)O,
uU

(23) Hv(2L(t)) sup 2L(t)v 2L(t)v(t, 2).

In what follows, we assume the following condition.
ASSUMPTION. For each fixed 2 6 Q, the controls u(t, 2) and v(t, 2) are uniquely

determined, respectively, for all 6 [0, T] except a finite number of points on the
interval [0, T].

By this assumption and Proposition 1, it is clear that the controls u(t, 2) and
v(t, 2) are piecewise continuous on [0, T]. Note that if the sets U and Vare compact
and strictly convex, then u(t, 2) and v(t, 2) are uniquely determined for all 6 [0, T]
and continuous on [0, T] (see [12]), and that if the sets U and cony V, cony V
denoting the closed convex hull of V, are compact convex polyhedrons and if
u(t, 2) and v(t, 2) are uniquely defined by the maximum conditions, respectively,
for almost all 6 [0, T], then u(t, 2) and v(t, 2) are piecewise constant on [0, T]
(see [14]).

Let us define a scalar function by

(24)

F(T, 2; Zo) 2q)(T)zo + Hv(2K(t)) dt Hv(2L(t)) dt

2q)(T)zo + 2 K(t)u(t, 2) dt 2 L(t)v(t, 2) dt.

PROPOSITION 2. The gradient vector of the function F(T, 2;Zo) with respect to
) is given by

(25) gradx F(T, 2; Zo) z(T, 2; Zo),
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where z(T, 2;Zo) is defined by

(26) z(T, 2 Zo) (I)(T)zo + K(t)u(t, 2) dt L(t)v(t, 2) dt.

Moreover, grad F(T, 2; Zo) is continuous in T, 2 and Zo.
Proof. Let A be an arbitrary n-dimensional row vector. From the definition

of u(t, 2) it follows that

Hv((2 + A)K(t))- Hv(2K(t))>__ (2 + A)K(t)u(t, 2)- 2K(t)u(t, 2)

AK(t)u(t, 2),

Hv((2 + A)K(t))- Hv(2K(t)) <__ (2 + A)K(t)u(t, 2 + A)- 2K(t)u(t, 2 + A)

AK(t)u(t, 2 + A).

Thus, the following inequality is obtained"

(27) AK(t)u(t, ) <= Hv((2 + A)K(t))- Hv(2K(t)) <__ AK(t)u(t, 2 + A).

Integration of (27) with respect to yields

A K(t)u(t, 2) dt < Hv((2 + A)K(t)) dt Hv(2K(t)) dt

(28)
<= A K(t)u(t, 2 + A) dr.

Let t, t, ..., t (0 < t < t < < t < T) be the points on [0, T] except
where the control u(t, 2) is continuous. Let us define subintervals of [0, T] by

Io(e) [0, e), I+(e) (T e, T],

(29) Ii(e) (ti- e, ti + e), i= 1, ..., N,
N+I

I(e) [O,T]- LJ Ii(e).
i=O

By the continuity argument (Proposition 1), it is clear that for sufficiently small
e > 0 there is a 6(e) > 0 such that, if 11A < di(e), then for e I(e),

(30) u(t,2 + A) u(t,2) < e;

while, since U is bounded there is a constant k > 0 such that
N+I

(31) u(t, 2 + A) u(t, 2)ll < k if e U I(e).
i=0

Therefore, we obtain

(32) u(t, 2 + A) u(t, 2) dt < er + 2e(N + 1)k.

Relations (28) and (32) imply that

fo fo(33) grad 2K(t)u(t, 2) dt K(t)u(t, 2) dt.
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Similarly it can be shown that

fo(34) gradz 2L(t)v(t, 2) dt L(t)v(t, 2) dr.

Hence (25) has been proved. The continuity of gradx F(T, 2; Zo) is evident from
the course of the proof. This completes the proof.

For simplicity, when it is clear that the initial condition is fixed to Zo, one
writes F(T, 2;Zo) and z(T, 2;Zo) simply as F(T, 2) and z(T, 2), respectively.

Now, since the function F(T, 2) given by (24) is continuous in 2 and the set
Q {2 e R": ]]2]] 1} is compact, there is a 2 e Q which attains the infimum of
F(T, 2). Let us denote the 2 which attains the infimum of F(T, 2) by 2(T); i.e.,

PROPOSITION 3.

(35)

inf F(T, 2) F(T, 2(T)).

inf F(T, 2) F(T, 2(T)) z(Z, (T))II,
,;teQ

where z( T, 2) is given by (26).
Proof. Since the minimum of F(T, 2), T being fixed, is sought under the

condition I1,112 1 0, let us define

(36) F(T, 2, #) F(T, 2) + #(I 2112 1),

where p is a Lagrange multiplier. Put

(37) F// zi(T, )0 + 2p2i 0, 1,.-., n,

where zi and 2i are ith components of the vectors z and 2, respectively. Eliminating
the Lagrange multiplier # from (37) yields

(38) 2(T) z’(T, 2( T))/ z( T,

where denotes the transpose of a vector. Substituting (38) into (24) yields (35).
PROPOSITION 4. Let us assume that for any time T > 0 and for any ,1,22 Q,

(38’) z(T, 21) z(T, ,12)11 implies 21 22

Then it follows that

dF(T, 2(T))
(39) 2(T)AtP(T)zo + H(2(T)K(T))- Hv(2(T)L(T)).

dT

Proof. Let 5 be an arbitrary real number. In view of the definition (24) of
F(T, 2) and the relation

P(T + 3) P(T) + A(t) dt,

it follows that

(40) F(T + 6, 2).= F(T, 2) + [)AP(t)zo + Hv(K(t)) Hv(L(t))] dt.
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When 2 2(T + 6), by using the relation

F(T, 2(T + 6)) => F(T, 2(T)) inf F(T, 2),

it follows from (40) that

F(T + 6, 2(T + c5)) F(T, 2(T))
(41) ’T+

_>_ | [2(T + 6)AO(t)Zo + Hu(2(T + 6)K(t))- Hv(2(T + 6)L(t))] dr.
d T

On the other hand, it is clear that

(42) F(T + 6,2(T + 6)) F(T, )(T)) <= F(T + 6, 2(T)) F(T, 2(T)).

Since F(T, 2) is continuous in T, the relations (41) and (42) Show the continuity
of F(T, 2(T)); i.e.,

(43) F(T + 6, 2(T + 6)) --, F(T, 2(T)) if 6 --, 0.

From (35) it is clear that the assumption (38’) implies uniqueness of the 2(T) Q
which attains the infimum of F(T, 2) over Q. Therefore, it follows from (43) that
limo 2(T + 6) has a unique limit 2(T); i.e.,

(44) 2(T + 6) 2(T) if 6 0.

If 6 > 0, it follows from (41) and (42) that

[2(T + b)A(t)Zo + Ht(2(T + b)K(t)) Hv(2(T + 8)L(t))] dt

(45) _<_ [F(T + 6, 2(T + 6)) F(T, 2(T))]/6

__< [F(T + 6, 2(T)) F(T, 2(T))]/6.

In view of (44) and the continuity of Hv(2K(t)) and Hv(2L(t)) in 2 and (by Proposi-
tion 1), it follows from (45) that

dF( T, 2(T))
(46)

dT
2(T)Ac(T)zo + Hv(2(T)K(T))- Uv(2(r)L(r)).

In the case where 6 < 0, the same result (46) is obtained.

5. Completion of the game. Suppose that IlZo > e and there exists a time T
(0 __< T < oe)such that

(47) inf F(T, 2; Zo) F(T, 2(T); Zo) e.

Let To be the smallest nonnegative time satisfying (47). Then the following theorem
is obtained.

THEOREM 3. No matter what measurable control v(t) V, >= O, may be chosen
by the second player II, the game can be completed in a time not greater than To,
where To is the smallest nonnegative time satisfying (47). Further, no matter what
measurable control u(t) U, >= O, may be chosen by the first player I, there is a
control v(t) V, >= O, of the second player II such that the game cannot be completed
in a time smaller than To.
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Proojl Corresponding to an arbitrary control v(t) V, >= O, let us define

fo fo(48) Fv(T, 2; Zo) 20(T)zo + 2 K(t)u(t, 2) at 2 L(t)v(T t) dt.

In view of (23), it is clear that

Fv(T, 2; Zo) >-_ F(T, 2; zo) for all 2 e Q.(49)

Hence,

(50) inf F,(To, 2; Zo) >= inf F(To, 2; Zo) e.
eQ 2eQ

From Proposition 3, it is obvious that

(51)

where

inf F,(T, 2; Zo) F,(T, 2r; Zo) [z,(T, 2T)

(52) zv(T, 2r) O(T)zo + K(t)u(t, 2r) at L(t)v(T t) at,

and 2r e Q attains the infimum of Fv(T, 2; Zo) when T and Zo are fixed.
Since zv(T, 2r) is continuous in time T, and it holds from (50) and (51) that

(53) -IIz(To, To) ->-
there exists a time T* such that

(54) 0 __< T* __< To, -Ilz,(r*, 2r,) -e.

Equation (54) shows that the game can be completed in a time T* which is not
greater than To.

In the same way, let us define

(55) F,(T, 2;Zo) 2(T)zo + 2 K(t)u(T- t)dt- 2 L(t)v(t,2)dt.

In view of (22), it is clear that

F,(T, 2;zo) _-< F(T, 2; zo) for all 2 e Q.

Therefore,

(56) inf F,(To, 2; Zo) =< inf F(To, 2; Zo) e.

From Proposition 3, it is obvious that

(57) inf F,(T, 2; Zo) F,(T, 2T; Zo) IIz.(T,T)ll,
.eQ

where

(58) z.(T, 2r) O(T)zo + K(t)u(T t) dt L(t)v(t, 2r) dt,

and 2re Q attains the infimum of F,(T, 2; Zo). From (56) and (57),

(59) z.(To,2ro) <=-.
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Equation (59) shows that the game cannot be completed in a time smaller than
To. This completes the proof.

Theorem 3 shows that the controls u(t) u(To t, 2(To)) and v(t) v(To t,
2(To)), e [0, To], are respectively optimal for both players, in the sense that the
first player I wishes to complete the game as soon as possible, and the second
player II wishes to prevent the completion of the game as long as possible. The
time To is clearly the smallest max-min completion time of the game.

Now, a natural question may occur. Under what initial condition does a
finite time Texist satisfying (47)? The following theorems give sufficient conditions
for the existence of the finite time T satisfying (47).

THEOREM 4. If the homogeneous differential equation

(60) dz/dt Az

is asymptotically stable and it holds that

(61) BU CV,

where BU and CV are subsets of R" defined by

(62) BU (Bu’u U}, CV {Cv’v V},
then the game can be completed, no matter what the initial condition Zo R" may be.

Proof. Since CV c BU, whatever control v(t) V, >_ O, may be chosen by
the second player II, it is possible for the first player I to choose a control u(t) U,

>__ 0, such that

(63) Bu(t) Cv(t) for all > 0.

Since the system described by (60) is asymptotically stable, there exists a finite
time T such that

(64) z(T)[ =< e.

This completes the proof of the theorem.
Another sufficient condition for the completion of the game is obtained by

using (39). Since
gO(t) eta I + tA + 1/2tZA 2 + ...,

it is clear that

(65) AgO(t) gO(t)A.

Using (65), equation (39) can be rewritten as

dF( T, 2(T))
(66) 2(T)gO(T)Azo + max 2(r)gO(T)fi max 2(T)gO(T).

dT BU bCV

THEOREM 5. Let us assume that for any time T > 0 and for any /1, /2 Q,

(67) z(T, 21)11 z(T, 22) implies 2 2.
If there exists a 6 > 0 such that

(68) -Azo + CV + S BU,

(69) t2(T)gO(T)I[ _-> for all T > O,
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where Sa is a closed sphere in R" of radius about the origin, then the game starting

from zo can be completed.
Proof. Let # be an arbitrary n-dimensional nonzero row vector such that

ll#11 >_- i > 0. Then it is clear that

max #x #x(#) >__ 2,
xS6

where x(#) is a point of S at which the maximum is attained. From (68), for
arbitrary CV and x S, there is a BU such that

-Azo ++x=fi.
Hence, for all e CV and for all # satisfying ]ll] , there is a fie BU such that

(70) #fit + Azo) >-_ 62 > O.

Inequality (70) still holds for such a (#) that

and it holds that

gO() max,
OsCV

#a =< #a(#)= max
BU

Hence, for all # satisfying #1 => 6,

(71) max # max # + #Azo > ,52.
eBU OCV

Under the assumption (67), it is clear from Proposition 4 that (66) holds. By
putting # 2(T)O(T), it is evident from (66) and (71) that

(72) dF(T, 2(r))/dT __> 62 > 0 for all T > 0.

Since F(0, 2(0)) zol < -e < 0, it is clear that the game which starts from
zo can be completed, if zo satisfies (68).

6. Iterative procedures for determining optimal controls. Let us assume that
the game starting from Zo can be completed. The minimum time To and the vector
).(To) satisfying (47) can be computed as follows:

1. Put 21 -Z’o/llzoll, Compute F(T, 21), T > 0, 21 being fixed, up to the
time T1, where F(T1,21) -e. Clearly, T1 =< To.

2. Let F(T, 2i)= -e, i= 1, 2,.... Minimize F(T/,/t) with respect to 2 by
using the gradient method, T being fixed. By Proposition 2, the gradient of F(T, 2)
can be computed easily. Put

min F(T/, ) F(7]/, i +1) "
3. Compute F(T, "i+ 1), T >__ T/,/i+ being fixed, up to the time T/+ 1, where

F(T/+ 1,2i+ 1) -e. It is clear that

(73) F(T, 2+ 1) ->_ F(T, 2(T)) for all Te [0, T+ ,].

4. Iterate procedure 2 and procedure 3.
Since T/_< T+ __< To, lim T/ exists which will be denoted by T;. Clearly
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To <_- To. It holds that

(74) F(T+ 1,/i+ 1) F(T/+ 1, ,(T/)) --E,

and by (43), F(T, 2(T)) is continuous in T, hence

(75) F(T’o, 2(T’o)) .
Since To is the smallest nonnegative time satisfying (47), it follows that T; To,
and 2i + 2(T) --, 2(To 0), if 2(To) is not unique and 2(To 0) 4: 2(To + 0).
It is clear from Theorem 3 that the controls u(t)= u(To- t,2(To- 0)) and
v(t) v(To t, 2(To 0)), e [0, To], are optimal for both players, respectively.

7. Concluding remarks. As we have seen in the preceding section, ).(To 0)
can be determined for each initial condition Zo. Hence, the optimal controls have
been synthesized in the form of u(t)= u(To- t, Zo) and v(t)= v(To- t, Zo),
respectively. In an actual game, however, it is desirable to synthesize the controls
as a function of the current state of the game. In this sense, u(To, Zo) and v(To, Zo)
are optimal feedback controls at 0. Thus, we can synthesize the optimal
controls at in the form of u(To t, z(t)) and v(To t, z(t)), respectively.

In view of Proposition 3, the 2 which minimizes F(T, 2; Zo) under 2 Q
depends on Zo. Thus, let us define 2(T, z) by

(76) inf F(T, 2;z) F(T, 2(T, z); z).

Further let us define u(T, z) by

(77) u(T, z) u(T, ,(T, z)),

where u(T, 2(T, z)) satisfies

(78) max 2(T, z)K(T)u 2(T, z)K(T)u(T, 2(T, z)).
uU

Pshenichniy [15] proved, under several conditions, that if the first player employs
the control u(T, z) thus obtained, then the game governed by

(79) dz(t)/dt Az(t) + Bu(To t, z(t))- Cv(t), z(O) zo,

can be completed in a time not greater than To, where To is the smallest non-
negative time satisfying (47). However, Pshenichniy did not show how to compute
2(T, z), To, and so on. These computations can be done by using the algorithm
shown in this paper. Therefore, the results obtained in this paper will be useful for
synthesizing the optimal open-loop controls, as well as the feedback controls.
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ON CONTROLLABILITY OF NONLINEAR SYSTEMS*

V. A. CHEPRASOV’

We consider the problem of steering a continuous mechanical system to a
position of equilibrium, when the system motion is described by a vector differen-
tial equation

(1) q(z) + Q(t).

Here z(t) is the vector of the phase coordinates of the system, q(z) is some continuous
nonlinear vector function which does not depend explicitly on time, and Q(t) is a
vector of generalized control forces which is to be found. The problem is to find a
force Q(t) such that system (1) is transferred from a given point z(0) of the phase
space at 0 to a position ofequilibrium z(T) 0 at a previously assigned time T.

Equation (1)can be written

(2) Az + f(z) + Q(t),

if we assume that e?(z) Az + f(z), where A is a constant square matrix and
f(0) 0.

Let us examine the linear system

(3) ti Au + Qo(t).

The problem of finding the control force for the system (3) has been solved by
Ya. N. Roitenberg [1].

If the interval [0, T] is subdivided into a number of subintervals, on each of
which the components of the vector Qo(t) are assumed constant, then the number
of subintervals should be such that the total number of steps of all nonzero com-
ponents of the control force is equal to the order of the system. This condition
ensures uniqueness in the determination of forces from a given class of functions
for a given method of partitioning the interval.

The general solution of the matrix equation (3) is of the form

(4) u(t) N(t)u(O) + N(t- r)Qo(r)dr,

where N(t) is the fundamental matrix of the homogeneous system fi Au, and
N(t ) N(t)N-l(r)is the matrix weighting function for the system (3).

Let us assume that the vector Qo(t) has only one nonzero component q ol.

Then the solution (4) in scalar form becomes

uj(t) gjk(t)Uk(O + Njl(t "c)qol(’C) dr, j 1, 2, ..., r.
k=l

Originally published in Vestnik Moskovskogo Universiteta, Matematika, Mekhanika, 1968,
no. 4, pp. 55-64. Submitted on June 15, 1967. This translation into English has been prepared by R. N.
and N. B. McDonough.

Translated and printed for this Journal under a grant-in-aid by the National Science Foundation.

" Computing Center, Moscow State University, Moscow, USSR.
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By assuming that u(T)---0, the interval [0, T] is subdivided into subintervals
[tv-1, tv], v 1, 2, ..-, r, to 0, tr T, and the values qt0V) of the force qol are
considered constant on these subintervals. We then have the system of algebraic
equations

(5) q] NjI(T z) dr Njk(T)Uk(O), j 1,2, ..., r,
v=l k=l

for the q[{)l. If the determinant of this system is not zero, then

(6) Qo(t) BN(T)u(O),
where the components of the vector Qo(t) are the values q) of the force qo on the
subintervals [tv_ 1, tv], and B is the inverse of the matrix ofcoefficients of the system
().

To determine the force Q(t) in (1), we will consider the following process of
successive approximations. Let us pass from the nonlinear differential equation (2)
to the equivalent integral equation

z(t) g(t)z(O) + g(t- r)f[z(r)] dr + g(t- r)Q(r)dr,
o 0

and define the iterative process

N(T)z(O) + N(T )f[z,()] d + N(T z)Q,() d 0,
(7)

z+ l(t) g(t)z(O) + g(t r)f[z+ 1() dr, + g(t r)Q(r,)dr,

n =0,1,2,....

If we take n--0 in the first equation of (7), and put Zo(t)= 0, then from
the condition f(0) 0 there follows the equation for determining the force Qo(t)
which takes the linear system (3) from the state u(0)= z(0) to the state u(T)

z(T) 0. If the force Qo(t) thus determined is applied to the nonlinear system
(2), then we have, from the second equation of (7),

za(t) N(t)z(O) + N(t- T,)f[za()]d + N(t- )Qo()d.

Knowing the solution of this, we can calculate the integral
T

N(T dz,)f[Zl(’C)]
0

needed to determine the force Ql(t) from the first equation of (7). This first
approximation Q l(t) to the required force will allow one to determine the second
approximation z2(t) to the solution, which will determine the second approximation
Q2(t) to the force, etc.

An analogous process was examined in [2]. The approximation z,(t) will
result in a certain residual at time T, this being the deviation from the equilibrium
position.

The residual z,(T) of the nth approximation, i.e., the value of the solution
z,(t) for T, can be found from the second equation of (7) as

z,(T) n(T)z(O) + N(T- )f[z,()] d + N(T- z)Q,_ ,(’c)dz.
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Substituting N(T r)f[z,(r)] dr into the first equation of (7), we obtain

f N T r)q.(r) dr z.(T), q,(t) Q,(t)- Q,_ ,(t),

which is an equation for determining the supplementary force q,(t) as that force
which transfers the linear system (3) from the equilibrium position u(0) 0 to the
position u(T) z,(T). The solution of the linear system on which the correcting
stepwise force q,(t) acts is in this case given by the formula

(8)

and will have the form

q.(t) Bz.( T)

(9) u,(t) N(t r)q,(r)

with u,(T) z,(T).
It is seen that for the iterative process under discussion, it is only necessary

to know the value of the solutions of system (1) at the time T.
For use in the convergence proof of the suggested method of successive

approximations, we introduce norms for all quantities, vector and matrix, entering
into the system (2). For the norm of a vector function, we take the sum of the
maxima of the absolute values of the functions which are its components, and as
the norm of a matrix, we take the sum of the absolute values of the elements of the
matrix.

Since the process of bringing the nonlinear system (1) to equilibrium is to
take place over a finite interval of time, the solutions of the homogeneous system
corresponding to (3) are bounded on this interval. Thus, we can find a constant
C > 1 such that

IIN(t)]] =< C
for all [0, T], where N(t)]] is the norm of the fundamental matrix of the homo-
geneous equation. If a is the norm of the matrix B entering into (6) and (8), then the
zeroth approximation Qo(t) to the sought force will satisfy

(10) ]]Qo(t)]] =< aAt3)JJz(0)
where A3) C.

Further, we assume that, for some number m satisfying

1
(11) mecmT < CZaT2,

there is a closed region R([[zl[ _-< Ao) in which the nonlinear function f(z) in (2)
satisfies a Lipschitz condition for the norm:

(12) Ilf(z,)- f(z2)l[ <_- mllz, 2ll.
Introducing the notation

(13) CaT , CmT l,
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we determine a number

(14) A C +

and assume that the norm z(0) is such that

(5) A z(0) < Ao
is always satisfied.

From the condition C 1, we have

(16) A1 > 1.

From (12) and the condition f(0) 0, there follows the estimate

(17) f(z)[] <= mllz
for the nonlinear function f(z).

In the future, we will need the following estimate [3]. If for => 0 a continuous
function z(t) is positive, z(t) >= O, and if we can find two nonnegative numbers
C1 and C2 such that

then

z(t) <__ C + Cz(r) dr,

(18) z(t) <= Clec2’.

Let us estimate the first approximation zl(t). From the second formula of
(7) it follows that

(19) zl(t) N(t)z(O) + N(t- z)f[zl(z)]dr + N(t- r)Qo(r)dr.

It is necessary to prove that the action of the force Qo(t) on the nonlinear system
(2) will be such that the solution z l(t) remains within the region R on the entire
interval of interest, i.e., to prove that IlZa(t)ll _-< Ao, [0, T].

Let us assume the contrary. Then by virtue of the continuity of the solutions,
a point tle[0, T] can be found such that zl(t) AlllZo[ on the interval
[0, tl]. From the condition zl(0) z(0) and (16) it follows that tl > 0. If we
estimate the solution zl(t) on the interval 0 __< =< tl, where (17) is valid, replacing
the upper limit of the last integral in (19) by T, there results

(20) zl(t) CIIz(O)ll + Cmllzl(r)[[ dr + CA%)llz(O)ll dr, [0, tl].

From this, using (18), we have

(21) z(t)]] =< A’)llz(0)][,
where AI)= (C + C)eu. But, by hypothesis, on the interval [0, tl], ]lzl(t)]l

A1 z(0) Thus A1 _-< A1), in contradiction to (14); thus such a point tl cannot
exist on the interval [0, T]. Thus, the force Qo(t) which brings the linear system (3)
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tO equilibrium does not carry the solution of the nonlinear system (2) out of the
region R at any point of the interval [0, T]. Consequently, the estimate (21) is
valid on the interval [0, T.

Let us estimate the residual of the solution Zl(t) at T. Since the point in
phase space from which the linear and nonlinear systems are brought to equilibrium
is the same for both, from (4) and (19) we have

(22) zl(t)- u(t)= N(t- r)fEzl(v)] d:.

In order to make use of inequality (18) in the estimation of the difference (22),
in the integrand we add and subtract the function N(t z)f[u(z)]. To distinguish
the solution u(t) of the linear system for a given step of the iteration with the initial
condition u(0)--z(0) from all following solutions, we use the subscript zero.
Then

zl(t) -Uo(t) N(t r){f[z,(r)] f[uo(r)]} d + N(t r)f[uo(r)] dr.

It must be shown that the solution Uo(t) lies within the region R. In fact, according
to (4), (10), and (15),

(23) [lUo(t)][ =< (C + tcC)l[z(0)ll < AlllZ(0)l] < Ao.
Using the estimates (12), (17), and (23), in estimating the difference (22), we
obtain

foIlza(t)- Uo(t)li =< Cmllz,()- Uo(’C)ll d’c + Cm(C / C)llz(0)ll d,

from which, taking into account (18) and the fact that uo(T) 0, we have

IIz(T)ll _-< Aa)llz(0)ll,
where

(24) A2
Knowing the estimate of the residual of the first approximation, from (8)

it is possible to estimate the correcting force ql(t), which in turn allows us to
estimate the first approximation Q(t) Qo(t) + ql(t) of the control force.

The inequality

(25) [Iql(t)ll _-< A2)llz(0)ll

holds, where, as before, is the norm of the matrix B. From this it follows that

[Q(t)l -< IQo(t) / ql(t)[ A31)[z(0)

here,

A(1)- A() + A(21)- C + CleU(1 +
Let us estimate the difference between the first and zeroth approximations,
zi(t)- Zo(t). Since, in constructing the zeroth approximation, we assumed
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Zo(t) =- 0 in the first ofequations (7), at this step of the iterative process the estimate
of the difference Zl(t)- Zo(t) will be the same as the estimate (21) of the first
approximation zl(t). In the following it is convenient to use the notation
A(11)-- A(41). Then [[Zl(t z0(t)[ __< A(41)[[z(0)

It remains to be shown that the force Ql(t) which is determined from the
residual Zl(T of the first approximation will not result in a second approximation
which goes outside the region R.

In fact, from (7) we have

z2(t) N(t)z(O) + N(t z)f[z2(z) dz + N(t- z)Ql(z)dz.

As before, we assume there exists a point tl > 0 such that IIZz(t)[I
on the interval [0,

Analogous to the estimate (20), we obtain

[[z2(t)[ C[ z(0) nt- Cm Zz(Z)[ dz + CaA(1) [z(0)[I dz, e [0, tl],

from which, according to (18),

(26) Zz(t)l <=
where

A]= (C + xA))e" {C + xC + Ce"( +

But, by hypothesis, there exists a point tl such that IlZz(t)l[ A1 [[z(0)[[ for [0, tl]
from which follows the inequality A1 _-< A]2). However, from (11) and (13) we have
topeu < hence from (14) this last inequality is false. Thus we have a contradiction,
which is to say that Zz(t does not leave the region R anywhere on the interval
[0, T].

In the estimation of the residual z(T) we need to take into account that
ul(T) + zl(T) 0, where u(t) is the solution of system (3) with initial condition
u1(0) 0. Thus taking into account (7) and (9), we can obtain

(27) z2(t)- zl(t)- u,(t)= N(t- z){f[z(v)] -f[z,(z)]} dz.

For T, expression (27) is the residual z2(T). In the integrand of (27), let us add
and subtract the quantity N(t z)f[zl(z) + ul(z)]. We obtain

(28)

z2(t)- zl(t)- u,(t)= N(t- ){f[z2()] -f[zl() + u,()]} dz

+ (t l{f[(rl + u(rt] f[(rl} &.

To make use of the condition (12) in the estimation of (28), we need to show that
the sum zl(t) + ul(t) also lies in R. To do this, we estimate the solution ul(t).
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According to (9), ul(t)- N(t- r)q (z) dr., from which, using (25), we have

Ilul(t) <= A) z(O) Using this and (21), we obtain

[Zl(t - Ul(t)] ][Zl(t)[[ - Ul(t)[ ---(All) + A2))[lz(0)][,
where

A(ll) + teA(21)= (C + tcC)eu + tcCpe’(1 + ).

Since p > 0,

A(II) -k tcA(1) < {C + tc[C + CpeU(1 + tc)]}e’ A]2).

As was shown by the inequality (26), A(Z)llz(0) < Ao. Thus, also, (A() + tcA(1))
z(0)]] < Ao, i.e., the sum Zl(t) + Ul(t) lies in the region R.

It is now possible to write that

[[z:(t)- z(t)- u(t)l <= Cmllzz(z)- za()- u()ll d / Cm[]ul(z)]] dz,

from which [[Zz(t)- z(t)- Ul(t)[[ =< tcpeC"A(z1)[Iz(O)[[. For t= T, we thus have
the estimate [[z:(T)[[ __< A(zZ)[[z(0)[[, where A(22) tcleUA(2). Thus we have estimated
the residual z(T).

Let us now estimate the second correcting force q:(t). From (8), [[q:(t)[[
__< aA(Z)[[z(0) Since Qz(t) Q(t) + q:(t), we have for Qz(t) the estimate

]lQz(t)]] -< oA(32)

where

A(32) A(I) + A(22).

We will now estimate the difference between the second and first approximations:

z2(t Zl(t N(t- z){f[z2(z)] -f[zl(7:)]} dT; -+- N(t- ")ql(’) d’t’.

From (12) and (25) we have

or, taking into account the estimate (18),

where

A2)= euA1).

It remains to be shown that z3(t) does not depart from the region R. For this,
we estimate the third approximation to obtain

z3(t)] C]]z(0)l + Cm IZ3(r)ll d + CaAf)llz(O)l[



120 v.A. CHEPRASOV

As before, we assume that this inequality is true only on the interval 0 __< =< tl,
where the point is defined as before, from which follows the contradictory
inequality A1 _-< A]3), since

A(13)= C -k- K C -k- -;g---" _]
< A l"

This means that z3(t) does not depart from the region R anywhere on the interval
[0, T].

Thus we have shown that the forces Ql(t)and Q2(t), determined from the
corresponding approximations through the residuals zl(T) and z2(Y), do not
result in solutions which depart from the region R.

The following general assertion is valid" for any n, n 1, 2, ..., there exist
constants A"), A(2"), A(3"), ..., depending on n, such that, for [0, T],

(29) IIz,(t) =< A]") z(0)ll,

(30) z,(T) <= A") Iz(O)

(31) IIq,(t) aA(2") z(O)l

(32) IlQ.(t)ll =< h3")llz(O)

(33) z(t) z_ (t) _-< A) Iz(0)

and such that z,+ (t) does not leave region R for e [0, T]. Further,

(34) A]") (C nt- teA(3 1))eu, n 1,2, ...,
(35) At2,) tcleUAt2 1) n 2, 3, ...,
(36) A3,) A(3 1) + A,), n 1,2, ...,
(37) A")= tceUA2"-1) n 2 3

In fact, for n 2, this assertion has been proved above. Assuming that it is
true for any n, we can show that it is true also for n + 1.

For the (n + 1)th iteration, according to the second of equations (7), we
have

z,+ 1(0 N(t)z(O) + g(t- z)f[z,+ 1(z)] dz + N(t- z)Q,(z)dz.

By hypothesis, the force Q,(t) produces a z,+ l(t) which does not move outside the
region R. Hence from (17) and (32),

z,+ x(t)ll _-< CIIz(O) / Cm z,/ 1(:)11 d’c / CA3n)llz(O)ld’c,
0 0

from which

z.+ l(t)l =< A]+ llz(0)ll,

A(I,+ 1)__ (C .qt_ tcA(,))e.
where

which is the recursion relation (34).
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To estimate the residual z./ I(T), we use the fact that z.(T) + u.(T) O,
where u(t) is the solution of the linear system (3) with initial condition u.(0) 0,
from which, just as in the case of n 2, there follows

z.+ 1(0 z.(t) u.(t) N(t z){fEz.+ 1()] fEz.(v)]} dz.

For T, this difference is z.+ I(T).
This last equation can be written

z.+ l(t)- z.(t)- u.(t)= N(t- r){f[z.+ l(’/s)] --f[z.(r)+ u,,(r)]} dr

+ N(t r){f[z.(r) + u.(r)] f[z.(r)]} dr.

It is necessary to show that the sum of solutions z,(t) + u,(t) lies in the region R.
We will estimate the solution u,(t). Since u,(0) 0, according to (9),

u(t) g(t r)q(r) dr,

so that, using (31), we have

(38) Ilu.(t) =< cA") z(0)ll.

Thus, using (29) and (38),

IIz.(t) / u.(t)ll <= Ilz.(t)ll / Ilu.(t)ll (hi") + :a"))llz(0)l[.
Since

A") + tcA2") (C + tcA3 1))eU + tcA2") < [C + tc(A3 1) + a2.))]e. < A.+ 1),

the sum z.(t) + u.(t) is in the region R.
Thus

fl foIlz.+ l(t) z.(t) u.(t)ll _-< Cm Iz.+ l(r) z.(r) u.(r) dr + Cm u.() dr,

or

where

z.+ I(T)II A"+ X)llz(0)ll,

A2,+ 1) leUA,).

Thus, the recursion relation (35) is proved.
For the (n + 1)th correcting force, from (8) it follows that

(39) Ilq,,+ l(t)ll aA2"+ x)llz(0)ll.

Using (32) and (39), we have

Q.+l(t)ll =< IlQ.(t) / IIq.+l(t)l aA3"+1) Iz(0)
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where

A(,+ 1) A(,) + A(2,+

and thus we have proved the recursion formula (36).
Let us now estimate the difference z,+ l(t) z,(t):

z,,+ l(t) z,(t) N(t r){f[z,+ l(r)J f[z,(r)]} dr + N(t

Using (12) and (31), we have

IIz/ l(t) z.(O <= Cm z,,+ (r) z,,(r) dr + CzA")[ z(O)ll dr,

which, by using (18), yields

IIz/ a(t) z(OII =< h/ X)llz(O)ll,

where

A(2+ 1)

Thus the recursion formula (37) is true.
Let us now show that z,+ 2(t) does not go outside the region R. As before, we

assume that IIz,+ 2(011 has the value Allz(0)ll on a certain interval [0, ti] and we
estimate the approximation on that interval. From (29) and (34),

IIz,/ 2(011 _-< A("+ 2)112(0)11,
where

A(1,+ 2) (C + tcA("+ 1))eu,
from which it follows that A A(1n+ 2). But, on the other hand, from (35) and (36)
we have

(40) A(2 +1 (luce")’A(21)
n+X

(41) A("+’)- A(2)+ A(2k)- A + (ptceU).
k=l k=0

Since the sum in (41) is a geometric progression with ratio peu, with (10) and (24)
we have

{ [ Cpe"(l+tc)(1-(ptce")’+l)]} e"A(ln+ 2) C + tc C +
1 -pe"

i.e., A > A(1n+2), since ptce" < 1. This contradiction shows that z,+2(t)eR,
e [0, T]. Thus the inequalities (29)-(33) and the recursion relations (34)-(37) are

proved.
From (40) it follows that the sequence {A} converges to zero as n

provided cpe < 1. Thus the discrepancy z,(T) tends to zero as n - o, by virtue
of(30), and thus so also do the additional forces q,(t). Since the series (41) converges,
the sequence of forces {Q,(t)} has a finite limit. According to (37), the sequence
{A(4")} converges to zero, from which it follows that lim,o z,(t)-z,_ l(t)ll 0.
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Thus we have proved the convergence of the iterative process under condition (11)
and the other conditions assumed above. But as was shown, condition (11) is
always satisfied if condition (15) is satisfied, from which it follows that the iterative
process converges under the condition

Ao(42) z(0)[[ <
A

where A is given by (14) and Ao,as follows from (12), is given by maxlll <-Ao ]lf’(z)
_<m.

Thus condition (42) is sufficient for convergence of the iterative process which
determines the control force Q(t) which takes the nonlinear system (1) to equi-
librium in a given time.

The iterative process described here was applied to the problem of bringing
a gyrocompass to the meridian, with good results.

The author is deeply grateful to I. A. Balaeva and Ya. N. Roitenberg, who
read the manuscript and made valuable comments.
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THE DECISION PROBLEMS OF DEFINITE
STOCHASTIC AUTOMATA*

I-NGO CHEN" AND C. L. SHENG:I:

Abstract. A k-definite stochastic automaton is defined as a finite stochastic automaton in which
the internal state probability distribution depends only on the last k input symbols for some definite
integer k. Whether or not a stochastic automaton is definite depends on its state transition matrices.
A set of stochastic matrices is called definite of order k by Paz if, for a fixed integer k, any product
of k or more of the matrices is a matrix with all rows equal. A study is made of conditions in which
linearly independent row vectors in the component matrices will result in identical row vectors in
the product matrix. It is established that a definite stochastic automaton with n internal states and
with highest rank of its transition matrices n m is at least (n re)/m-definite. A time saving decision
procedure for the definiteness of stochastic automata is presented and illustrated.

1. Introduction. The notion of a definite event was first introduced by Kleene
in 1956 [1]. The theory of definite automata was then developed by Rabin and
Scott 6, and by Perles et al. [5. By their definition, a finite sequence of symbols
on a certain alphabet is called a tape" and a set of tapes is called a definite event if
for some integer k, two tapes coinciding on the last k squares are either both in
the set or both not in the set.Automata are used for classifying tapes.An automaton
defining a definite event is called a definite automaton. The notion of definiteness
has been applied by Paz I3] to stochastic matrices where a finite set of stochastic
matrices of the same order is called a definite set of matrices of order k, if there
exists an integer k such that for n >= k, any product of n matrices from the set is a
matrix with all rows the same. Such a matrix is called a stable matrix by Paz and
Reichaw [4]. Following this line, we define a stochastic finite automaton as a
system.

(Z, S, {Aai}’o @ Z, 7o, A, F),

where E: input alphabet,
S: finite set of internal states,
{Aa,} finite set of transition matrices where any element AO. is a sto-

chastic matrix. The entry aij(ai) of A, is the probability of transi-
tion from state si to state sj after the input symbol o- is applied,
where Si, Sj e S.

no: initial state probability distribution,
A: set of all state probability distributions,
F: F

_
A, set of final state probability distributions.

Obviously, if the initial state distribution is no, then after an input symbol
O" is applied, the state distribution will be

70 Aai.

* Received by the editors January 28, 1969, and in revised form August 15, 1969. This work was

supported in part by the National Research Council of Canada under Grant A-1690.- Department of Computing Science, University of Alberta, Edmonton, Alberta.
{ Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario.
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Since a tape is a sequence of elements of Z, the transition matrix for a tape
X 0"10"2 0"n is

Ax AI’A2"" An,

where 0"i might equal 0"j for =< i,j <= n. If x and y are tapes, then

A,y Ax. Ay.
Now we define a k-definite stochastic automaton (or definite stochastic

automaton of order k) as a finite stochastic automaton such that for any tape x
of length n >= k, for certain fixed integer k, Ax is stable. A k-definite stochastic
automaton f will thus forget its past except for the last k intervals of time. In
other words, for x with length n __> k, the state distribution of the stochastic
automaton will depend only on the last k inputs and will be independent of the
initial state distribution. The state probability distributions in the first k intervals
of time might be different, depending on different initial state probability distribu-
tions when the input tape x applies. However, after input of k symbols, f will
reach a situation where the state probability distribution can be predicted if only
the last k input symbols are known. We call such a state probability distribution
a stable distribution. All other state probability distributions of f which are not
independent of the initial state probability distribution are called transient dis-
tributions. Thus, similar to the deterministic case (where for a definite automaton
of order k, a destined state is reached following a sequence of transient states of
length k), for a k-definite stochastic automaton fL a stable distribution will be
reached through a sequence of transient distributions of length k. The number of
stable distributions of f is at most equal to (#(Z))k, where #(Z) denotes the
number of elements of Z. Whether a stochastic automaton is definite or not thus
depends on its set of transition matrices {A,}. A stochastic automaton is definite
if and only if its set of transition matrices is definite. In this paper, we investigate
some properties of the transition matrix A,, particularly conditions under which
a stable matrix can be obtained through multiplication of stochastic matrices
which are not stable, and thereupon obtain a time saving decision procedure for
the definiteness of stochastic automata.

2. Some properties of k-definite stochastic automata. Consider any transition
matrix A,, of a stochastic automaton f. Before the input symbol 0"i is applied, the
state probability distribution is a certain vector, say re, where r 6 A. After the
input symbol 0" is applied, the state probability distribution changes from r to
6, c5 6 A. Thus from the point of view of state probability distributions, f is nothing
but a.set of mappings, taking a point rc in A into a point 6 in A. The domain of
every mapping is A. If f has n internal states, then A is a polyhedral convex set
W determined by n unit vectors e, e, ..., e, where ez is an n-component vector
with the ith component 1 and all other components 0. The ranges of the mappings
are different for different input symbols. For an input symbol 0", the range of the
mapping is R, which is also a polyhedral convex set determined by points which
are the row vectors of the matrix A,. We call these points the determining points
of R,. Since A,, is stochastic, R, is contained in W. If a tape x is applied, the
result is a successive mapping. The range of the resultant mapping is Rx, which is
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again a polyhedral convex set determined by points which are row vectors of the
matrix Ax. If Ax is stable, then R, is a single point set. Now the interesting problem
is under what conditions R will be a single point set. From the theory of Markov
chains, we know that if A, is regular, and if x oiri oi r’, then R: ap-
proaches a limiting point as n approaches infinity. Since we are interested only
in the condition that Rx is a single point set for definite length of x, we consider
first the situation when a stochastic matrix is multiplied by another one of the
same order. Suppose A, B are stochastic matrices of the same order and

(1) A.B=C.

Then C is stochastic also. As mentioned before, each matrix can be regarded as a
mapping, and the range of each mapping is a polyhedral convex set determined
by points which are row vectors of the matrix. Thus corresponding to each matrix
in (1), we have ranges RA, RB and Rc respectively. Since any row of C is a convex
combination of all rows of B,

RB Rc

which implies not only that the dimension of Rc is equal to or less than that of RB,
but also that every point of Rc is contained in R. In (1), we may think of B as a
mapping Mn which maps the point set Ra onto the point set Rc, i.e.,

MB(RA) Rc.

Let the ith row vector of A be ai and that of C be c. As defined before, a is a
determining point of RA and c is a determining point of Rc. Thus

Mn(ai)=ci fori 1,2,...,n,

if the order of A and C is n. Since B is stochastic, Mn is affine. Therefore, if a linear
relationship exists among the determining points of RA, the same relationship
will exist among the corresponding determining points of Rc. Hence, we have only
to consider those linearly independent points of Ra in deciding whether or not
RA can be mapped by a mapping or a string of mappings into a single point set.
If this is possible, the upper bound of the length of the string of mappings is deter-
mined by the order of A. The following theorem has been proved by Paz [3].

THEOREM 1 (Paz). Ifa stochasticfinite automaton f is definite, and the number
of internal states off is n, then f is at most (n 1)-definite.

LFMMA 1. Iff (Y, S, A,} ro, A, F) is a definite stochastic automaton, then
all of the matrices in {A,} are singular.

Proof If any matrix in {A,,}, say Aj, is nonsingular, then Azj is nonsingular,
and for any definite integer k,A is not stable. This is contradictory to the assump-
tion that f is definite.

LEMMA 2. Let B be an m x n stochastic matrix where all m row vectors are
linearly independent. Then points which are linearly independent in the domain of
MB will be mapped into linearly independent points in the range of MB.
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Proof. Let {ai} be a finite set of stochastic m-component row vectors. Let
al, a2, "’, a be linearly independent vectors of {ai}. Let

al

a2

By Sylvester’s inequality,

rank (A. B) _>_ rank (A) + rank (B) # of rows of B.

Since, by assumption, all rows of A and B are respectively linearly independent,

l<m<n

and

Hence

But

Therefore

rank (B) m.

rank (A. B) >__ rank (A) 1.

rank (A. B) min (rank (A), rank (B)).

rank (A. B) rank (A).

This completes the proof.
As mentioned before, let W, be a polyhedral convex set determined by n

unit vectors el, e2, ..., en in n-dimensional space. We then have the following
lemma.

LEMMA 3. If B is of order n and rank n m, then at most rn + 1 points which
are linearly independent in W, will be mapped by MB into a single point in W,.

Proof Let A be a nonsingular stochastic matrix of order n. Then

Hence,

rank (A. B) =< rank (B)= n m,

rank (A. B) > rank (A) + rank (B) # of rows of B

=n+n-m-n=n-m.

rank (A. B) n m,

and no more than m + 1 rows of A. B will be equal. This completes the proof.
Now, in (1), consider the conditions that linearly independent points of RA

will be mapped by MB into a single point in Rc. First of all, by Lemma 1, the

This version of the proof was suggested by the referee.
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matrix B must be singular. Suppose now that the order of B is n, and the rank of B
is n 1. Let b, b2, b. be the row vectors of B; then there exists an equation

Oi" bi 0,
i=1

where the are real and not all equal to zero. We then may have
n-1

b. fli" bi.
i=1

Since B is stochastic,

Let

n-1

i=1

n-1

e’,, , ei
i=1

be called the image of e, in the hyperplane W,_ determined by el, e2, e,_ 1.

We then have the following theorem.
THORFM 2. With B and W as defined above, let L be a line segment in W,.

Then all points in L will be mapped by MB into a single point ifand only ifL and the
line e,e’, are coplanar and parallel.

Proof2 If L is coplanar and parallel to e,e’,, then L can be represented as

a a + 2(e, e’,),

where a is a particular point and 2 is a scalar. We then have

a. B al B + 2(e, e’,,). B al B c1,

which is a point.
On the other hand, let the set of points which are-mapped by MB into a single

point Cl be of the form

a=al+b,

where a is a particular solution of the equation

a.B=cl
and belongs to the null space of B. Since nullity of B n rank (B) n n
+ 1 1, a a + 6 is a line which is parallel to e,e’, for (e, e’,). B 0.

The following two corollaries are immediate consequences of Theorem 2.
COROLLARY 1. IfB is of order n and rank n 2, and

n-2

b,,_ E i bi,
i=1

n-2

bn Z fli.bi"
i=l

This version of the proof was suggested by the referee.
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thus
n-2

en-1 2 7i ei,
i=1

n-2

e;
i=1

Let H be a plane segment in W, then all points in H will be mapped by Mn into a
single point in W, if and only ifH is parallel to the lines e,e’, and e,_ le’,-1.

COROLLARY 2. Let B be oforder n, rank n m, and H be a hyperplane segment
in W,. IfMn(H) is a single point, then the dimension ofH is at most m.

THEOREM 3. Let f be a stochastic finite automaton with n internal states. If
f is definite and has maximum transition matrix rank of n m, then f is k-definite,
where k is an integer and k >__ (n m)/m.

Proof The proof follows directly from Lemma 3 and Corollary 2.

3. Decision procedures. By Lemma 1, if a stochastic automaton f is definite,
then every element of its set of stochastic transition matrices must be singular.
The most straightforward decision procedure is to form the matrix products of
all possible combinations of all elements of the set {A,i} and see whether all these
products are stable. If not, then repeat the same procedure after increasing the
number of component matrices from two to three, and finally, to n 1, if n is the
number of the internal states of f. This seems tedious for larger n and for large
numbers of elements of 2;. A much simpler testing procedure can be obtained by
the following argument.

First, for any matrix A, let A’ be a matrix containing only those rows of A
which are linearly independent. The inverse operation of this operation is charac-
terized by a coefficient matrix T such that

T.A’=A.

For example, if A is of order n and rank m, then A’ is of order m n and T is of
order n m. When n m zero columns are added to the right of T, the augmented
matrix is called a minimum coefficient matrix by Liu [2].

For a set of matrices {A,, "ai Z}, we construct a set of matrices called the
Q-matrices as follows"

and, in general, if

and

Q, A, for all o-i I2,

Q,,j Q,,. T,j for all ai, aj e I2,

0"10"2 O’n_lO’n,

Qx T.Q’ forallxeZ +.
The Q-matrix obtained above is quite similar to the minimum reduced matrix
defined by Liu [2].
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Then

(2)

THEOREM 4. For any tape x, Ax is stable if and only if Qx is stable.
Proof Assume, without loss of generality, that

X 0"10"2 0.n-10.n"

A, A,, A,. Aa3 A..
=Q,Q2"Q3Q,.

T,.Q’o. To.Q’

T, .Q,.Q

T. T. Q’. T. Q’3 Tn-." Q’.-,."

=TaI’Tala2"Talaza3""Tala2...an.Q’ala2...an

Q23""an’’" Q’n-ln"

Obviously, if Qx is stable, then Q is stable, and from (2), since all component
matrices are stochastic, A will be stable also.

On the other hand, let

A=U.V,

where

Since all rows of Q, and Q;2,3...,. are respectively linearly independent, by Lemma
2,

Similarly,

and

(3)

Now

But

rank (Q,. Q;za3...a.) rank (Q,).

rank (V) rank (Q,. Q;2,3...,.

rank (Q)

# of rows of v rank (V) rank (Q).

rank (T,,) rank (Q,,) rank (Q;,),

rank (T,,,) rank (Q,,,) rank

(4) Q,,, Q,I" T,.
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Thus

rank (Qa,a2) rank (Q,,),

rank (T,2) --< rank (T,).

Similarly, we have

rank (T,) >= rank (T,2) >__ rank (T,a)
>__ rank (T,3... ,) >= rank (T,3....)

rank (Qx) rank (Q;).

From (4), we have

# of rows of T, # of rows of Q,2 # of rows of Q;,

rank (Q,) rank (T,).

By Sylvester’s inequality,

rank (T,. T,,) => rank (T,,,).

Similarly,

Now, since

rank (U) rank (T, T,, T,0.2o.3 Zo’l 0.2""0"n) ’ rank (Tx).

Ax=U.V,

from Sylvester’s inequality and (3),

rank (A,) >__ rank (U) >= rank (Tx)= rank (Qx).

Therefore, if Qx is not stable, then neither will be Ax.
From the above argument, we have the following corollary.
COROLLARY 3.

rank (Ax) rank (Qx).

Thus in order to check whether Ax is stable, we need only check whether Qx
is stable. The advantage of introducing the Q-matrices is that they are simpler in
manipulation, for

Q Q’0.1""tYn 0.2""0.n ltn

(Qal’"0.n-2" T0.2""0.n-1)

(... ((Q’,. T)’ Ta20.3)’... )’.

and the T-matrices are much simpler than the A-matrices.
Given a stochastic automaton ) with a set of transition matrices

{A0., "ai X}, the decision procedure for the definiteness of f) is"
(i) Setk= 1.
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(ii) Construct Qx and Tx for all x e k.
Determine if all of the Qx are stable.
If so, is k-definite.
If not, then go to step (iii).

(iii) Determine if every matrix Tx is an identity matrix I.
If so, is not definite.
If not, determine ifk n 1, where n is the number ofinternal states of.

If so, is not definite.
If not, put k k + 1 go back to (ii).

4. Example. Let E {0, 1}. Let a stochastic automaton f have a set of
transition matrices {Ao, A }, where

.25 .225 .225 .3

.1 .25 .45 .2

.2 .2 .2 .4

.2 .225 .275 .3

.2 .3 .1 .4

.1 .35 .35 .2

.3 .35 .15 .2

.2 .325 .175 .3

Following the decision procedure described in 3, we first have Qo Ao, Q A 1,

where

Qo To. Q

0 0

0 1 0

0 0 1

1/2 1/4 1/4

.25 .225 .225 .3

.1 .25 .45 .2

.2 .2 .2 .4

Q1 T1.QI

1 0 0

0 1 0

0 0 1

1/2 1/4 1/4

.2 .3 .1 .4

.1 .35 .35 .2

.3 .35 .15 .2
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Next we have

(200 Q. To

.4 .3 .3

.2 .3 .5

.4 .3 .3

Qol Q;.T1

.4 .3 .3

.2 .3 .5

.4 .3 .3

Qoo,

Qlo Q’. To

.4 .4 .2

.2 .4 .4

.4 .4 .2

Thus

Now

Q Qi. T

.4 .4 .2

.2 .4 .4

.4 .4 .2

TOO--- Tol-- Tlo-- Tll-- 0

Qooo Q)o. Too

Qoo Qio. Too

1 0
.4 .3 .3

0
.2 .3 .5

1 0

Qoo, Q)o. To, Q;o" Too Qooo,

Qolo Q;,. T,o Q)o. Too Qooo,

Qo,, Q;," T,, Q;o-Too Qooo,

1 0
.4 .4 .2

0
.2 .4 .4

0
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Qlo, Q’o. To1
Qo ’. T,o 2,oo,

Q,,, 2;," T oo.
Since all Qx, for x e E3, are stable, fl is 3-definite.
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NUMERICAL SOLUTION OF DYNAMICAL OPTIMIZATION
PROBLEMS*

S. DE JULIO"

1. Introduction. The problem of computing optimal controls is of great
interest today as is shown by the number of works dealing with this matter. But
while there has been in the literature a large harvest of papers suggesting methods
for the computation of optimal controls for finite-dimensional systems, this is not
the case for systems with infinite-dimensional state space.

From a theoretical standpoint, there have been some attempts to generalize
Pontryagin’s maximum principle to distributed parameter systems, as for example
in a paper by Butovskii [1], in which the description of the system is in the form
of an integral equation, or in a paper by Egorov [2], which deals with systems
governed by a particular type of partial differential equations.

As far as the computational aspect of optimal controls for systems governed
by partial differential equations is concerned, only a few papers have appeared in
the literature. These papers usually deal with particular examples and no attempt
has been made to give a general computing technique, not even for the linear case,
except for the recent papers by Balakrishnan [3] and the author [4], [5].

For example, Sakawa [6], [7] has considered the boundary control problem
for distributed parameter systems with one-dimensional space variable and whose
representation is in integral form. Yeh and Tou [8] have studied systems of the
form

where

D D
ao-=-=.x( t) + aa ’1 X( f) -- -" a.x( t) u(; t),

LIE" Dt"

Dt= + v j= 1,2,...,n.

Yavin and Sivan [9] have dealt with the boundary control problem for the wave
equation. In all three cases the authors, assuming a quadratic performance index,
have reduced the optimization problem to the solution of a Fredholm integral
equation of the second kind.

The determination of closed loop optimal controls has been studied by Kim
and Erzberger [10]. They have applied the dynamic programming technique to
systems described by wave equations with control on the boundary. Using a
quadratic performance index, they have obtained a set of Riccati equations whose
solution gives the closed loop optimal control. They have also shown how in
some particular cases, namely when the time and the space variables can be
separated, an approximate solution of the Riccati equation can be computed.
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A technique for the computation oftime-optimal controls for systems governed
by diffusion equations with one-dimensional space variable has been proposed by
Goldwyn, Sriram and Graham [11]. These authors seek the time-optimal control
in the class ofbang-bang controls. Making use of the Laplace transform they obtain
a method for approximate computation of the switching times.

A more general computational technique has been obtained by Axelband 12],
which may be applied to systems whose state evolution is defined as the solution
ofa Cauchy problem. The optimization problem is that ofminimizing a continuous
convex cost functional, and the author suggests to resort to convex programming
for its solution. The shortcoming of the Axelband method seems to be that one
has to compute and store as many responses of the system as there are grid points
corresponding to the discretization of the space and the time variables.

We also have to mention the work of Lions [13] who has tackled the optimiza-
tion problem for parabolic and hyperbolic systems. The optimal control is given
by the solution of a two-point boundary value problem for which the author
proposes a numerical algorithm.

This paper is a study of the technique proposed by Balakrishnan [3] as applied
to infinite-dimensional linear systems. This technique is completely different from
any ofthe ones discussed above and seems to have two major advantages over them.
First of all, it is more general in that it applies to a broad class of systems which
contains the previous ones as particular cases. The second advantage, but not the
least, is that the computational algorithm is by far simpler than any other.

The next section is devoted to defining briefly the optimization problem and
the new computational technique (the e-method). The relevant theorems from a
previous paper by the author [5] are also reported, while the main concern of the
remaining part of the paper is with the numerical solution ofa class of optimization
problems using the technique treated there in detail. More specifically, in 3 we
give some general concepts of approximation theory and direct reference is made
to the work of Trotter [14].

The general concepts of approximation of spaces and operators have been
investigated by other authors as well. In particular, we may mention the papers
by Aubin [15], 16], although Aubin’s work develops in different directions, such
as finding the truncation error due to a certain approximation or the best approxi-
mation of an operator.

In 4 we tackle the problem of the approximate minimization of functionals
as applied to the solution of the e-problem.

The e-method approach presents some resemblance to the Tikhonov method
of regularization which has been investigated by some Russian authors [17]-[20],
although the goals of the two methods are different. In fact, both methods resort
to penalty functions, but while.in the method of regularization the scope of the
penalty function added to the cost functional is to force a minimizing sequence
to converge to the optimum, in the e-method the penalty function accounts for the
dynamics of the system.

2. The optimization problem. In this work we consider systems governed by
equations of the type

(2.1) (t) Ax(t) + Bu(t), x(O) O,
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where for each e [0, T] the state x(t) and the control u(t) are elements of the Hilbert
spaces H1 and H2 respectively, A is an (unbounded) linear operator mapping a
domain D(A) dense in H1 into Ha, and B is a bounded linear operator mapping
H2 into H1.

The solution of (2.1) will be taken in the weak sense, i.e., instead of (2.1) we
consider the following mathematical model for the system

(2.2) Sx Bu,

where the bar denotes closure and S is an operator defined over a suitable dense
subset D of L2(T;H1) (for more details the interested reader is referred to S. De
Julio [5]) given by

cx(t)
(2.3) (Sx)(t) ct Ax(t), x(O) O.

The optimization problem can be formulated as follows.
The optimization problem. Given the system governed by (2.1), a set

U L2(T;H2) of admissible controls and a cost functional J(u;x), find u U,
x D($) such that

J(u x) inf J(u x).
xD

Bx Bu

The basic idea underlying the new computing method is that of reducing the
dynamical optimization problem into a nondynamical one. This is achieved by
defining a new problem, which we shall call the e-problem, in which a penalty
function accounts for the dynamics of the system.

The e-problem. Let a functional ,/ be defined by

(2.4) J(u; x) J(u; x) + -IIx Bull 2,

where e > 0, and the norm is the L2(T;H1) norm. Determine u e U, x e D(),
such that

J(u; x) j inf J(u; x).
uU
xD

It is intuitive that as e becomes smaller and smaller, u and x come closer and
closer to u and x. In fact, this has been demonstrated by the author [5] and we
shall here report the relevant theorems.

THEOREM 2.1. Let (2.1) be the system equation with A such that the operator S
is closable. Let the set U of admissible controls be closed and convex. Let the cost

functional J enjoy thefollowing properties"

(P l) J(u; x) >- O for all u, x,

(P2) J is weakly lower semicontinuous,

(P3) J is radially unbounded.

1Property (P3) means that if {un,x,} is a sequence such that limn-.oo (llull + Ilxnll)- o then
lim,oo J(u," x,) .



138 s. DE JULIO

Then there exist u, U, x e D(S) which solve the e-problem. Namely,

J(u ;x) j inf J(u;x),
uU
xD

where J is given by (2.4).
Proof. Let {u,, x,}, u, U, x, e D, be a sequence realizing the infimum of J"

J(u, ;x,) J, j.

Being a decreasing sequence, {J(u,;x.)} is obviously bounded. Recalling the
definition (2.4) of J, we see that, because of the property (Pa) of J, J is the sum of
two nonnegative quantities. Therefore, {J(u, ;x,)} also is bounded. Hence, because
of property (P3), there will exist constants Ca and C2 such that

Ilu. I_-< c, IIx.ll _-< c
for all n. Since u, is bounded in norm and B is a bounded operator, there will
also exist a constant C3 such that

IlSx. _< C.
Now, in a Hilbert space every bounded set is weakly compact. Therefore, there
exist subsequences (relabel them {u,}, {x.}) and functions ue L2(T; H), x,
y e L2(T; Ha) such that

w- lim u. us,

w-lim x, x,

w-lim Sx, y.

Since U is closed and convex, it is also weakly closed. Hence, u U.
Let be any function in the domain of S*. Then, using the definition of weak

convergence, we have

[y, th] lim [Sx,, th] lim Ix,, S’4] [x, S*b].

Since D(S*) is dense in LZ(T;Hx) and S** , the equality [y,, b] [x, S*b] for
all 4 e D(S*) implies x e D(S) and Sx y.

Finally, exploiting the weak lower semicontinuity of J (property (P2)) and of
the norm, we have

1
j lim J(u,; x,) lim J(u,; x,) + lim - 11Sx, Bu,[[ 2

J(u; x) + -]lx Bul] J(u; x)

for which only equality can hold. This completes the proof of the theorem.
THEOREM 2.2. Let the hypotheses of Theorem 2.1 be satisfied and let {e,} be a

sequence of positive real numbers such that

lime, 0.
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Then there exist u U, x e D(), and a subsequence (relable it {e,}) such that

(2.5) w-lim u. u, w-lim x. x,
(2.6) lim J(u.;x.) J(u;x),

where u and x are optimal. Namely,

(2.7)
J(u x) jo ,uinf J(u x)

xD
x Bu

where J, is given by (2.4).
Proof Let us first of all notice that under condition (2.2), J d. Therefore,

jo can be considered the infinum of J subject to the additional condition (2.2).
Hence,

jo >= j. J.(u.; x.)

and jo is well-defined since the set {(u, x):u U, Cdx Bu} is nonvoid because at
least the (0, 0)element is in it.

As in Theorem 2.1 we then infer that us., x. and x. are bounded in norm,
and that there exist subsequences (relable them {u.}, {x.}) and functions
u L2(T; H2), x, yO LZ(T; H1) such that

and that

w-lim u u

w-lim x. x,
w-lim x. yO,

uU, x6D($), xo =y.
Moreover there also exists a positive constant k such that

-IlSx. nu.ll 2 =< kz

for all n, or

for all n, whence

(2.8) lim IlSx.- Bu. O.

We now show that u and x satisfy (2.2). Indeed consider the following
inequality"

0 __< II(x. Bu.) ($x nu)ll 2

IIx. Bu.ll 2 / x null 2 2[$x. nu.,$x Bu].
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Passing to the limit as n goes to infinity and taking (2.8) and the definition of weak
convergence into account, we get

0__< x- Bu[[ 2,
which implies

(2.9) Sx= Bu.
Finally, to prove (2.6) and (2.7), we use the weak lower semicontinuity of J

and the fact that (1/e,) x,, Bu.,,l[ 2 is nonnegative"

j0 >= lim d,(u,; x.,) >_ lim d.(u, ;x.)

> lim J(u," x,)+ lim-n- ;,=-- enll rSx Bu 2 > d(u0 xO)

which would contradict the definition ofthe infimum unless equality holds through-
out. The equality between the limit superior and the limit inferior implies the
existence of the limit, thus showing (2.6), while the equality

jo J(u x)
together with (2.9) proves (2.7).

So far we have been dealing with the optimization problem for abstract
distributed control systems. As far as boundary control systems are concerned the
optimization problem can be formulated in a similar manner and theorems
analogous to Theorems 2.1 and 2.2 hold, although under somewhat more restrictive
conditions [5].

It is clear that (2.1) allows us to treat systems governed by partial differential
equations. For instance, let f be an open set in the n-dimensional Euclidean space
R", and (the space variable) a vector in f, whose components we denote 1, "’", G.
Then A may be the partial differential operator

A Z aJ()DJ,
IJl _-< k

where

D
lJl

c{’ c-’ IJl
i=1

ji, j (jl ,"’, j,,).

Moreover the conditions that the operator A must satisfy for Theorems 2.1
and 2.2 to apply are quite mild, so that the classes of systems treated in the references
mentioned in the introduction are surely included in our formulation.

3. General concepts of approximation theory. The practical implication of
Theorems 2.1 and 2.2 is that they suggest a simple algorithm for the computation
of optimal controls. Indeed, since as we have shown, the solution of the e-problem
can be made arbitrarily close (possibly in the weak sense) to the solution of the
optimization problem by means of a suitable choice of e, a satisfactory approxi-
mation to the solution of the latter can be obtained by solving the former.

The advantages of solving the e-problem instead of the optimization problem
are clear. In fact, the e-problem consists of the straightforward minimization of a
functional without differential constraints, and the well-known methods of mathe-
matical programming can be used.
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If for the solution of the e-problem one resorts to a digital computer, some
considerations concerning the convergence of the numerical solution are in order.

We begin with the fundamentals of approximation theory. Some of the follow-
ing definitions concerning the approximation of a Banach space by means of
sequences of Banach spaces were suggested by Trotter [14].

DEFINITION 3.1. Let X, Xm, rn 1, 2, ..., be Banach spaces with norms I1"
I1" IIm respectively. Let pm :X Xm, m 1, 2, .-., be linear operators having the
following properties:

(H1) P’[ =< N
for all m, with N a positive constant independent of m;

(H2) lim pmx m= X for allxX;

(H3) There exists a positive constant M independent of m such that, for each
x Xm, there is an x X such that pmx X" and Ilxl <= M x tin.

Then we say that the sequence ofBanach spaces Xm} approximates X.
From now on the superscript m will be used to .denote vectors belonging to

Xm, whereas the subscript m will be used to denote sequences of vectors in X.
Moreover, the sequence Xm} will always be a sequence of Banach spaces approxi-
mating X.

DEFINITION 3.2. A sequence of vectors {xm}, xm X,,, is said to converge to
xXif

lim Ilpmx Xmlm O,
m--

and we write limm-.o x x.
DEFINITION 3.3. A sequence of operators {Am}, Am’Xm Y(X Xm) with

T a Banach space, is said to converge to the operator A’X Y (X X) if

lim Ampmx Ax

A A.for all x D(A) and we write limm-
The next theorem shows the close relationship between the convergence of a

sequence of vectors, as defined in Definition 3.2, and the usual convergence.
THEOREM 3.1. A sequence {xm}, x Xm, converges to x X if and only if there

exists a sequence {Xm} Xm X, with the properties

(3.1) x" pmx

(3.2) lim Xm X.
m--

Proof. Sufficiency. Given the sequence {xm}, suppose there is a sequence {Xm}
satisfying (3.1) and (3.2). Then, due to property (H 1) we have

lim xm pmx lim 11P"x,, P"x I1 lim NIIx x 0,
mo mo m-

whence lim,,_ x x.
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Necessity. Suppose that the sequence {x converges to x. Put ym xm P"x.
Then limm- ym 0. From property (H3) we infer that we can construct a sequence
{Ym}, Ym X, such that Pray ym and Ymll <= Mllymllm. Hence, limm-oo Ym
=< limm-oo MllYmllm 0 or limm-.oo Ym 0. If we put Xm Ym -F X, then we have
pmxm pray,, +pmX ym -F PmX X and obviously lim,,_oo Xm X.

Keeping this theorem in mind we now generalize the concept of weak con-
vergence to sequences of vectors belonging to approximating spaces.

DEVIITION 3.4. A sequence {xm} is said to converge weakly to x, and we write
w-limm-.o x x, if and only if there exists a sequence {Xm}, Xm X, with the
properties

pmxm xm
w-lim Xm X.

The following is a general approximation theorem concerning the evaluation
of the minimum of a functional over X in the approximating spaces X,. It will be
specialized to the approximate solution of the e-problem in the next section.

THEOREM 3.2. Let f be a real functional, f :X R, with unique minimum2 at x

f(x) --inff(x).
xX

Suppose that X is a reflexive Banach space. Let {fro}, fm :X R, be a sequence
offunctionals converging to f, with the following properties"

(i) f’ has a unique minimum at x’,
(ii) limm. xm OV implies lim,,_. f(x") ,

X(iii) w-limm.o x implies limm_ofm(xm) >= f(x) 3

Then we have

w-lim x"d x and lim fm(xn)= f(x).

Proof From the definition ofconvergence, given a 6 > 0, there exists an integer
K such that

for all rn => K. Also,

whence

f"(pmx) <= f(x) + 6

f"(x) <= f"(P’x),

f’(x") <= f(x) + 6

for all m >= K. Because of (ii), the sequence {x} is bounded in norm, i.e.,

IIx _-< K1
for some K1 > 0. Recalling (H3) of Definition 3.1, we can construct a sequence
{x} in X, such that

0e Xrn x

Strict convexity off is sufficient to guarantee uniqueness of the minimum.
This can be considered a generalization of the definition of weak lower semicontinuity.
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and
o < Mllxl[.IIx

Hence, also the sequence {x} is bounded in norm. Therefore, we can extract a
subsequence, which we relable {x}, weakly converging to some o X and, by
definition,

w-lim x’ o.
m-.

Applying (iii), we get

f(x) + 6 > lim f (Xo) > lim f"(x"d) > f(o).
m-- m...

Since 6 is arbitrary, it follows that f(x) f(2) and fro= xo because of the
uniqueness of the minimum of f Moreover,

lim fm(xnd) f(x).
m---

Remark. It can be easily verified that we need not evaluate the minimum off"
exactly, though preserving convergence. Namely, it suffices to construct a sequence
if", such that

f"(") <= f"(x") + " for all x" X",

where limm-,o (X" 0.

4. An approximation theorem for the numerical solution of the e-problem. To
make things more concrete, we now consider the case where both u and x take
their values in an open subset f of the n-dimensional Euclidean space R". Both of
the spaces HI and Ha will be identified with the Hilbert space L2(f) of Lebesgue
square-integrable functions with values in f endowed with the usual norm. The
space LZ(T; Hl) will therefore coincide with the space Lz(Q) of obvious interpreta-
tion, Q being the cylinder f x [0, T].

Taking X L2(Q) we shall show how the approximation theory developed
in 3 can be applied to the numerical solution of the e-problem relative to distri-
buted control systems. We shall assume that all the hypotheses of 2 are satisfied,
without explicitly mentioning them.

Having in mind the numerical solution of the problem, it is natural to take
for the X", subspaces of X consisting of simple functions. More precisely, let
Q’j’},j 1, 2, Jm, be a partition of Q, QT’ being disjoint Lebesgue-measurable

subsets of Q, with the property

.) Q Q.
j=l

Suppose that {Q"} is a refinement of {Q’} for m’> m, and that p(Q’) goes to
zero as m goes to infinity, p being the Lebesgue measure over the (n + 1)-dimen-
sional Euclidean space. Let X" be the subspace of LZ(Q) consisting of all functions

f" of the form
Jrn

f"= E
j=l
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where LT’ is the indicator function of Q’, i.e.,

1 if(,t)
,Z"(’" t) .[0 if (,t) Q’j’,

and q’ are real numbers.
pm’L2(Q) Xm will be the projection operator defined by

Jm
pmf fm qTzT,

j=l
where

q.m f d./(Q,)
Then condition (H1) will always be satisfied and, under certain hypotheses on the
partitions {Q’} (see [141), condition (H2) will also be satisfied.

The following lemma will be used later.
LEMMA 4.1. Let {S’} be a sequence of operators Xm X,, converging to the

closable linear operator S" D X defined in (2.3) and having thefollowing properties"
X Smx Sx"(i) limm_. x D implies limm_.

(ii) The sequence {Sm*} converges to S*.4

Then

w-lim xm= X and w-lim Smxm= y

imply

x D( Cd) and y= Cdx

Proof Let {xm}, {Smxm} converge weakly to x and y respectively. Then for
all b D(S*) we have

[y, b] lim [Smxm, b] lim [SmXm, pmb] lim, Ixm, sm*pmd?].

Recalling the definition of convergence of a sequence of operators, we have
limm_., sm*pmck S*Ck, whence limm[xm, Sm*pmdp] [x,S*b]. Then the
equality [y, b] Ix, S*b] for all b D(S*) will imply x D(S) and Sx y.

The next theorem is fundamental in justifying the numerical solution of the
e-problem.

THEOREM 4.1. Let J(u; x) be a strictly convex continuous functional satisfying
conditions (Pl), (P2) and (p3). 5 Let {Sm} be a sequence of operators X Xm,
enjoying properties (i) and (ii) ofLemma 4.1. Let J"" Xm x Xm R be defined by

Jn(tlm;xm J(blm; Xm) +- Bu

4 It is well known that for partial differential operators, conditions (i) and (ii) are usually satisfied
if the ratios between the discretization intervals are suitably chosen.

Actually, the condition that J be continuous and strictly convex can be substituted for the
condition (P2) since the former implies the latter.
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and let

J"um" x") inf J"(u"" x"),
umUm
xmXm

where Um pmu. Then we have

(4.1) w-lim u u, w-lim x x

and

lim J (u xm) J(u; x,:).
(4.2) m-

Proof First of all we notice that, because of the strict convexity of J, u and
x, as well as u,, x are unique.

Since J is continuous, {Sm} converges to S, and B is continuous, it is easily
seen that the sequence {JT} approximates J in the sense of Definition 3.3. Hence,
with the aid of Lemma 4.1, the proof of Theorem 4.1 follows rather directly from
the proof of Theorem 3.2.

An analogous result can be proved for the case of boundary control.
From a computational viewpoint, it may be interesting to investigate the

convergence of u" and x" when both m and n go simultaneously to infinity,n
being a decreasing squence going to ero.

Let {6,} be a decreasing sequence of positive numbers such that lim,_+ ,, 0.
Then, for each n and each 05 e X there exist positive integers K,, H, such that

UI[ . u., b]l < 6, for all rn K,,

"cm1[ :. x b]l < 6, for all rn > H,.

bl XConstruct the sequences (,), (.), where m, m.+l and m. > max (K,, H.).
Then we have the following theorem.

TrEORZM 4.2.

w-lim u"" o. u, w-lim xmn

and

lim J, (us. . J(u

Proof We confine ourselves to proving the first equality. Let 6 > 0 be arbitrary.
Let N and M be such that

Consequently

c5, =< 6/2 for all n => N,
I[u..- u, qS]l _-< 6/2 for all n > M.

l,lmnI : u, qSll < IUm. U,..o, 11 + IUo U, ’]1 < a

RO.for all n > K max (N, M), whence w-lim.+ ,.
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Loosely speaking, Theorem 4.2 justifies what we would do in writing a com-
puter program. Namely, we would first choose a value for e and a certain approxi-
mation scheme (e.g., a discretization interval), i.e., a value for m, and minimize J’.
We would then repeatedly increase m until no appreciable improvement of the
solution was detected. Next we would reduce the value of e and proceed as before
until neither reduction of e nor increase of m would produce appreciable changes
of the solution.

5. Concluding remarks. After having defined the optimization problem for a
class of distributed control systems, we have shown how an approximate solution
can be obtained by solving a nondynamical optimization problem.

If, as is usual, one resorts to a digital computer for the computation of the
optimal control, the question that naturally arises is: how well does the numerical
solution approximate the real solution or, to put it differently, does the numerical
solution converge to the continuous solution as the discretization intervals go to
zero? It is well known that this is not in general the case. The main objective of
this paper has been to give the conditions under which such convergence takes
place, devoting particular attention to the solution of the e-problem.
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CHARACTERIZATION OF THE SETS OF CONSTRAINTS
FOR WHICH THE NECESSARY CONDITIONS FOR

OPTIMIZATION PROBLEMS HOLD*

JEAN PIERRE AUBIN"

Introduction. Many papers are devoted to the problem ofproving the necessary
conditions for optimization problems. (See for instance [2] to [5], [10], [11], [12],
[14].) In this paper, we shall put the problem this way: Let 3 be a convex subset
of a vector space Y’, j a functional on he satisfying the property

(A) Z- infj() >

On the other hand, there are many ways to represent a closed convex set by a set
of constraints. For instance, if n is the "gauge" of N,

{ehe such that 1 n() >__ 0},
or, if a(f) is the support functional of ,
where

such that (f, ) a(f) _>_ 0 for any fe 50()},

50 f e he’ such that a(f) inf (f, ) > oe }.

Usually, a concrete convex is represented by a set 5 of concave functionals f
in this way"

{ e he such that f() __> 0 for any f e 50}.

When such a representation of ’ by a set of constraints is given, we shall say
that j satisfies the "optimality conditions" (B(50)) if and only if:

(B(50)) There exists Z > - and f0 e 5e such that j()- >= f0() for any

which can be useful in several purposes. Clearly, (B(50)) implies (A) and the so-called
"necessary conditions" hold when the converse is true. This is the Kuhn-Tucker
theorem when we translate the problem in terms of "convex programming" or
the maximum principle when we look at it as an optimal control problem (see 2.4,
for instance).

We shall solve the following problem: Characterize the representations 50 of
for which the conditions (A) and (B(50)) are equivalent for a given class of

functionals j. The answer lies in Theorem 1.1 and some particular cases are given
in Theorems 1.2, 1.3 and 1.4. By differentiation, we shall extend the results to the
case where the functional j is directionally differentiable (Corollaries 1.2 and 1.3
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of 1.3). But we do not know yet if the method used here can again solve the
problem under decent assumptions when the constraints are nonconcave dif-
ferentiable functionals.

In the second part of this paper, we show how the property (B(5)) leads to
the maximum principle for optimal control problems (Theorem 2.2) when the
"state u" and the "control k" are linked by linear differential equations (where
the control appears both in the partial differential equation, the boundary condi-
tions and/or the initial conditions) and when the "cost function" is a Gfiteaux-
differentiabl functional (not necessarily quadratic) (see [7] in this case). To
illustrate this rather abstract result, we shall construct in 2.4 the optimality
equations for the following simple problem: The constraints are defined by

(i) -Au(x) + u(x) f(x) when x belongs to a bounded open set f of R";
(ii) u(x) (p(x) + k(x) on the boundary F of
(iii) k(x) is positive on F;

and the cost function is given by

j(u, k) fv ]u(x) O(x)l p da(x) + fr ]k(x)lP da(x), 1 < p < +,

wheref, q) and are given functions. In this case, the property (B(5)) amounts to
saying that there exist Uo(X), ko(x), the optimal state and control, and Vo(X), the
solution of the adjoint equation satisfying the relations"

(i) -AUo+Uo=fand -AVo+Vo=Oonf;
(ii) ko Uo (p on F, Vo lSUo/(3n @l p-z(ouo/c3n ) on F;

(iii) kolv => 0 and ko(x)"- + (Vo/(3n -> 0 on F;
(iv) ko(X (ko(X)p- + (;3o/Or/) 0 a.e. on F.

1. Sets of constraints and necessary conditions for optimization problems.
1.1. Statement of the results. Let and be two convex subsets of a real

space vector (without topology for the time) such that

can be equal to ).

We shall say that a convex functional j finite on se’ satisfies the property (A) if and
only if

(A) Z infj() > -.

Let us assume now that the convex set M is defined by a set o of "concave con-

straints"f defined and finite on

such thatf() >__ 0 for anyfe 2’}.

Naturally, this can be done in many ways and we shall say that &a is a repre-
sentation of . With such a representation 5 of N’, we shall say that a convex
functional j on ’ satisfies the property (B(5)) ("the 5-optimality property") if
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and only if"
(B(,)) There exists Z > -ov and fo such that j()- Z >__ f0() for any

Obviously, the property (B()) implies the property (A). We shall look for the
representations such that the properties (A) and (B(q)) are equivalent for a
given class of functionals j.

Before stating the theorem, we need the following notations. -(’) is the real
vector space of the (finite) functionals on / equipped with the pointwise con-
vergence topology. (’) is the closed convex cone of positive functionals.
If Y- (’), 3- denotes the closure of - and Y- the closed convex cone (with
vertex 0) spanned by -. Ifc is a set of functionals, c denotes the set of functionals
fc() f() + 2 whenf cg and 2 R (the field of real numbers).

THEOREM 1.1. The above conditions (A) and (B()) are equivalent for any
functional j of a set qY of convex functionals finite on if and only if

(1.3) % n ( + 5 % N ( + 5).

Remark 1.1. It is not a restriction to assume that is actually a closed convex
cone (in ()) of constraints, since we can obviously replace in (1.2) by the
closed convex cone spanned by . In particular, we deduce the following
corollary.

COROLLARY 1.1. If the cone 4- is closed in (/), the conditions (A) and
(B(C,)) are equivalent for any convex functionals j().

This assumption holds for instance when q is spanned by a finite number
of constraints fl(),""", fm(). Namely, let us set

(1.4) Nk { e ’ such thatf() => 0 for any j - k}

and let us assume that for any k,

there exists a point k e k such that fk(k) > O.

This assumption amounts to saying that there are only useful constraints. We shall
give another proof of the following well-known theorem.

THEOREM 1.2. If is spanned by concave constraints fl,..., fm such that (1.5)
holds, the cone + is closed and the property (A) is equivalent to: There exists
a sequence 2,..., )., of nonnegative scalars such that

(1.6) j() Z >_-- 2jf() for any in d.

(See [5], [12] for instance.)
Let us consider now the important case where the constraints are aMne

functionals.
Let f and f’ be two paired real vector spaces for the duality pairing (f, )

on f’ x Y’, equipped with the weak topologies.
We associate with any continuous functional of a convex cone of f’ a

scalar functional a(f), the anne functional

(1.7) f() (f, )- a(f),
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and the closed convex subset M of Y" defined by

(1.8) M { Y" such that (f, ) a(f) >= 0 for any f 50}.
Let us notice that we can replace a(f) in (1.8) by the support functional a(f) of
M defined by
(1.9) a(f) inf(f, )

since if f e we have a(f)>= a(f). Let us recall that a is an upper semi-
continuous concave and positively homogeneous functional of fe". (See
[10], [14].)

On the other hand, using this support functional, we can always define an
affine representation of a closed convex subset of f. Let us summarize these
two remarks in the following lemma.

LEMMA 1.1. The closed convex subset defined by (1.8) is equal to

(1.10) { f such that (f, ) a(f) >= Ofor anyf 50}.
More generally, if ()= {f f’ such that a(f) > -}, this closed convex
set is also defined by

(1.11) { f such that (f, ) a(f) >= Ofor any f 6 .}.
We shall deduce from Theorem 1.1 the following theorems.
THEOREM 1.3. Let us assume f barreled and defined by (1.10). If50 is a weakly

closed convex cone of f’ and ifj is anyfinite convex functional, the condition (A) is
equivalent to the condition (B(50))" There exists Z > - and fo 50 such that

(1.12) J() Z >- (fo, ) a(fo) for any f

THEOREM 1.4. IfM is defined by (1.10), if50 is a weakly closed convex cone off’
and if j()= (g, )- 2 is any (continuous) affine functional, the condition (A) is

equivalent to (B(50))" There exists o and fo 50 such that

g fo and a(fo) (fo, o).
Remark 1.2. In Theorem 1.3, we can replace the support functional a(f) by

the initial functional a(f) if it is also an upper semicontinuous functional which
is concave and positively homogeneous.

Remark 1.3. Theorems 1.3 and 1.4 include the case where the number of
independent constraints is infinite and the case where the constraints are equality
constraints (f is an "equality constraint" iff and -fbelong to 5).

1.2. Proofs of the results of 1.1. First of all, the convexity assumptions will
imply the following lemma.

LEMMA 1.2. The property (A) is equivalent to"
For any finite sequence of positive scalars and of points i , there exists

( > -- such that

(A’) aif(i) >= 0 for any f 50 implies ai(j(i) Z) >= O.

Obviously, (A’) implies (A). Conversely, let us set aii/ i. Since the
functionalsf of o are concave, the condition if(i) >= 0 for anyf e 50 implies
that belongs to M. Therefore, j() Z _>- 0 and since j is convex, we deduce
that Oi(j(i Z,) O.
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Let us now recall the following consequence of the Hahn-Banach theorem.
LEMMA 1.3. Let - and ’ be two paired real vector spaces, and let {q,f) be

the duality pairing on ’ . Let + denote the polar cone of a set "
(1.13) + {q -’ such that {q f) >= O for any f }.
The weakly closed convex cone + 50 spanned by + 50 in is equal to

(1.14) + 50 (+ 50+)+.

Obviously, + 50 is contained in.+ f"l +)+. Let us assume that there
existsf (+ VI 50+) + such thatf + t,. By the Hahn-Banach theorem, there
exists q ’ such that (q, f) < 0 and (q, g) __> 0 for any g + w. Therefore
o (+ f-] 50*) and since f belongs to (+ f3 50+)+, we deduce (q,f) _>_ 0. This
is a contradiction.

We shall now apply Lemma 1.2 when (z’) is the real vector space of
functionals defined on ’, when -’= ’(’) is the space of finite sequences
q {(/, )}i of pairs of scalars (Z and of points ie ’ and when the duality
pairing (q, f) is defined by

(1.15) (q,f) if(i).

Therefore the weak topology of ff() is nothing else than the pointwise con-
vergence topology, and ff’() is the dual of ff() for this topology.

We shall choose for the (closed convex) cone of positive functionals defined
on ’.

LEMMA 1.4. If (’) is the closed convex cone of positive functionals
defined on s, its polar + () is the closed convex cone of sequences
q {(z, )} with positive coefficients .

Indeed, if the coefficients , ofq {(a,, ,)} are positive, (0, f) af() >= 0
for any positive functional f of . Conversely, if 0 +, its coefficients a are
positive since (q, 6) _>_ 0 when 6 is the positive functional equal to 0 for

and to 1 when . We thus deduce the following lemma.
LEMMA 1.5. If the convex functional j satisfies (A), then

(1.16) g() J() Z

belongs to the closed convex cone + 50 spanned by + 50.
By Lemma 1.2, g() j() Z belongs to (+ ( 50+)+. Indeed, let o belong

to (+ f’) 50+). Then the coefficients i of o are positive and czif(3 _>- 0 for all
f 50. Therefore (q,g)= /(j()- Z)_-> 0. This amounts to saying that g
belongs to (+ f) 50 /) / # + 50 by Lemma 1.3.

Proof of Theorem 1.1. The sufficiency is a consequence of Lemma 1.5. Con-
versely, let us assume that (A) and (B(50)) are equivalent for anyj ofc. Let g j +
belong to cg ’. Therefore, by Lemmas 1.3 and 1.4, g() is positive on ’,
and thus 0 __< o inf, g(). The functional j g belongs to cg and satisfies
the property (A) since j() __> Zo on . By (B(50)), there existsfo 50 such that
g is greater than fo since

(1.17) g() j() + 2 => j() + 2 Zo => fo().

Proof of Theorem 1.2. It results from the following lemma.
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LEMMA 1.6. Let be a closed convex cone and 50 be the closed convex cone
spanned by a finite number of elements fo,’" f,,. Iffor any k, 0 <= k <= m, there
exists qgk ’ such that

(1.18) qgk+, (qg,fi) >=0 forj k and (qg,f) >0;

then + 50 is closed. The assumption (1.5) of Theorem 1.2 implies (1.18) when we
take (qg, f) f ).

Let us prove Lemma 1.6. Let j h + ’=o 2fk be a generalized sequence
of + 5 converging to j. Applying qg to j, we deduce the estimates

(1.19) 0 < 2 < (rPk’J">
0 < k < m.<o,A>’

Therefore a subsequence 2 converges to a positive, number 2, and thus hu con-
verges to an element h of (which is closed). ThenJu converges to j h + ’= o2f
which belongs to + 50.

ProofofTheorem 1.3. Let be the set of affine functionalsf() (f, ) a(f)
whenf 50. Since r is concave and positively homogeneous, + is a convex
cone. We have to prove that + 50 is closed. Let j() be the limit of a generalized
sequence j,

(1.20) j() h() + (fi, ) a(fi),

which belongs to + 50.
Let belong to 2. Since

(1.21) a(fi) inf(fi, ) < (fi, ) and h()=> 0,

we deduce the following estimates"

(1.22) j(- ) =< (fi, ) =< j( + ) for any

Since j converges pointwise to j, the sequencefi is weakly bounded and since
is barreled, this sequence is actually weakly compact in 5f’. Therefore, a subsequence
f, converges to an element f of 50 (since it is closed) and

lim sup hu( lim sup (Ju() (fu, ) + a(fu))
(1.23)

j() (f, ) + a(f) >= O,

since a is upper semicontinuous. Thus j() actually belongs to + 50.

Proof of Theorem 1.4. We shall deduce it from Theorem 1.1 when cg is
the set of (continuous) affine functionals. Letj() (g, ) 2 belong to the closure
of + 50. By Lemmas 1.3 and 1.4, this implies that j() is positive on and
achieves its minimum on a point o of ’.

Let r/ belong to 50+. Thus r/ + o belongs to (since (f, q + o) _>- (f, o)
>__ a(f) for any f e 50). Therefore (g, r/)= j(r/+ o)- J(0)is positive on +.
This amounts to saying that g belongs to 50+ +. But since 50 is closed, 50 50+ +

(by Lemma 1.3 with ff f and 0). Therefore g fo belongs to 50. On the
other hand,

(1.24) 0 =< infj()= inf[(fo, )- 2] a(fo)- 2.
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Therefore j belongs to N + 5 since

(1.25) j() =(g, ) 2 _>_ (fo, ) a(fo) for any e 5.
1.3. Applications to the characterization of stationary solutions. Let us recall

that a functional j is directionally differentiable at o if the following limit exists
for any e :

J(o + 0) j(o)
(1.26) Dj(o)() lim

0-0+ 0

A convex functional is directionally differentiable and Dj(o)() is a convex
positively homogeneous functional of .

If is a topological vector space, we say that j is Gteaux differentiable if
Dj(o) is actually a continuous linear functional. Let us assume now that is
convex and that

(1.27) o , j(o) infj().

It is classical to check that o is a "stationary solution," i.e., satisfies

(1.28) o , 0 inf Dj(o)( o).

(The converse is true if j is convex.) Let 5 be a representation of . We deduce
the following corollary from Theorem 1.1.

COROLLARY 1.2. Let us assume that j is directionally differentiable on , and
that Dj(o)(rl) is convex with respect to rI. Let us assume that (1.3) holds when qY is
the cone ofconvex and positively homogeneousfunctionals. Therefore (1.28) is equiv-
alent to: There exists fo 2’ such that

(1.29) Dj(o)( o) >= fo() for any 2.

Iffo is directionally differentiable at o, this implies that

(1.30) Dj(o) >= Dfo(o), fo(o) O.

In particular, Theorem 1.3 implies the above corollary wheneverf is a barreled
space and 5O an affine representation of . On the other hand, we deduce the
following corollary from Theorem 1.4.

COROLLARY 1.3. Let us assume j Gteaux differentiable on and defined by
constraints (f, ) a(f), where f belongs to a closed convex cone 5O ofW’. There-
fore, (1.28) is equivalent to: There existsfo 5O such that

(1.31) Dj(o) fo, (fo) (fo, o)-

We shall devote the second part ofthis paper to the application ofthis corollary.

2. The maximum principle for optimal control problems.

2.1. Abstract boundary value operators and their adjoints. The differential
problems with boundary conditions and (or) initial conditions can be embedded
in the following abstract framework.
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We introduce Banach spaces U, E and (I) and two operators A 5(U, E) and
5F(U, ) such that

(2.1) A is an isomorphism from U onto E .
Example. For instance, A is a differential operator

Au (- 1)lqlDq(apq(x)DPu)
Ipl,lql =<m

defined on a space U of functions u(x) on a bounded open set D or R". If Bu is
a differential operator of order m, 0 =< m =< 2m 1, on the boundary F of fL we
shall take

Ott (Bt, BJu, B

Under convenient assumptions (ellipticity), the assumption (2.1) is satisfied for
several choices of spaces U, E and of functions or distributions (see 2.4 for a
precise example and [8]). Another example is given by "parabolic" equations.
We take

Ou Z 1)[qlDq(ap(x)opu)Au(x, t) ct Ipl,lql =<m

and will map u(x, t) into the sequence

eu (u(x, 0), Bu(x, t), B lu(x, t)).

Here again, (2.1) is satisfied for several choices of spaces U, E, under suitable
assumptions. (See [8].)

We shall need the construction of an adjoint operator A* x fl*. To fulfill this
purpose, we assume the following:

(i) There exists an operator fl mapping U onto a Banach space q such that
x fl is a right-invertible operator from U onto x .

Let us set

(2.2) Uo {u U such that au flu 0}.
We finally assume:

(ii) There exists a Banach space H in which U and Uo are dense with a stronger
topology.
Let us denote by A* AF(E’, U)) the "formal adjoint" of A defined by

(2.3) (A’u, v) (u, Av) for any u s E’ and v Uo
and by U* its "domain",

(2.4) U* {u s E’ such that A*u s H’}.

(Indeed, by (ii), H’ can be identified with a subspace of U).) We thus can prove
the existence of unique operators * 5(U*, ’) and fl*s (U’, q’) such that
the following "Green’s formula" holds:

(2.5) (A’u, v) (u, Av) (/*u,/v) (*u, v)

We then state the following theorem (see [1]).

for anyueU* and veU.
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THEOREM 2.1. Letfbelong to H’ and belong to ’. Assume (i) and (ii). Therefore
any solution (u, p) E’ ’ of the transposed equation

(2.6) A’u + ’q (A )’(u, q)= f +
is a solution of the "adjoint problem"

(2.7) u6U*, A’u= f, fl*u=, and q=*u,

and conversely. Moreover, if (2.1) holds, A* x fl* is an isomorphism from U* onto
H’x’.

Let us sketch in a few words the proof of (2.5) and of Theorem 2.1. Let
A’6 5(’(E’, U’) be the transpose of A. Therefore, by (2.3), when u belongs to U*,
A*u A’u belongs to the orthogonal U of Uo in U’. On the other hand, by (i)
and (2.2), ’ + fl’= ( x fl)’ is an isomorphism from (I)’ ’ onto its closed
range U a’’ + flat". Thus we can write this formula in a unique way"

(2.8) A*u A’u ’*u fl’fl*u,

which is equivalent to (2.5). Using (2.5), we see that (2.7) implies (2.6). On the other
hand, let u be a solution of (2.6), or equivalently, of

(2.9) (u, Av) + (tp, av} (f, v) + (/, fly} for any v in U.

When v ranges over Uo, we deduce that A*u f and that u belongs to U* (since
f belongs to H’). Therefore we can use (2.5) and we deduce that (*u q, av}
-(fl*u- , fly} 0 for any v in U. Therefore (i) implies that *u q and
/*u 0.

2.2. Optimal control problems and the maximum principle. We shall deduce
from Corollary 1.3 the construction of the optimality equations for a problem
studied (in the quadratic case) in [7], [6] by other methods.

Let us consider an operator A mapping a space U of"states" into a space
E and let us assume (2.1), (i) and (ii). We introduce a space K of"controls" k
and we consider the equations

(2.10a) Au f + Bk,

(2.lOb) eu q5 + Ck,

where f is given in E, in (I) and where B and C are linear operators mapping K
into E and (I) respectively. Actually, the controls k are required to obey the following
affine constraints" Let D be a linear operator from K into a Banach space Z, P be
a closed convex cone of Z, a given element of Z and

(2.11) Kad {ke K such that Dk 5 P}.

Finally, we introduce the following "cost function""

(2.12) j(u, k)= jx(u ) + j2(flu /)+ j2(k- k),
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where

(2.13a) Jl is a Gfiteaux differentiable functional defined on H U, U;

(2.13b) j2 is a Gfiteaux differentiable functional defined on W, ff q;

(2.13c) j3 is a Gfiteaux differentiable functional defined on K, K.

Let us set

(2.14) Ji Dji 1, 2, 3,

where J1 maps H into H’, J2 maps q into q’ and J3 maps K into K’,

(2.15) r is the support functional of Kad,

and let us denote by the subset of elements (u, k) U K satisfying

(2.16) keKaa, Au f + Bk, u p + Ck.

We say that (Uo, ko) U x K is a solution of the optimal control problem if and
only if

(2.17) (Uo, ko) N’ and j(uo, ko) <= j(u, k) for any (u, k) N’

and that (Uo, Vo, ko) e U U* K is a solution of the maximum principle prob-
lem (or of the optimality equations) if and only if

(2.18a)

(2.18b)

(2.18c)

(2.18d)

Auo f + Bko, A*vo Jl(uo );

OU0 p "k- Cko, fl*/)o J2(flUo O);

Dko P, J3(ko ) + (B’ + C’z*)Vo D’P+;

a(J3(ko ) + (B’ + C’o*)Vo) (J3(ko ) + (B’ + C’z*)Vo, ko).

From Corollary 1.3 and Theorem 2.1 we deduce the following theorem.
THEORFM 2.2. Let us assume (2.1), (i), (ii), (2.13) and

(2.19) C’p’ + B’E’ DP+ is weakly closed in K’.

If (Uo, ko) is a solution of the optimal control problem (2.17), there exists Vo U*
such that (Uo, Vo, ko) is a solution of the maximum principle problem (2.18). Con-
versely, if the functionals Jx, J2 and J3 are convex and if (Uo, Vo, ko) is a solution of
(2.18), (Uo, ko) is a solution of(2.17).

We can give several examples where (2.19) is fulfilled. For instance, if one of
the operators C’ and B’ is surjective, (2.13) holds. If the Banach spaces are reflexive,
if C, B and D have a closed range and if P is actually a subspace, (2.19) holds by
the closed range theorem.

The case where Kae K (case without "constraints") occurs when we choose
Z K P, D 1, 0. Therefore, we replace (2.18c) and (2.18d) by

(2.20) J3(ko- ) + (B’ + C’o*)Vo O.
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2.3. Proof of Theorem 2.2. Let us set hr U K, (u, k). The convex set
M is defined by the constraints

(2.21a) (Au Bk, v) (f, v) 0 for any v in E’,

(2.2 lb) (u Ck, ) (5, (p) 0 for any q in ’,

(2.21c) (Dk, z) (, z) 0 for any z P+.

We can write (2.21) in the form

(2.22) (A’E’ + ’’) x (D’P + B’E’ C’P’)= U’ x (D’P + B’E’ C’@’)

by (2.1). Therefore the assumption (2.19) implies that the cone is weakly closed
in

(2.23) U’ x K’= ’.

On the other hand, if (Uo, ko)e U x K, the derivative ofj is equal to

(2.24) Dj(uo, ko) (Jl(uo fit) + fl’J2(flUo !), J3(ko ))e U’ x K’.

By Corollary 1.3, we know that there exists

fo (A’vo + ’qOo, D’zo C’qoo B’vo) e Z(2.25)

such that

(2.26a)

(2.26b)

A’vo + ’tpo Ja(Uo fit) + ,6’J(Uo ),

D’zo B’vo C’qgo J3(ko ).
Since J(uo fit) belongs to H’ and J.(flUo ) belongs to q’, we deduce from
Theorem 2.1 that

(2.27) Vo U*, A*vo J(u fit), fl*Vo J(flUo )
and that (Po *Vo. Therefore, since Zo e P+, we deduce that

(2.28) D’zo J3(ko ) + B’vo + C’z*Voe D’P +.
Let us now prove (2.18d).

If k belongs to K,n, there exists a unique solution u of (2.10) (by (1.1)) and
therefore (u,k) belongs to M. Then (Dj(o), - o)>= 0 for any k e Karl.
Writing this inequality and using (2.27) and (2.28) we obtain

(A’vo + z’Z*Vo, u Uo) (B’vo + C’z*Vo, k ko) + (D’zo, k ko)
(2.29)

(D’zo, k ko) >= 0 for any k e K,e.

We thus deduce that

(2.30) a(D’zo) (D’zo, ko) inf (D’zo, k),
keKad

where tr is the support functional of K,,d.

2.4. Example. Let us consider the following optimal control problem where
the state u is given through an elliptic equation and where the control k appears
in the boundary conditions.
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Namely, let f be a smooth bounded open set of R", F its boundary. Iff is a
given function of f, 5 a given function on F and if the controls k are functions
defined on F, the constraints of the optimal control problem will be defined by

(2.31a) -Au+u--f onlY,

(2.31b) ulv=5+k onF,

(2.31c) k(x) >= 0 on F.

We shall minimize the following functional:

j(uo, ko) <= j(u, k)(2.32)
where

-n da + kl p da 1 < p < -+-

where da is the superficial measure on F.
We shall deduce from Theorem 2.2 that whenf, 5, ff and belong to suitable

spaces of functions, the optimality equations are

(2.33a) -AUo +uo=f, -AVo+Vo=0,

U0 P-2I(U0(2.33b) ko=uolv-p, volt= -n- /0n ff

C3Vo(2.23c) Uo]v>=UP, (uolv-5)p- +=>0,

(2.33d) (uo 5) (uo 5)’- +
cn/

0 a.e. on F.

To prove the equivalence of those two problems, we have to define the spaces
U, E, H, and and to verify that the assumptions (2.1), (i) and (ii) are satisfied.

We shall choose, for instance (see [16], [8] and the references of [8]),

(2.34) E H L(f), U wZ’(f),

where 1 < p < + and where W2’p(r) denotes the subspace of functions u of
LP(f) such that the weak derivatives of order __< 2 belong to LP(). Let us set

cu
(2.35) au ulv and flu cn"
These two operators map wZ’P(f) into LP(F) and the assumption (i) is satisfied
when we take

(2.36) W2- x/P’P(I), tl W

If we choose Au -Au + u, it is known that (2.1) is satisfied.
When f is smooth enough, the space Uo coincides with the closure

in W2’p(f) of the functions with compact support. Therefore the assumption (ii)
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is satisfied. By using (2.5), the usual Green’s formula

fo fo(2.37) (- Au) dx u (- A) dx u da -n dr

can be extended when belongs to W2’p(")) and u to the space

(2.38) U* (u L P’(f) such that Au LP’(f)),
where lip + lip’ 1. Therefore we can set

(2.39) A*u -Au / u, *u c3u/c3n, fl*u ulr.
We now take

(2.40) K Z W2-1/P’P(F),
P the cone of positive functions on F, and

(2.41) B=0, C=I, D=I, k=0.

Therefore the assumption (2.19) is satisfied.
Finally, let us recall that the differential of

1 fr lu(x)l dr
P

is the operator which associates with u the function lulp-2u. Therefore Theorem
2.1 implies the following corollary.

COROLLARY 2.1. Let us assume that

(2.42) f LP(), p and k W2-1/p,p([") and p LP([’).

Therefore if(uo ko) is a solution of(2.31) and (2.32), (Uo Vo ko) is a solution of(2.33)
and conversely.

It is classical to check that the solution of (2.31), (2.32) is unique.

2.5. Some remarks on the existence of optimal solutions. We can deduce the
existence of an optimal solution of a control problem from the Weirstrass theorem
stating that a lower semicontinuous functional achieves its minimum on a compact
set.

In the first place, if a pair (u 1, k 1) satisfies (2.16), we have to look for a solution
(Uo, ko) minimizing j(u, k) on the set defined by

(2.43a) k e K,a, Au f + Bk, ou Cp + Ck,

(2.43b) j(u, k) <= j(ul, kl) r.

We thus deduce the following proposition.
PROPOSITION 2.1. Let us assume thefollowing:

(i) j(u, k) is weakly lower semicontinuous on U K;
(ii) U K is a reflexive Banach space;and

(iii) the set of elements defined by (2.43) is bounded in U K.
Then there exists a solution (uo, ko) ofthe optimal control problem (2.17). Ifmoreover
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the assumptions of Theorem 2.2 hold, there exists a solution (Uo, Vo, ko) of the maxi-
mum principle problem (2.18).

Indeed, the set defined by (2.43) is bounded and weakly closed, and then,
weakly compact.

The assumption (iii) holds if, for instance
(iv) the subset Kad is bounded

or, if
(v) the functional ja(k) is the norm of the space K, jl and J2 being positive.

Another set of conditions implying (iii) is the following"
(vi) the functional J2(ff) is the norm of , J and J3 being positive;
(vii) A is an isomorphism from U onto E q;
(viii) the subset of k

and j3(k) is bounded, is itself bounded.
Example. Let us consider the example given in 2.4 where we replace j(u, k)

defined by (2.32) by the following functional:

(2.44) j(u, k) nn LP(F)

Then, if we choose U W2’p(f), K q W2-1/p,p([,), the assumption (v)
is satisfied and we obtain existence of a solution (Uo, ko) of the optimal control
problem (2.31), (2.32).

For the sake of simplicity, we gave only the simplest choice of spaces U, E,
for which the operator (-A + 1) is an isomorphism from U onto E 0.
Using the theory of interpolation of Banach spaces (see [8] and the references of
this book), we have many other choices. If we associate with any of such choices
of a cost function of the following form:

(2.45) j(u, k) j2 / Ilkllg,,

whereJ2 is Gtteaux differentiable and weakly lower semicontinuous on q, we shall
obtain existence of a solution of the optimal control problem.

If we denote by J2 the GS.teaux derivative of the functional j2 and by J3 the
GS.teaux derivative of Ilkllg, we shall deduce the existence of a solution (Uo, Vo) of
the following problem:

(2.46a) -AUo + Uo =f, -AVo + Vo 0, Volt J2(OUo/tn-d/),

(2.46b) uolv 5 __> 0 on F, J3(uolv 5) + OVo/On >= 0 on F,

(2.46c) (uolv )(J3(uolv ) -+- CVo/On) 0 on F.
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DAVIDON’S METHOD FOR MINIMIZATION PROBLEMS IN
HILBERT SPACE WITH AN APPLICATION TO CONTROL PROBLEMS*

H. TOKUMARU, N. ADACHI AND K. GOTO"

1. Introduction. Many methods are known for finding minimum values of
functions on a finite-dimensional space. In the case when we can make use of the
gradient of the given function, the steepest descent method and NewtonoRaphson
method are well known and they are also the foundations for many other modified
methods. The steepest descent method has a very simple algorithm and the con-
vergence of the method is assured from any initial approximation. But, the con-
vergence is slow, especially in the neighborhood of the extremum point of the
function. On the other hand, the Newton-Raphson method has the quadratic
convergence property but the method may not converge at all.

In recent years, several rapidly convergent methods have been proposed.
Among these are the conjugate gradient method [1] and Davidon’s method [2].
In both methods the direction of the search is determined by the gradient of the
function. The stability property of the method is analogous to that of the steepest
descent method. The conjugate gradient method is very simple. Davidon’s method
is more complex, but it is known by experience that its convergence is superior to
that of the conjugate gradient method.

The steepest descent method and Newton-Raphson method have been
extended to function spaces and applied to control problems by authors such as
H. J. Kelly, A. E. Bryson, R. McGill and R. E. Kopp [3]-[6]. L. S. Lasdon, S. K.
Mitter and A. D. Waren have extended the conjugate gradient method to function
spaces and have applied it to optimum control problems [7].

in this paper, an extension of Davidon’s method to Hilbert space is presented.
The stability and convergence of the method are shown in the case when the
functionals to be minimized are quadratic. The method is applied to optimum
control problems and numerical examples are given.

2. Formulation of the problem. Let H be a (real) separable Hilbert space with
inner product (f,g), f,g 6 H. The norm of an element f H is defined as f

(f, f)1/2. Let G be a linear self-adjoint operator on H such that

(2.1)

where

(2.2) M sup
(f’ Gf)

fll o f 112
m inf

(f’ Gf)
Ilfll o fll 2

and 0 < m =< M. Then the norm of G is equal to M"

(2.3) IIGll M.
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Since M is finite, G is a continuous operator. From the condition (2.1), an inequality

(2.4) Gf => m f
holds. The inequality is a necessary and sufficient condition for the inverse
operator G -1 of the self-adjoint operator G to be defined. The inverse G-1
satisfies the inequalities

1
G- gll llgll,

Using Schwarz’s inequality, we prove that G-1 satisfies the inequalities

(2.6) -Ilgll 2 _<_ (g, G- lg) _<_ 1
Ilgll 2

Since G is self-adjoint, G-1 is also a self-adjoint operator. Let S(f) be a Fr6chet
differentiable functional on H. We call the operator F, which is defined by the
formula

(2.7) lim -1 {S(f + th) S(f)} (F(f), h)
t-*0

for any h H, the gradient of the functional S: F grad S (see [8]).
PROBLEM. Let S(u) 1/2(u u*, G(u u*)) be a quadratic form on H, where G

is a linear self-adjoint operator satisfying the condition (2.1). Find the u* which
minimizes the functional S(u).

By the definition of the gradient of functionals, grad S(u) exists and is defined
by

(2.8) grad S(u) G(u u*).

The gradient of S(u) is denoted by g(u):

(2.9) g(u) G(u u*).

Then the solution of the above problem is given by

(2.10) u* u G- lg(u).

In other words, u* is obtained directly if we can make use of the gradients g(u)
and the operator G- 1. But, in this problem, we assume that G- cannot be evaluated
directly.

3. Algorithm ofDavidon’s method. Let the ith approximation ofthe solution of
the problem be u; then the (i + 1)st approximation is determined as follows using
the gradient at ui.

Define pi s H as

pi Kigi
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where gi is the gradient at ui;

gi G(u u*),

and K is an operator from H to H such that

(f,Kf)>0 forfn andf4:0.
Then u/1 is given by

U + U ..It oipi,

where is a constant which minimizes a function of ;

(2
S(u + pi) S(ui) + (p, gi) + _(p,, Gpi).

By the definition,

(3.1)
(pi, gi)

(pi, Gpi).

The operator K is modified at each step so that p becomes an eigenelement of
K / 1G. The algorithm of the computation is given as follows:

(i) Choose an initial estimation u and identify K with an identity operator
I;K= I.

(ii) Evaluate the gradient g at u.
(iii) Set p Kg.
(iv) Set ui+ u + p.

Here, is a constant such that

S(u + oipi) min S(u + opi).

(v) Set yi (gi+ gi)/i.
(vi) Set qi Kiyi.
(vii) Set

pi qip q
x//(pi, yi) x//(qi, yi)"

(viii) Define an operator K + as follows"

K + f Kif + (f, piu)p (f, q)qiu,

where f is an arbitrary element of H.
(ix) Set =i + 1 and repeat (ii)-(viii).
By the definition of g’,

gi + G(ui + u*)

(3.2) G(ui- u* + oipi)

Hence, from (v),
(3.3) yi Gpi.
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Substituting (3.3) into (pi, yi), and considering positivity of G, we show that
(if, yi) > 0. In the following section we shall show that (qi, yi) (Kiyi, yi) > O.
Therefore the vectors p, q/u are well-defined, so that the operator K is also de-
fined.

Now, suppose that S(u) is not necessarily quadratic. By the definition of

(3.4)

Then,

(pi gi + a) S(u + opi)

(if, y) -
On assuming the positivity of K, we have

(pi, gi) _(Kigi, gi) < 0 for gi :/: 0,

so that i > 0 and (pi, y) > 0 if gi - 0. Hence, if K is positiVe also for non-
quadratic functionals, vectors P/N and qN are defined as well. The positivity of K
in the case of the nonquadratic form is noted in Remark 1 in the following section.

4. Stability of the scheme. In this section, we shall show that the value of the
functional to be minimized decreases at each step with this method.

The following two lemmas (Lemmas 1-2) are direct extensions of the results in
[2], and the proofs formally follow proofs in the reference.

LEMMA 1. K is a linear self-adjoint, positive operator and (f, Kf) 0 only if
f=0, i= 1,2,....

Proof We shall prove the lemma by induction. Since K I, the assertion is
trivial for 0. Assume that the lemma is valid for 1, 2,..., n; we shall now
prove that the statement holds for n + 1. From (viii) it is clear that K"+ is a
linear self-adjoint operator. Hence, it is sufficient to show positivity of K"+1.
From the relations (vi)-(viii),

(f, K,+ if) (f, K"f) + (f, pv)2 (f, qv)2

(f K"f)(y" K"y") (f K"y")z
+ (f, p"u)2

(y", K"y")

Since K" is a positive operator, inequalities

(f K"f)(y", K"y") >= (f K"y")2

hold by Schwarz’s inequality. Therefore the first term of the right-hand side of the
above equality is nonnegative, and the second term is clearly nonnegative. The
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first term becomes zero only if f is a scalar multiple of y""

f= ay"
a
og, (g

+ g")

where a is an arbitrary constant. From this fact and the relation (3.4), (f, K"+

vanishes if and only if (g", p")= 0. But this contradicts the positiveness of K".
Hence, K"+ is a positive operator and the lemma is proved.

Remark 1. In the above proof the quadratic property of the functional S(u) is
not used. Therefore the assertion of Lemma 1 is valid als0 in nonquadratic func-
tionals.

LEMMA 2. The relations

(4.1) (p,Gp)= 6ij < k, j < k,

(4.2) KkGp Pv, < k, i= 1,2,...,

hold, where 6i is Kronecker’s symbol.
Proof From (vi) and (viii),

K + yi Kiy -b- (yi Pz)Pui (yi qN)qNi

Kiyi nt pi Kiyi pi.

Hence

(4.3) g + IGp pi

by (3.3). The statement of the lemma is satisfied for k 1 by (4.3). Assume that the
relations (4.1) and (4.2) are satisfied for k n. From (2.8),

n-1

(4.4) g,=gi+l + JGpJ, 0<= i< n.
j=i+l

From relations (3.1) and (3.2),

(4.5) (pi,gi/l) 0, 0, 1,..., n.

Hence, from (4.4), (3.3) and (4.1) with k n,

(4.6)

Therefore

(pi gn) (pi gi + 0

(K"Gp g") (Gp K"g") 0

since (4.2) holds for k n. Substituting ff -Kig, we obtain a formula

(4.7) (Gff p") O, 0 <= < n.

Now, by the self-adjointness of K" and G",

(4.8)
(K"y", Gp’) (y", K"Gp’)

O<i<n,
(Gp", p’),

taking into consideration relation (3.3), (4.2) and (4.7). By using this result it is
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simple to prove the equalities

K.+ 1Gpi KnGp
(4.9)

=pi,
O <= < n,

by the definition of K" + 1. The relations (4.3), (4.7) and (4.9) show that the statement
in the lemma holds for k n + 1.

LEMMA 3. Let qgi H be a complete system in H, which satisfies conditions
(i) (tp, Gqg) 6,j,

(ii) mllfll z __< (f, Gf) <__ MIIftI-,m,M > O.
Then, for any element f H, the following equalities hold:

since

Define f, as

then

f (f, qg)Gqi
i=0

(f, Gqgi)qi.
i=0

Proof Denote (f, Gcp) by di; then, we have the inequalities

M f 2 (f, Gf) >= d

0 __< mllf, f/ll 2 =< (f, jS, G(f, f/))

=d{, n>=l.

The right-hand side ofthe equality tends to zero as and n tend to infinity. Therefore,
there exists an element q9 H such that f, q9 as n . The element is expressed
as

q9 2 ditPi.

By the conditions of the lemma,

(f qg, Gqg) di di O, O, 1,....

Since {tpi} is a complete system, the equalities mean that q9 is identical with
f Using G- in place of G in the above discussions, the last part of the lemma can
be proved. This completes the proof.
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This lemma asserts that if {q} is a complete system, then {Gqgg} is also a
complete system.

We introduce a well-known property with respect to an increasing sequence
of self-adjoint operators.

LEMMA 4. Let Ui} be an increasing sequence of positive self-adjoint operators
such that

sup IlU.II < A < oo.

Then, there is a linear operator U such that Uf lim._.oo U.f for any f H, and
tlUII _-< A.

Remark 2. By an increasing sequence of operators we mean a system of
operators U. ;n 0, 1, 2,...} such that

(f, Uf) <_ (f, U+ f)
for an abitrary f e H and for 0, 1, 2, ....

We shall prove the followin theorem, usin the above lemmas.
THEOREM 1. The sequence of operators {K} is niformly boded ad co

ver3es o H to a linear operator K.
Proo Denote by , 0, 1, 2, ..., an operator such that

A,f (A P)P forfeH.
i=0

The elements p, i= 1,2,..., n, satisfy the conditions of Lemma 3. Add a
sequence ri, =-1,-2, ..., to p so that a system of elements {r,p
i= -1,...,-n, ..., j 0, 1,2, ..., n,...} becomes a complete system satis-
fying the condition of Lemma 3. Then for anyf e H,

-1

O- ’S ( P)P + Z ( r’)r’
i=0 i= -by Lemma 3, so that

( G- f) (p) + ( r) (p)a.

The right-hand side of this inequality is equal to (f, Af). Therefore,

M’II/II a (f, /);

in other words, A,N N M’ where M’= 1/m. {A} is an increasing sequence of
positive self-adjoint operators by the definition of A.

Therefore, by Lemma 4, there exists a linear operator A such that

Af lim Af, f e H,

and IAII M’
Now, define operators B,, n 0, 1, ..., as

B,f (f, q)q.
0
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Then the operator K"+ is expressed as

Kn+l I + A, B,.

Hence, for an arbitrary f H,

(f, K" + 1) f 2 + (f, A,f) (f, B,f).

Since K" + is a positive operator,

(f, B,f) <= ]]fll 2 <__ f2 + (f, A,f) <__ (M’ + 1)f 2.

Hence B, is bounded;

IIB,[[-_< (M’+ 1), n 0, 1,2, .-..

Since B, is also an increasing sequence, by Lemma 4 there exists an operator B such
that

Bf- lim B,f forf H

and

Let us define an operator K by

IlBII _-< M’+ 1.

K=I+A-B.

Then it is clear from the above discussions that K is a linear bounded operator such
that

and

Kf lim K"f

[[KII <-2(M’+ 1).

Hence, the theorem is proved.
Using Theorem 1, we shall show that the values of the given functional

decrease with each step.
TI-IFORFM 2. With the scheme in 3,

S(bli+ 1) < S(bl i) for gi =/= O, O, 1,2,....

Proof We shall show that the inner product of the direction of search pi and
the gradient gi is negative and the step size i is positive for every i, 0, 1, 2,
Since pi Kigi and K is positive from Lemma 1,

(pi,gi) _(Kigi,gi) < 0 for g -- 0, i-- 0, 1,2,....

By the definition of i,

(Kigi,gi)
(pi, Gpi),

so > 0 for g - 0. From these considerations the statement of the theorem is
valid.
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5. Convergence of the method. It will be shown in this section that u con-
verges to u* as and that there is a subspace of H on which the sequence of
operators K converges to G-1.

LMMA 5. Kiy H is expressed as a linear combination of Gf O, 1, 2, ....
For 0, the assertion of the lemma is valid since K I; Ky yO GpO.

It is assumed that the lemma holds for K i. Then from (viii),

Ki+ lyi+ yi+
(yi+ 1, KJyi)KJy

o -I( y5
Since f+ Gf+ from (3.3), the right-hand side of the above equality is a linear
combination of the Gpj,j O, 1,2,..., + 1.

THEOREM 3. Let ui, i= O, 1, 2,..., be a sequence of elements as defined in
3; then, the sequence converges to u* as

Proof From (3.1),

S(lgi + 1) S(ui)

S(d)-

(Kigi,gi)2

(pi, Gyi)

(gi, Kigi)a

Since S(ui) is bounded and monotone decreasing,

(gi Kigi)2
(5.1) (Kf GKigi) - 0 as .
By Schwarz’s inequality,

(Kf Kigi)a <= (Kf gi)(K(Kif), K’gi)

<= (Kigi, gi)llKi ][Kigi]] 2

_< 2(M’+ 1)llg’g’ll2(gif,f).

Hence,

(Kigi gi)2 >
IlK’g’ll

4(M’+

From the condition (2.1) for G,

MIIK’g’II a >= (K’g’, GK’g’).

Combining the above two inequalities, we have

(gi, Kigi)2 1
Kigi 2

(Kif GKf >= 4M(M’ + 1)2

Since the left-hand side of this inequality tends to zero from (5.1),

(5.2) IIggill --* 0 as

By (2.6),

m’
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where M’ 1/m and m’ 1/M. Hence,

(5.3) (Kg, G-1Kg) 0

From (3.1), (3.2) and (4.1),

(5.4)

as i--, oe.

i-1

gi =gO + odGpJ
0

i-1

gO Z (gJ, P)GPJu
0

i-1 i-1

gO_ (gO+ kGpk,p)GpJu
0 0

i-1

gO (gO, p)Gp.
0

On the other hand, by (viii) and (4.2),

g= g,_ ’’ (g_’,_/(g)
j=0 (YJ, KJYj)

The second term of the right-hand side of this equality is a linear combination of
the Gpk, k 0, 1, 1. Hence,

i-1

(5.5) K’g= g’- Z
j=O

where the fl,j 0, 1,..., 1, are appropriate constants. By Lemma 2,
i-1 i-1

(I(g’, - I(g) (g Z ap, a-1 g’ Z p
0 0

i-1

(gi, G-lgi)_ff E flj2..
o

G-1 is a positive operator, and by (5.3),

(g G-Igi) O as/

Therefore, taking into consideration the inequalities

m’ Igll = (gi, G-Xgi),

we see that the gradient of S(u) tends to zero as --.

gi --- 0 as/

By definition of g’, this means that the sequence u’, 0, 1, 2, ..-, converges to u*.
THFOREM 4. There is a subspace M in H such that

Kf G-if as , for any element f _.
Proof By Theorem 1, K converges to an operator K on H. Operate G on the

equality (4.2) from the right-hand side; then

(5.6) GKGpv Gp.
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Let M be a subset of H which consists of linear combinations of Gpi, 0, 1,
2, ..., n, .... Then the closure of M is clearly a subspace of H. The subspace is
denoted by . We shall show that pi, 1, 2, ..., is an element of. From (5.4),

(5.7) gO Z (gO, p)GpJu.
0

Hence,

gi 2 (gO, p)Gp.
j=i

Substituting this into (5.5), we have

pi Kigi
(5.8)

Z(gi, pJu)GP + Z fljGp.
j=i 0

This expression of pi means that p is an element of .. By Lemma 2 an element
f e M has the expression

(5.9) f ., (f, p)Gp.
0

From (5.9) we see that if an elementf e is orthogonal to every p, 0, ..., then
f 0. Hence p, 0, 1, ..., is a complete system on . Then,

(5.10) f Z (L Gp)p
0

by Lemma 3. Substitute (5.9) and (5.10) into (4.1) and (5.6); then

(5.11) KGf f,

(5.12) GKf f,

LetK and G be operators on M such that

f.,

feM.

Kf Kf,

Gf Gf forfe_.

Then, (5.11) and (5.12) show that

(5.13)

In other words,

(5.14)

This completes the proof.
Let V be a sphere on M, i.e.,

K Gr1.

lim Kf G- if for f e.
V= {f:f., Ilfll 1}.
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If the convergence of (5.14) is uniform on V, the direction of the search in this
method converges to that of Newton’s method;

pi
-K gi: -+

-G-
iig/i g, gi

6. Applications to optimal control problems. A control system is described by
a system of ordinary differential equations

(6.1) 2 f(x, t, u),

where x R" is a state vector and u R is a control vector. Then the problem is to
find a control function u u*(t) which minimizes the value of the function

(6.2) P(x(ty)),

subject to (6.1) with an initial condition X(to) x. The following conditions are
assumed"

(i) f(x, u, t) and P(x) have continuous partial derivatives of at least third
order in all variables.

(ii) There are no constraints for x and u.
Let H be a space of r-dimensional control vector functions such that

(6.3) ft i=1
uZ(z)dz<+v"

Then the space H is a Hilbert space with inner product

ftt$(6.4) (u, v) ui(z)v(z) dz.

Now, introduce an auxiliary vector , (1, "", ,) and a Hamiltonian
g(x, , u, t) defined as follows"

(6.5)

f,(x, u, t)
(6.6)

cxi
g/i, i= 1,... n,

@(x(ty))
(6.7) ,(ty)

c3x,(tf)
1,2,..., n.

The equations (6.1) and (6.6) can be written with the Hamiltonian in canonical
form"

(6.8) 2
c(x, /, u, t)

X(to) x,
(6.9) x 0(t) x
Let )(t) and O(t) be a solution of the equations (6.8), (6.9) corresponding to a certain
control u(t). The performance index P(x(t)) is a functional of u(. )e H. We denote
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this functional by J(u):

Jut P(xttt.
Let g(t) be the gradient of J(u); then

(x(t), ,(t), u(t), t)
(6.10) g(t) cu

If the gradient is computed according to (6.10), p and q can be constructed
following the algorithm in 3. The determination problem of the step length
is called the problem of linear search, and several schemes are known [1].

7. Examples.
Example 1. Consider a control system

:2 -x + (r x)x2 + u, x(0) Xo, x2(0) X2o(0),

with a performance index

J= (x2 + x + u2)dt.

The control time is fixed as to 0, tf 5. We introduce the third coordinate x3
such that

/3 X12 q- X2
2 .ql_ /2

2 X3(0 --0.

The canonical equation then becomes:

1 X2, xI(O)--" XIO’

2 -Xl + (1 x) + u, x2(O) X2o,

23 X "- X2
2 + /,/2, x3(O O,, (1 + 2x,x2)02 2Xlff3, 0,(5) 0,

2 --, (1 x2)2 2x23, 2(5)-- 0,

3 0, I//3(5 1.

The computed results for x10 3.0, X2o 0.0 are shown in Fig. 1 and Fig. 2.
The results obtained by the steepest descent method and the conjugate gradient
method are also shown.

Example 2.

1 X2,

2 --0"2X2 4" 2"0X3- 0"2X2X,

(x + xZ2 + x + u2) dt.
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27.2

22.00

21.50

21.00

steepest descent method
conjugate gradient method
Davidon’ s method

2 3 4 5 6 7 8 9 I0 (no. of iterations)

FIG. 1. Values of performance index

1.00

FIG. 2. Optimal control u*(t)
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I.I

1.0

conjugate gradient

Davidon’s method

(no. of iterations)

FIG. 3. Values of performance index

method

FIG. 4. Optimal control u*(t)

The numerical results are shown in Fig. 3 and Fig. 4 with X lo 0.25, X2o 0.25,
X30 0.1.

From these examples we can say that Davidon’s method proposed here is
applicable to nonlinear control problems and the rapid convergence is assured
for these examples. These results also show that the conjugate gradient method is
also a very useful scheme.

8. Conclusion. Minimization problems in Hilbert spaces are discussed.
Davidon’s method in finite-dimensional spaces is extended to the problems in
Hilbert spaces. The stability of the method is studied for the case of quadratic
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functionals. And it is proved that the method is stable from any initial approxi-
mation. In 4, it is proved for quadratic functionals that the sequences of iterations
converge to the true solution of the problem. In 5 it is shown that the direction
of the search converges to that of the Newton-Raphson method. Hence the scheme
has the analogous property in the neighborhood of the extremal point. Stability
is also assured for nonquadratic problems, and so this method can be applied to
such problems. From these discussions for quadratic problems, we can say that
Davidon’s method has stability properties like those of the steepest descent
method and that the convergence property in the vicinity of the extremum point
is similar to that of the Newton-Raphson method.

This method is applied to optimal control problems and two numerical
examples are shown. These examples show the superiority ofthis method compared
with the steepest descent method or the conjugate gradient method.

The disadvantage of this method is that the information to be stored in the
computer increases with the number of iterations. So, if convergence is slow, com-
puting will be difficult.
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EXISTENCE OF OPTIMAL STRATEGIES BASED ON SPECIFIED
INFORMATION, FOR A CLASS OF STOCHASTIC

DECISION PROBLEMS*

V. E. BENEf

bsre. The existence of admissible strategies ,(., minimizing a furiction E c(t, x, 7(t, x)) dt

is studied, with x x(., co) a continuous stochastic process, and admissible strategies defined as those
utilizing a specified pattern of information about x, here described by -algebras G included in the
past" {x(s), _<_ t}. Conclusion: Moment conditions on x, growth conditions on c, and continuity
of c in its third variable (the control) ensure that an optimal admissible strategy exists. The method of
proof depends on properties of conditional expectations, and on a variant of a general Filippov (or
implicit functions) lemma due to McShane and Warfield.

1. ltmduefim We prove an existence theorem for optimal strategies based
on prescribed information, in the special case in which decisions affect only the
performance criterion, and not the trajectory of a random dynamical system. This
restriction is offset by the fact that our result is valid for an arbitrary stochastic
process with continuous sample paths and an integrable second moment, together
with an arbitrary pattern of information about the trajectory, prescribed in
advance, on which decisions may be based. The general case of stochastic control,
involving both an arbitrary information pattern and control-dependent trajec-
tories, is substantially harder [1], [2] and is not discussed.

2. Discussion: strategies and information. A basic problem of stochastic
decision theory is to formulate realistic mathematical descriptions of the decision
situation. An important feature of this situation is the pattern of information
available to the controller or decision-maker at various epochs of time. The pos-
sible patterns are many and diverse: he may know the state of the system at all
past times, or only at the present;he may know only some functionals of the past;
he may or may not remember what he did in the past; etc. It is particularly impor-
tant to have an exact and useful account of the information available for decisions.

A strategy for a stochastic decision problem must be a recipe which specifies,
at each time and for each condition of the controller’s knowledge, a mode of
action. Logically, then, a strategy should be described by a function which maps
information into action, and which can be given independently of any probability
spaces or stochastic processes. It is prior, in the good old Aristotelian sense, to any
stochastic process which may result from its adoption.

Some previous discussions of stochastic optimal control have featured the
description and role of the information available to the controller. For example,
Fleming and Nisio [1] consider the case

(1) dx z(t, xt) dU + fl(t, xt) dw
of linear controls, with U(.) (a "control process" which determines the x(.)
trajectory) satisfying

(i) U(t)- U(s)l-< It- sl a.s.
(ii) U(t) is independent of w(s) w(t) for s > t, and w(. is a Wiener process.
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As the authors themselves realize, the class of "admissible" controls described by
(i) and (ii) is very large. It cannot reflect any limitations of the information available
to the controller, since among the U(. thus envisaged are those depending on
the entire past of w(. ).

Another type of approach appears in a paper [2] of Kushner. He considers
first control laws that are functions of the current state and time, and takes as
admissible only those that are Lipschitz in the state uniformly in the time. This
smoothness assumption is convenient for obtaining compactness in the space of
control laws, but it has no basis in the original control problem.

These examples suggest that a careful examination of the role of the informa-
tion available for decisions and a precise description of its place in the mathematical
formulation are necessary for a full understanding of the problems of optimal
stochastic decision. A start in this direction has been made in a paper [3] of Fleming
on diffusion processes controlled on the basis of knowledge of only some of the
components of the diffusing vector.

We shall take the view that a strategy is a function ,(t,. which, at any time t,
indicates what point of (some decision space) F is to be exercised as control at
as a function of whatever information about the trajectory the controller is allowed
to know, remember, and use at time t. It determines the control u(t) at time in
terms of the past xt (Hale’s notation) of the system trajectory, subject to restrictions
on what the controller can know about xt at t, according to the formula

u(t) )’(t, xt).

The restrictions on 7(., .) representing the pattern of available information
will be described mathematically by the concept of measurability with respect to
a a-algebra. Roughly speaking, if A and A2 are two a-algebras over the same
space, and if A

_
A2, then the functions measurable with respect to A are less

complicated (depend on less) than those which are measurable with respect to A2
but not A.

The information pattern at will be described by specifying a a-algebra Gt
of Borel subsets of C[0, t], and by imposing the condition that for each t,

y(t,.

be G-measurable.
3. Formulation and principal result. Let (fl, P, ) be a probability space, and

let {x(t, o), 0 =< =< 1, o } be a measurable separable stochastic process with
values in R", having continuous paths with probability one, and such that

(2) E Ix(s)l 2 ds < .
Let I 0, 1], let C(I) be the space of continuous functions x’I R", and let St
be the a-algebra generated by the sets

{y(.)C’y(s)A}, O <= s <= <= 1, A Borel in

This is the a-algebra representing knowledge of the full past up to time t. Let Gt
be a sub-a-algebra of St. Decisions at time may depend only on information
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contained in Gt, that is, as a function of the past trajectory prior to t, control
exerted at must be measurable on

Since x(t, co) has continuous sample paths, there is a set fo e N’ such that
P(fo) 1 and x(., co)e C(I) for co e fo. The process induces a measurable map
x :fo --’ C(I) according to the formula x(co) x(., co). The map x is measurable
in the sense that x- x(S1)

_
N’. This is easily seen as follows: every set{y e C(I):y(t)

e A} for A Borel is in $1; every set {co :x(t, co)e A} for A B0rel is in ;but

{co :x(t, co) e A} [-I no x- i({y e C(I): y(t) e A}).
The classes {x-(Gt), e I} of N’-sets are all a-algebras; they will provide us with
a means for doing all our work with the probability space f, and then returning
to the measurable space C(I).

There is given a compact metric space F of control points, and a function
c’I x C(I)x F R/ representing cost per unit time as a function of time,
trajectory, and applied control: c(t, y, u) for t, y, u e I x C(I) x F is the cost rate
at if following trajectory y e C(I) and applying control u e F at t. We assume that
c(t,., u) is, for each (t, u) e I x F, measurable on the a-algebra S, that c(-, y, u) is
Lebesgue measurable for each (y, u)e C(I) x F, that c(t, y,. is continuous on F
for each (t, y)e I x C(I), and that

0 <= c(t, y, U) <= const. 1 + [y(s)[ 2 ds yeC(I), ueF.

An admissible strategy is a function ?,:I C(I) F such that 7(’, Y) is
Lebesgue measurable for each y C(I) and 7(t," is G,-measurable for e I. We
now pose this existence problem" is there an admissible strategy that achieves

inf E c(t, x( co), 7(t, x( co))) dt?
),admissible

An admissible strategy that achieves this infimum is called optimal.
THEOREM. Let x(t, co) have continuous sample pathsfor co fo, with P(fo) 1,

filet E{lx(s)l 2 ds} < oo, and let c(t, y, u) be Lebesgue measurable in t, measurable

on the Borel sets of C(I) in y, and continuous in u F compact metric, with

0 <= c(t, y, u) <= const. 1 + [y(s)l z ds

Then there exists an optimal strategy.
The proof is in 6, following a series of preliminary results.
The referee has suggested that the situation of the small investor in the stock

market can be represented approximately by the kind of setup considered here.
In this case the vector of prices of stocks on the market forms the stochastic process
x(. in question; over this the small investor has no control. The control variables
are the amounts ofmoney the investor has invested in each stock. The performance
index is the sum over all the stocks of the integral of the product of the amount
invested (in the stock in question) times the rate at which the price is decreasing.
The construction to be given would show that an optimal investment policy exists,
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and that it is obtained by choosing the control which minimizes the conditional
expectation of the performance rate with respect to the investor’s information.
This corresponds, not surprisingly, to placing money in the stocks with greatest
expected growth based on the facts known to the investor, which is what investors
generally try to do.

4. A lemma of Filippov’s type. We shall prove and use a version of an implicit
functions lemma due to McShane and Warfield [4]. As will ’be seen, our version
differs from theirs in several significant features: it requires the range space to be
separable metric instead of merely Hausdorff, and it allows simultaneous explicit
as well as implicit dependence on the independent variable, provided that this
dependence is measurable with respect to the same o-algebra as is the desired
function. (The separable metrizability is an easy way of paying the price of the
explicit dependence.) In their paper these authors stated that results like theirs
were desirable in the theory of optimal stochastic control, but their own applica-
tion was only to a control problem in relaxed trajectories. Our results indicate
how very fundamental their lemma is for existence theorems in optimal stochastic
decision and control.

If////is a a-algebra of subsets of a set M, and S is a topological space, we say
that a function g:N S, N /[, (defined on N) is///-measurable if and only if
g- I(F) ’ for closed F

_
S.

LEMMA 1. Let (M, /) be a measure space, A separable metric, and U the union

of countably many compact metrizable subsets of itself Let k:M U A be
continuous in its second argument for each value of the first, and //-measurable in
thefirstfor each value of the second. Let y M A be/[/-measurable, with

y(x) k(x, U), x M.

Then there exists an/#-measurable u M U such that

y(x) k(x, u(x)).

Proof Suppose first that U is L a closed subset of (0, ). The first task is to
show that for C compact,

(C) {x y(x) e k(x, L f-] C)} e

Let r,, be a countable cover of A by open sets of diameter <_ (1/2)". We claim that

(C) [,..) {x’y(x)e S and k(x,L f’] C)fl S = }.
Srm

For if x if(C), then y(x) k(x, L fq C). For each m there is an open set S rim with
y(x) S so that y(x) k(x, L f’] C) (3 S :/: . Conversely, with x in the set on the
right, for every m there is a set S of diameter =< (1/2)m and y(x) S, k(x, L f) C) fq S- thus y(x) is at most (1/2)" away from k(x, L f) C). Since this is true for each m,
y(x) k(x, L f"l C)= k(x, L fq C) because k(x,. is continuous and L f) C is
compact. Thus x (C). It is apparent that for S open,

{x’k(x,L fq C)fq S : } {x’k(x,u)eS}.
ueL fl C
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Each set in the possibly uncountable union on the right belongs to . We show
that a countable union can be used. Let D be countable dense in L f’l C, {u,} D
converge to u, with k(x, u) S. Then k(x, u,)--+ k(x, u) by continuity of k(x,. ).
Thus k(x, u,) S eventually because S is open. Hence for some n depending on
S, U, X,

k(x, u) S x {w" k(w, u,) S}
x U {w.k(w, Um) e s} =_ U {x.k(x,,u) s}.

ueD

This proves that L f"l C in the union can be replaced by the countable set D.
Hence for S open, {x’k(x,L C)S # }//// and {x’y(x)sS}s[. Thus
(c).

On the set

B {x" y(x) k(x, L f3 [0, j. 2- q]) k(x, L f’l [0, (j 1). 2- q])}

set Uq(X)= inf{u’usL fq ((j- 1).2 -q, j-2-q]}, jq(x)= j, noting that L f3 ((j
1). 2 -q, j. 2 -q] implies B . uq and jq are /-measurable functions"

{x :LIx) j} U .
Note that jq+ (x) 2jq(x) or 2jq(x) 1. Thus

uq+ x(x) inf{u "u L f’l ((jq+ t(X) 1). 2 -q-1 j+ . 2 -q- 1]}
inf" L q ((L 1/2)" 2 ,L" 2-"]

or

inf’L ((L )" 2-", (j, 1/2). 2-"
>= u(x).

So uqT. We show that uq(x) is bounded. Suppose x e B, so that jo(x) j,

Uo(X) inf{u’L (1 ((j 1), j]}

<_j.

Then jl(x) 2j or 2j 1 and

inf{u’L ((2j 1)- 2-1, 2j. 2-1]}
u(x) or

inf{u’L ((2j 2). 2 -1, (2j 1). 2-1]}
__<j.

In general jq + l(x) 2jq(x) or 2jq(x) 1 =< 2

inf{u "L f] ((2jq 1). Z -q- 1,2jq. Z -q- 1]}
uq+ (x) or

inf{u’L f) ((2jq 2). 2 -q- 1, (2jq 1). Z -q- 1]}
__< 2j,. 2-- _<j.
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So u " u #-measurable. We have u L, so u L since L is closed.
We now claim

y(x) k(x, u(x)).

If not, there exists an x M and a neighborhood V of k(x, u(x)) such that y(x) q V.
(A is Hausdorff.) k(x, .) is continuous, so k(x, .)-V includes a neighborhood of
u(x)o Thus there exist j and q such that

u(x) L ("1 ((j 1). 2 -q,j. 2-q],

L f’) [(j- 1)-2-,j 2-]
_

k(x,. )-’V.
Hence k(x, L fq [(j 1). 2-q,j 2-q])

_
V, and so

k(x, L (q [0,j. 2-])- k(x, L (q [0, (j- 1). 2-q])
_

V.

We show that for this j and q,

Uq(X) inf{u:ue L f) ((j 1)- 2-,j. 2-]}.
We have Uq(X) L and

SO

Suppose

Then

But

SO

hence

Uq(X) < u(x) < j. 2 -q

jq(X) <= j.

jq(X) <= j 1.

jq+ l(X) 2jq(X) 2(j- 1),

jq +,(X) =< 2"(j 1).

Uq+,,(X) <= j,,+(X)" 2 -{"+),

Uq+,(X) <= 2"(j- 1)2 -"-q (j 1)2-q;

U(X) =< (j 1)2- q.

This contradicts u(x) e ((j 1). 2-q,j 2 -q] [’] L. Hence jq(X) j, i.e., x e B, or

y(x) k(x, L [0, j. 2- q]) k(x, [0, (j 1). 2- q])
_

V,

in contradiction with y(x) V. The theorem is proved for U L, a closed subset
of (0, ).

Now let U be such that there is a continuous map q9 [5] taking L onto U.
By what has been proved there is an #-measurable T:M L such that
y(x) k(x, qg(Tx)).. Set u(x) q(Tx). If F is a closed subset of U, then 99- (F) is
closed, and {x Tx q- l(F)} G //. Thus u(. is //-measurable. The extension to the
case where U is the countable union of metrizable subsets of itself is as in [4];
since it is not used, it is omitted.



OPTIMAL STRATEGIES 185

5. Additional preliminaries. It is convenient to express the property of being
an admissible strategy in terms of a single a-algebra. This is done as follows"
consider the class G of measurable subsets E of I C(I) such that:

(i) Every t-section of E is a Gt-set, for I.
(ii) Every y-section of E is a Lebesgue set, for y C(I).

It is easy to verify that G is an algebra; since G is closed under monotone limits, it is
a a-algebra;it can then be proved that a function h on I C(I) is G-measurable
if and only if h(t,. is Gt-measurable for fixed I and h(., y) is Lebesgue measur-
able for fixed y C(I). Thus measurability with respect to G concisely expresses the
requirement of admissibility for the present problem.

Let q "I x flo - I x C(I) according to the formula q(tl o3) t, x(o3). Define
q-I(G), ff is a a-algebra of I x flo sets, and will be used to express the re-

quirement of admissibility in terms of functions of t, o3 rather than t, y for y C(I).
indeed we shall prove the existence of an optimal control law by first expressing it
as an -measurable t, o3 function, and then (properly, now) as a G-measurable
t, y function, using the following elementary result.

LEMMA 2. Iff: I X nO -- F compact metric is -measurable, then there exists
a G-measurable g: I x C(I) - F such that

g(t, x(o3)) f t, o3), o3 no.
Proof Let (Zm, m >= 1} be refining countable partitions of F into sets of

diameter =< 2 -m, and let S]’, S’, enumerate rm, m fixed. For each S’ there is
a set Bin, G such that f- l(sn) qg- 1(Bran). Define Am1 Bml Amn Bmn

n--1

.fl Ami. The amn n => 1, are disjoint G-sets.
i=1

Given S,m, + 1, there is an S’ containing it, so that f-1,,n+,_., 1) _= f-1(S’) and
qg-l(B(m + 1)n’) qg-(Bmn). Hence B(m + 1)n’ Bmn. Thus

(, Bmn $ (" ,_J Bmn A G

and .j Amn A. Let ? be a fixed element of F, and define gin" I X C(I) -- F by

gm(t,y)={omeelementofS ift,yeAmnA,ift,y6A.

The gm are G-measurable functions, and I x x(fo)= (p)f-l(S’)- (Bmn - ’(Amn -i(Amn Amn. Thus I X(no)

_A.
Now
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Since

n-1

: t, o e f- 1(S’), .) f- 1(S’)
i=1

<: t, o f- (S’)

f t, oo) S".

dist {gin(t, y), gm + p(t, y)} <-- 2 m,
the g,, form a Cauchy sequence pointwise. Since F is complete, there is a G-measur-
able g such that gm g pointwise. Since for o Do,

dist {gm(t, X(O)), f(t, 0)} =< 2 m,
we conclude that g(t, x(o)) f(t, o) for 6 I, 920

Another preliminary concerns composition of measurable functions with
conditional expectations. (92, P, ) is a probability space, and a topological
space.

LEMMA 3. Let k’92 5 R be continuous in the second variable for almost
every value of the first, with 0 _<_ k(o, u) <= k(o9) integrable, let be a sub-a-algebra
ofM, and let K(o, u) E{k(o9, u)l/’}, lff:92 S is -measurable, then

K(oo,f(co)) E{k(og, /(09))1’} a.e.

Proof The functions {k(., u), u } are uniformly dominated and

sup Ek(, u) <
u5

Hence K(o,. is continuous for almost all co, and {K(., u), u e St} are uniformly
dominated. We need to show that for an s’-set A,

fA k(Co,f(co)) dP fA K(co,f(co)) dP.

Suppose that fis s’-simple, indeed that./= ai on Ai, for A 6 s’, 0 __< __< n. Then

fA k(o’f(og)) dP fA k(co, ai) dP
Ai

gl Ai

f, K(o, f(co)) dP.

The lemma thus holds for s’-simple f. Let f,, s’-simple, approach fpointwise.
Then

and since both k, K are continuous (a.e.) and dominated uniformly in u, we may
integrate to the limit.

6. Proof of theorem. With p(t, o) t, x(co) as in 5, set q-a(G), and
let be the completion of - with respect to the probability measure 2 P,
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with 2 Lebesgue measure on the Lebesgue sets of the unit interval. Let

K(t, 09, u) E{c(t, x(09), u)l}.
For u 6 F,K(.,., u) is an -measurable function, and K(t, 09,. is a.s. continuous,
because c(t, x(09),. is, and the {c(t, x(09), u), u F} are dominated by an integrable
function.

Let be a continuous map of the Cantor set C onto F. Such a map exists by
the theorem of Hocking and Young [5] because F is compact metric; use of was
prompted by a similar use in [4].

The r.v.

Ah(t, 09) sup Ic(t, x(09), (s)) c(t, x(09),
s,s’C

Is-s’l.<_h

is well-defined; Ah 0 as h $ 0 a.s., and (Ah, h > 0} are dominated by an integrable
function.

Ig(t, 09, (s)) g(t, 09, (s’))l =< E(Ic(t, x(09), (s)) c(t, x(09), (s’))l} a.e.

sup Ig(t, 09, k(s)) g(t, 09, ff(s’))[ =< E{Ah(t, 09)1} a.e.
s,s’C

ls-s’l<_h

The right side approaches 0 a.s. as h $ 0, since {Ah} are dominated. This shows
that the process

{K(t, 09, (s)), s C}
has continuous sample paths on some -set A of full measure. Hence

inf K(t, 09, u) K(t, 09, (C))
ur"

on A.
For 09 fo and any t, c(t,x(09),. is a continuous function on F. So there

exists a set Mo such that for t, 09 Mo, c(t, x(09),. is continuous, and Mo has
(2 P)-measure one. Let p be the metric on F. We have

sup IE{c(t, x(09), ttlC(t x(09), Ul)lff} E{c(t, x(09), u2)l}l
p(ul,u2)<=h

<__ E { p(ulSUp,.2) <-

The sup on the right decreases to 0 as h + 0, on a t, 09 set of full measure, and it
is dominated uniformly in h. Hence there is a set M of full measure, M if, such
that K(t, 09, u) is continuous in u for t, 09 M. F is separable, so there is a countable
set {u,, n => 1} S dense in F such that

inf K(t, 09, u) inf K(t, 09, u,), whenever t, 09 M.
ur unS

Clearly

t, 09"inf K(t, co, u) < a}fl M M f"l (,..){t,09"K(t,09,u.) < a}.
ueF

Since the sets in the union belong to inf,v K(t, co, u) is equal a.e. 2 x P to an
-measurable function.
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Let

y(t, Co)
K(t u)Co,

1

onA M,
on f (A M),

.K(t, Co, /(s)) on A ["1 M,
A(t Co, s) ,[ 1 on f (A 1"1 M).

It is clear that y(t, Co) A(t, Co, C) and that A(t, Co,. is continuous on C for every
(t, Co), and also that A(.,., s) is --measurable for each s e C, and that y(.,. is
-measurable.

By Lemma 1, there is an o-measurable function ’[0, 1] x f --, C such that

Hence on A f) M,

y( Co) A(t, Co, ( Co)).

K(t, Co, 0((t, Co))) inf K(t, co, u).

Let f/= (p(); f/(. is then an o-measurable function such that a.e.,

K(t, Co, O(t, Co)) inf K(t, Co, u).
uF

We can change f/on a set of measure zero to an o-measurable function r/.
By Lemma 2, there is a G-measurable function 7*’[0, 1] x C[0, 1] F such

that a.e.

y*(t, x(Co)) rl(t, Co).

We claim that 7" is an optimal strategy. 7" is admissible, and for any other
admissible law 7,

K(t, Co, y*(t, x(Co))) __< K(t, Co, y(t, x(Co))) a.e.

By Lemma 3, since 7, 7" are o-measurable, this is equivalent to

E{c(t, x(Co), *(t, x(Co)))[} -< E{c(t, x(Co), (t, x(Co)))]}.
Integrating, we see that 7" is optimal.

7. Aeknowledgmem. The author is deeply indebted to H. S. Witsenhausen for
calling his attention to the existence problems for optimal strategies in stochastic
decision situations, for extensive clarifying discussions, and for encouragement
during rough going. Many of the ideas and methods used here were suggested
to the author by him.
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RECOVERABILITY FOR PROCESSES WITH BOUNDED CONTROL
AMPLITUDES AND RATES*

J. S. SHAFRAN’ AND J. Y. S. LUH:

1. Introduction. In many processes, the solution to a specified control problem
may not exist. As an example, for a given system with a particular set of control
constraints it may not be possible to drive a certain set ofinitial values to the origin.
Therefore in this case there is no solution to the minimal time problem for these
initial values. The subject of recoverability is concerned with determining the
conditions which guarantee the existence of solutions for all possible initial values.

The recoverability of linear systems with bounded control amplitudes has
been investigated by, among others, LaSalle [1]. Later, his results were extended
to linear time-varying processes by LeMay [2]. This paper investigates the subject
of recoverability for linear time-varying processes with control inputs bounded in
both amplitude and rate. The results are summarized in two theorems, which
provide a necessary and a sufficient condition for complete recoverability. Also,
the results are compared to those obtained by the previously mentioned authors.

2. Statement of the problem. The control process under investigation is
described by the linear time-varying differential system"

(t) E(t)y(t) + F(t)u(t)

on 6 [to, ). The n-dimensional vector y describes the state of the system, u is an
m-dimensional vector which represents the control input, m __< n, and E(t) and F(t)
are bounded and continuous real matrices of dimensions n n and n m, re-
spectively, it is assumed that (1) is completely controllable, for general initial time
to, in the sense defined by LaSalle [1]. Let (3 and f be two polyhedrons in Rm, given
by

(2) G {ullui < 1 i= 2 m}

and

(3) n {[ll h, h > O, 1,2, -.., m}.
The control vector u of (1) is said to be admissible if, for all e [to, ),
(a) u(t) is continuous and has a piecewise continuous derivative, and
(b) u(t) G and fi(t) f.
The problem is to establish, for (1), the conditions under which every initial

value can be driven to the origin using admissible controls. This is termed the
problem of determining the conditions for complete recoverability.

* Received by the editors February 28, 1969, and in revised form September 16, 1969. This work
was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, sponsored
by the National Aeronautics and Space Administration under Contract NAS 7-100.

" TRW Systems Group, Inc., Redondo Beach, California 90268.
: School of Electrical Engineering, Purdue University, Lafayette, Indiana 47077.
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From condition (a) it is evident that the admissible controls must certainly be
continuous at to, i.e., lim_o U(to e) U(to), e > 0. Therefore, the admissible
controls for each initial condition y(to) are dependent on the choice of the initial
value of the control vector. Hence, for completeness, the recoverability of each
initial condition y(to) must be determined for all possible values of the initial
control. In order to accomplish this, the above control process will be reformulated
as a bounded state variable process. For e [to, o) and 1, 2, ..., m, let

x,+(t) u,(t),
(4)

vi(t) tii(t).

Then (1) can be augmented as

(5)

with

where

(t) A(t)x(t) + By(t)

y(t)

Y,,(O

u(t)

[Y(to)7X(to)
Lu(to)d’

x(t)= A(t)=
E(t) F(t)

B=
L 01 02 _]’ 13

x,(t)7

and 01 is an m x n zero matrix, 02 is an m m zero matrix, 03 is an n x m zero
matrix and I3 is an m x m identity matrix. System (5) is in the bounded state
variable formulation since x(t)e for every t6 [to, ), where {xllxj __< l,
j n + l, n + 2, ..., n + m}. Notice that matrix B always has the same form for
any given (1). For [to, ), the class of admissible controls for (5) may be
written in terms of the new control vector v as

(6)

A(t) {vlv is piecewise continous

v(s) f and x(s) 0 for all s e [to, t]}.

The problem for (5) can be stated as follows. Under what conditions can every

initial condition X(to)
r
n[y(to)| be driven to the origin, using admissible controls?
ku(to)d

Note that in this formulation the value of the initial control vector is indeed
included as part of the problem of complete recoverability. It should be pointed
out that the requirement that the augmented state vector x be driven to the origin
implies that the original control vector u be driven to u 0. This additional
constraint was introduced to simplify the development of the conditions for
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complete recoverability. It may also be argued that this is a reasonable physical
constraint since it is desirable to avoid disengaging the control input at y 0.
Therefore it is desirable that u 0, whenever y 0.

In order to analyze the above problem, it is necessary to examine the various
properties of the set of recoverability and the set of recoverable initial conditions.
These two sets are precisely defined below.

3. Set definitions. From the variation of parameters formula, the solution to
(5) may be written as

(7) x(t) (t, to)X(to) + dp(t, s)Bv(s) ds, v e A(t),

where (t, to) is a fundamental solution matrix of the homogeneous differential
equations corresponding to (5) with 4(to, to) I, the identity matrix. The set of
recoverability, K(t, to), is defined as the set of initial conditions at time to that can
be brought to the origin at time t, using admissible controls. By setting x(t) 0
and by solving Xo X(to) in (7), the following expression for the set ofrecoverability
is obtained:

(8) K(t, to) x[x dp(to, s)Bv(s) ds, v A(t

It can be shown (Appendix A. 1) that the set ofrecoverability is compact, convex and
varies continuously with c Moreover, the set K(t, to) is nondecreasing in t.

The set of all recoverable initial conditions is defined, using (8), as

(9) S(to) (,_) K(t, to) c ,
t>--to

where the set G was defined in 2. In Appendix A.2, it is shown that th st S(to) is
convex.

With the aid of the above two set definitions, it is seen that the problem of
complete recoverability for (5) (and hence, (1)) is equivalent to determining the
conditions under which S(to) G.

4. A necessary condition for complete recoverability. The following definitions
are useful in the development. Let $(t), an (n + m)-dimensional row vector, be a
nontrivial solution to the adjoint equations (t) $(t)A(t) of (5), corresponding
to some initial condition $(to). Let $(t) be partitioned as $(t)= $1(t), $2(t)],
where $1(t)= I$1(t),’", $,(t)] and $2(t)- [$,+1(t),..., $,+m(t)l. Also, let
]l(t)]] ’=

THEOREM 1. If S(to) J, then. for every choice (to), with d/(to) nonzero, of
the initial value of the adjoint vector, the following relation must be satisfied"

(10) lim ]]pZ(s)[[ ds
Too to

Theorem 1 gives a necessary condition that the entire original state space be
recoverable, subject to the restraint sets f, G and (. The proof of this theorem is
straightforward and is presented in [3]. This condition is equivalent to the results
derived by LeMay [2] for processes with no bound on the control rate.
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5. A sufficient condition for complete recoverability. For convenience, in the
following discussion a class of vector functions 2(t), called Class 1,, is introduced.
The definition of this class of functions is developed below.

The scalar function $+(t),j 1, 2, ..., m, >_ to, is said to belong to ClassF
if for any number H > 0, there exists a time > to such that

(11) I,+j(t)l > H for all T.

The scalar function g/,+j(t),j 1,2, ..., m,t >= to, is said to belong to
Class 1,2 if it does not belong to Class F1 and if it satisfies all of the following three
relations"

(12) (i) [dg/,+(t)/dt[ =< r, r > 0, for all >__ to,

(13) (ii) Ati=(ti+ ti) <-_ fl, fl > O, i= 1,2, N 1,

where to < t < t2 < < tv < T,.N N(T) and Te (to, ), are defined to be
the time instants at which 0, +j(t) is at a local maximum or minimum value; and no
local extremum exists at any other time instants between to and T. Also, fl and r
are both independent of T.

(iii) For any number > 0, there exists a time T > t0 and a corresponding
integer N N(T) > 0, such that

(14) (Ai)2 > ,
i=1

where Ai [,+j(ti+ 1) ,+j(ti)].
The m-dimensional function 2(t), to, is said to be in Class F of vector

functions if at least one component 2(t) belongs to either Class F or Class F2.
TOREM 2. If 2(t) of the adjoint vector (t), to, belongs to Class F for

every choice of (to) with (to) nonzero, then S(to) .
Theorem 2 provides a sufficient condition for complete recoverability. The

proof of this theorem is established by a sequence of three lemmas.
LEMMA 1. S(to) G if and only if for any number H > 0 and any choice

(to) [1(to), 2(to)], with (to) nonzero, of the initial value of the joint vector,
there exists a time T > to and a control v A(T), such that

(15) O2(s)v(s) ds > H.

The proof of Lemma is rather lengthy and is therefore omitted here. It is
presented in [3]. The proof is based on the convexity property of S(to), and the
properties of the adjoint vector p(t).

The proof of Theorem 2 is carried out in the following manner. First it is
shown that if any component of tz(t) belongs to Class F for a given choice of
(to), with (t0) nonzero, then (15) is satisfied. In a similar manner, the proof
is carried out for Class 1,2. Then, the proof of Theorem 2 immediately follows
from Lemma 1.

LEMMA 2. If for a given choice of initial condition (to) of the adjoint vector,
with (to) nonzero, there exists a component of 2(t) belonging to Class 1"1, then
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for any number H > 0 there exists a time T > to and a control v A(T), such that
(15) is satisfied.

Proof Suppose, for some j, j 1, ..., m, that ,+i(t) belongs to Class F1. Let
the time T be defined as

(16) T= T+ 1/h

and define the control v(t)on [to, T] by:

(17)

vi(t) =- O, =/= j, i= 1,2,...,m,

0 ifto __< <T,"
v(t)

hisgn[.+i(t)] ifT_<t__< T,

where hj > 0 is the amplitude bound on the jth component of the admissible
controls. From the definition of the class of admissible controls, (6), it is seen that
v(t) on e [to, T] is an admissible control, i.e., v A(T). For this choice of control,
the left-hand side of (15) becomes

(18) 2(s)v(s)ds hj Iq.+j(s)lds, v A(T).

However, from (11) and (16), (18) implies that

(19) /(s)v(s)ds > hH/h H,
o

v e A(T).

Since the above procedure is valid for any choice of the number H > 0, then (19) is
equivalent to (15) of Lemma 1.

LEMMA 3. Lemma 2 is also valid if Class FI is replaced by Class F2 in the
statement of the lemma.

Proof With reference to (14) and since > 0, then N N(T) > 2. Therefore,
by (13), there must be at least two extrema of O,+j(t) on the time interval (to, T).
For convenience, suppose that the first extrema is a local maximum. There is no
loss of generality since the indexing parameter can always be redefined. Let the
control v(t) on [to, T] be defined as

(20)
v(t)

Vl(t O,

(-1)i+lhj
0

1)ih

0

lj, 1= 1,2,...,m,

if ti-<- < ti +
if ti + 6i <= < ti+

ifti+ 6i <= < ti+,

elsewhere,

where 6i, 1, 2,..., N 1, is given by

AOi/(3r) ifAOi < 3r/hj,
6,=

At,/(hfl) if A0,_>_ 3r/hj,
(21)

and the numbers r and fl were defined in (12) and (13).

i= 1,2,...,N- 1,
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(22)

By applying the definition of Class F2, it is straightforward to show that

6 _< min [1/hj, At/3], i= 1,2,...,N- 1.

The admissibility of the control v(t) on e [to, T] given by (20) then follows as a
direct consequence of (22).

For this choice of admissible control the left-hand side of (15) becomes

(23)
O:(s)v(s) ds hj (- 1)+

i=1

. +)(t) dt

fti+4-( 1)
ti+ --i

Let k be an odd number, 1 _< k =< N- 1, and consider the term k of. the
summation in (23). Since k is odd, then ,+j(tk)corresponds to a local maximum of, +j(t). Therefore,

tk+kn+j(t)dt >= 3kOn+j(tk 4- tk),

(24)

On+ j(t) dt
_

(kOn+ j(tk + tk).
ltk+ --Ok

However, since the derivative of ,+j(t) is bounded, then

(25)
,+j(tk + 6k) >= ,+j(tk)- r6k,

--,+j(tk+l 6k) >= --/,+j(tk+ 1) r6k.
Let lk represent the kth term of the summation in (23). Then, by combining (24)
and (25), the following inequality for Ik is obtained"

(26) Ik >--_ [Ak 2r6k]hj6k,

where, in this case, Aqk ,+j(tk) ,+j(tk + 1) > 0. Now consider the two possible
values of 6k from (21).

(i) 6k Abk/(3r). Substituting this value of 6k into (26) yields

(27)

(28)

Ik >= hj(AOa)2/(9r).
(ii) 6a Ata/(hjfl). This yields 6a =< 1/hj. Since, in this case, Aqa > 3r/hj, then

6 =< A6d(3r). Substituting these results into (26)yields
However, from (12), Ata >= Aqk/r. Thus,

Ik >= (A6k)2/(3rfl).
The number fl > 0 is defined by (13) as Atk <-- ft. Therefore, the inequality fl >= 3/hj
can always be satisfied for any given problem. With this inequality satisfied, it is
seen that (27) implies (28). Hence, (28) is valid for both choices of 6k.

If k is an even number, (28) can be established by similar reasoning. Sub-
stituting (28) into the summation (23) yields

T N-1

(29) g/2(s)v(s) ds >__ (Ai)2/(arfl).
to i=
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However, since ff,+j(t) belongs to Class [’2, then from (14),

(30) O2(s)v(s) ds > O/(3rfl).
to

For any number H > 0, let 3rflH. Since the above procedure is valid for any
number/ > 0, then (30) is equivalent to (15) of Lemma 1. This completes the
proof of the sufficient condition for complete recoverability.

Theorems 1 and 2 are the basic results on complete recoverability, in order to
apply these theorems to a given problem, the adjoint solution must be constructed
as a function of the initial condition O(to), with Ol(to) nonzero. Then the conditions
of the theorems can be checked to see if the set of recoverable initial conditions,
S(to), equals the restraint set (. This procedure is illustrated by two examples in 6.

6. Examples. An example of a system that is not completely recoverable is
given below. It will be shown that this system does not satisfy the necessary con-
dition given by Theorem 1.

Consider the following unstable system for => 0"

1 X2,
(31)

92 X1 -at- /’/,

with the control u(t) bounded in both amplitude and rate for all time t. By using the
transformation discussed in 2, (31) may be reformulated as a bounded state
variable process and written as

010 0

(32) = 01010 x+0
where x Ex1, x2, x3’ Ix1, x2,/./’, /) /,, and [. ]’ transpose of [.]. For this
example, n 2, m 1 and therefore tz(t) O3(t). The third component of the
adjoint solution is given by

(33) O3(t) q3 r/1 + r/1 cosht r/2 sinh t,

with (0) It/l, r/2, r/3]. Consider the particular choice of (0) [2, 2, 2]. For
this choice, 1(0) is nonzero and O3(t)= 2e-’. Substituting for O2(t)= O3(t) in
(10) yields

(34) lim 102(01 dt 2 < .
Thus the necessary condition of Theorem 1 is violated and therefore S(to) - ( in
this case.

As an illustration of the sufficiency condition of Theorem 2, consider the
following oscillatory system with bounded control amplitudes and rates for >= 0"

1 X2 -[- b/l
(35)

92 --Xl q" /’/2"
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The bounded state variable reformulation of (35) is given by

(36)

0 1 1 0 0 0

2= x+ v,
0 0 0 0

0 0 0 0

where x Ix1, x2, x3, x4]’ Ix1, x2, Ul, u2]’ v [/)1, )2] Ebb1, b2]’. For this
example n 2, m 2, and 2(t)= [3(t), 4(t)]. The third and fourth compo-
nents of the adjoint solution are given by

(37)
if/3(t) -ql sin -//2(1 COS t) + q3,

4(t) r/l(1 COS t) 2 sin + r/4,

with q/(0)= [r/x,r/z,r/3,r/4]. It can be shown that both q/3(t) and q/4(t) of (37)
belong to Class F2, as long as q/(0)= [q,r/2] is nonzero. Thus ff/z(t) always
belongs to Class F and, consequently, Theorem 2 is satisfied. Hence S(to) G and
therefore every initial condition is recoverable.

In the following section the two theorems developed in this paper will be
compared to the necessary and sufficient condition for the complete recoverability
of (1), in the case when instantaneous change of control is allowed.

7. Comparison with complete recoverability in the bounded amplitude case. If
the constraint on the rate of change of the admissible controls, (3), is removed,
then [2] gives the necessary and sufficient condition for the complete recoverability
of(l) as

(38) lim [[2(t)F(t)[[ dt
r--+

where the n-dimensional vector 2(0 represents any nontrivial solution to the
adjoint equation (t) -2(t)E(t). The complete recoverability problem considered
in this paper has included the rate constraint on the admissible controls. The
reformulated (n + m)-dimensional problem is described by (5). The results for this
problem are Theorems and 2 which provide a necessary and a sufficient condition
for the complete recoverability of (5), and hence (1).

A basic relationship between the two problems can be established by noting
the form of the matrix A(t) in (5). Since the (n + m)-dimensional adjoint vector
O(t) [ff/l(t), @2(t)] satisfies the equation (t)= -O(t)A(t), then the following
two relations are established, viz."

q/1(0 2(t), with q/l(to) ,(to) nonzero,
(39)

b 2(t) l(t)F(t) 2(t)F(t).

Certainly, every system that is completely recoverable in the case when the
rate of change of the admissible controls is constrained should also be recoverable
when the rate constraint is removed. Thus, if Theorem 2 is satisfied, then (38) should
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also be satisfied. To see this note that from (39), (38) can be written as

(40) lim 12(t)l dt- .
T

Now, suppose that Theorem 2 is satisfied and that some ,+j(t), j 1, 2, ..., m,
belongs to Class F1. Since for all T __> to,

(41) 1]2(t)ll dt >__ ],+j(t)l dt >= 10,+j(r)- 0,+j(to)l,

then by (11) (the definitions of Class F), (41) implies that (40) is satisfied. Now
suppose that some n+j(t),j 1, 2,’’’, m, belongs to Class F2, From (12) and
(13), and since A ],+j(t+ ) ,+j(t)],

(42) l]2(t)ll dt ],+j(t)] dt 2 AO,
to to

N =N(T), T to.

Suppose that as T , the summation in (42) converges. There are two possible
cases. If N N(T) remains finite as T , then (14) is not satisfied which
contradicts the assumption that ,+j(t) belongs to Class 1-"2. If N N(T)
as T , then limi Api 0, and therefore there exists an integer M > 0 such
that Ai _-< 1/2 for all > M. Therefore (Aqi)2 < Aq for all > M. Thus by the
comparison test [4], = (Ap)2 converges, which again contradicts the definition
of Class 1-" 2

It has been shown that if Theorem 2 is satisfied, then (38) is indeed satisfied.
On the other hand it is not necessarily true that if (38) is satisfied, then Theorem
will be satisfied. In other words, a system may be completely recoverable with
admissible controls that are bounded only in amplitude. However, the property of
complete recoverability may be lost when constraints on the rate of change of the
admissible controls are added. As an example, consider the following scalar
system:

(43) )(t) -y(t) + f(t)u(t), >__ O,

with

(44) f(t) -e-t( 1)k- sin kn(t tk-1)

for k_ < k and to 0, k k_ -[- 1/k, k 1, 2,-... In Appendix B, it is
shown that this system satisfies (38) and yet does not satisfy Theorem 1. This
occurs because of the rapidly changing sign of the function f(t). If the rate of
change of control is bounded, then the control cannot follow this rapid change in
f(t). On the other hand this problem does not exist when the rate of control is
unconstrained.

8. Conclusions. For linear time-varying systems with bounded control
amplitudes and rates, the set of initial states that can be steered to the origin in
finite time is directly related to the augmented components of the adjoint solution
to the reformulated bounded state variable processes. The two theorems presented
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in this paper provide a systematic method for investigating the recoverability of
these systems by testing the augmented components of the adjoint solution.

Appendix A.
A.I. Properties of K(t, to). Consider the set of recoverability, given by

(A.1) K(t, to) xlx (to, s)Bv(s) ds, v e’A(t)

where 4(to, s) is a fundamental solution matrix and A(t) is the class of admissible
controls. Let the set L(t, to) be defined as

(A.2) L(t, to) 1 c/)(t, s)Bv(s) ds, v e A(t)
o

Now consider the following transformations, viz.

(A.3) w(s) v(t + to s), s e [to, t], v e A(t),

(A.4) (,+j(s) -x,+j(t + to s),
j= 1,2,...,m, s[to, t].

From (A.3) and (A.4), d((s)/ds w(s), s s[to, t] and (,+j(to)= x,+j(t)= O,
j 1, 2, ..., m. Let the set Z(t, to) be defined as

to

where w(s) on s e [to, t] is given by (A.3). It is shown in [5] that the set Z(t, to),
defined in (A.5), is compact, convex and varies continuously with t. Since the
proof of these properties in [5] does not depend on the transformation given by
(A.3) and (A.4), then the set L(t, to) is also compact, convex and varies continuously
with t. From (A.1) and (A.2), the sets K(t, to) and L(t, to) are related by the trans-
formation

(A.6 x 4(to,

Since the two sets are related by a linear continuous transformation, then the set
K(t, to) is also compact, convex and varies continuously with t. The nondecreasing
property of K(t, to) can be established in the following manner. Suppose that the
state e K(t, to), where t to. Then, by (A.1), there exists a control e A(t),
such that

(A.7) 2 (to, s)B(s) ds.

Now, let the time t be such that t t and define the control (t) on e [to, t by

(A.8) (t)
(t), to l,

0, tx < t2.

Since A(tl), then by the definition of the class of admissible controls, A(t2).
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The corresponding state 2 e K(t2, to) is given by (A.1) as

(A.9) 2 4)(to, s)B(s) ds dp(to, s)B(s) ds + 0 2.

Thus the state 2 K(t2, to). Since the choices of 2, and rE, to =< --< /2, were
arbitrary, the above is true for all states K(tl, to). Thus, K(tl, to) K(t2, to),
which establishes the nondecreasing property of K(t, to).

A.2. Properties of S(to). The set of all recoverable initial conditions is defined
by

(A.IO) 8(to) ) K(t, to).
t>_to

In order to show that S(to) is convex, consider any two states 2, 2 S(to). Then
2 K(t,, to) and 2 K(tb, to) for some time instants t,, tb >- to. Let the time tc be
defined by

(A.1 l) tc max Ira, tb].

Then &, K(t, to) and x K(t, to) S(to) for all states x given by

(A.12) x 2 + (1 )2 for all 0 _< 0 _<_ 1.

Since the states 2 and 2 and the times t, and t were arbitrary, the set S(to) is convex.

Appendix B.
B.I. Example. The scalar system under consideration is given by

(a.1) 3)(t) -y(t) + f(t)u(t), >= 0,

with

(B.2) f(t) -e-t( 1)k-1 sin kr(t tk-1)

for k_ <= < tk, and to 0, k tk- -F- l/k, k 1,2, ....
First, suppose that the control u(t) is bounded only in amplitude. Since

n 1, the adjoint solution 2(0 is scalar and is given by 2(0 2(0)et. By direct
substitution,

(B.3) lim 12(t)f(t)] dt 2]2(0)l/(krc) oe
Too k

for all choices of 2(0) :# 0. Thus, (38) is satisfied, and therefore (B.1) is completely
recoverable for the case that the control u is only bounded in amplitude.

Now, suppose that a rate constraint on the control u(t) is added, i.e., Iti(t)] __< h,
h > 0, for all >_ 0. System (B.1) can be reformulated as a bounded state variable
problem, i.e.,

(B.4) 2(t) x(t) + v(t)
0

where x [x l, x2]’--[y, u]’ and v ti. Since rn 1, then 02(t) is scalar. The



200 J.S. SHAFRAN AND J. Y. S. LUH

general expression for t2(t)is given by (see (39))

(B.5) O2(t) 02(0) + [-2(s)f(s)] ds.

Substituting for 2(s)f(s) in (B.5) and applying (B.2) yields the following expression
for 2(t)"

[t2(t)- t2(0)3/tl(0)

(1 -cos zct)/z if 0 __< <
N-1

(B.6) (- 1)k- 12/(kz) + (- 1)- x(1 cos Nrc(t ts_ 1))/(N)
k=l

iftN_a -<t<tN, N > 1.

With the above expression for 2(t), the left-hand side of(10) (Theorem 1) becomes

(B.7)

where

lim ffE(t)l dt lim l2(t)ldt 11 + I2,
T-

(B.8)

and

I Ig,2(O) + ql(0)(1 cos zct)l dt

(B.9)
12 ]2(0 + 2t1(0) Z (--1)k-

=2 k=l

+ [(- 1)- 1t1(0)(1 COS Nc(t tv- 1))]/(Nzc)I dt.

By(B.2),tl 1. ThusI1 _-< H1 < ,H1 > 0 i.e., the integral ll of(B.8) is bounded
for all choices of (0) with 1(0) nonzero. Now consider the integral I2 of (B.9).
For a particular choice of (0), let 1(0) be arbitrary ($1(0) #- 0) and let

(B.10) 2(0) -[21(0)log

Sincek (-- 1)k- 1/k log 2, then with the aid of (B.10), (B.9) can be written as

(B.11)
I2 1--201(0) , (--1)k-1/(kc)

N=2 ar-1 k=N

+ (- 1)- 11(0)(1 COS Nc(t tv-1))/(Nc)l dt.

Applying Leibniz’s alternating series test [4] to (B.11), and noting that tN tu_
l/N, yields

(B.12) 12 {12t1(0)/(N2x)l + I(-1)U-la(0)/(N2z)[} <_-H2 < 0, H2 > 0.
N=2

Substituting the result from (B.12) along with the result that Ix =< H1 < into
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(B.7) yields

(B.13) lim ll92(t)ll dt 11 + 12 <= H1 + H2 H < ., H > O,
T

for these particular choices of 0(0) [01(0), 02(0)], with 1(0) - 0. Thus, (10) of
Theorem does not hold and therefore the theorem is violated.

System (B. 1) is then not completely recoverable in the case when the admissible
controls are constrained both in amplitude and rate, although it is completely
recoverable when the rate constraint is removed. Notice that the sufficiency condi-
tion (Theorem 2) is also not satisfied for (B. 1), since 02(t) does not belong to Class F.
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A FREQUENCY CRITERION FOR OSCILLATORY SOLUTIONS*
GERALD S. LELLOUCHE-

1. We examine the solutions of a certain integral equation (to be given below).
We assume that the solutions exist locally and show that if a certain frequency
criterion is satisfied that the solutions exist globally and either have an infinite
number of zeros on the line [0, oo) or else are asymptotically zero.

Consider the solutions of the integral equation

(1) a(x) dx f(t)- f(O) + m(t- x)q[o-(x)] dx,

where the real functions f(t), re(t) and p(a) satisfy the following conditions 1"

(i) f(t) is continuous and defined for _>_ 0, and f’(t), f"(t) and f’"(t) are in
LI[0, oo). It follows that

(2a) fN(t) fN+ X(x) dx.

(ii) The kernel re(t) continuous and defined for __> 0 is given by

(2b) re(t) =_ j(t) j(O) pt,

(2c) p > 0,

where j(t), j’(t) and j"(t) are defined by the relation

(2d) j(t) j / (x) dx

for >__ 0, and they are in L[0, or) f) L[0, o).
(iii) qg(a) is a bounded and locally Lipschitzian function of a and satisfies

(2e) crop(or) > O, a O,

(2f) q0(0) 0.
We suppose now that"

(iv) If

(2g) dl(icO) / J’(z)e-i dry,
d 0

there exist two real numbers q, q2 >= 0 such that

(3) Re{Z(ico)} =-Re{(1 +io)ql)Jl(ico)-pql+ q--2(Jl(io))-tco Jl(0))} =<0

for all real co :/: 0.
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(v) The number q2 0 also satisfies

(4) p q2J,(0) > 0.

Then we have the following theorem.
THEOREM 1. If conditions (i)-(v) are satisfied, all solutions (a(t)) of (1) are defined

for all >= 0 and with the following properties" either
(a) lim,_. a(t) 0 or

(b) a(t) has an infinite number of zeros on the line 0 <= < .
Digression. If we differentiate (1) we find

(1’) (t) f’(t) + m’(t- x)q0[(x)] dx;

this equation is the one studied by Corduneanu [1], and in particular if qa 0,
then Corduneanu has shown that (3) is a sufficient condition for asymptotic
stability in the large. We do not consider the question of whether conditions
(i)-(v), with q > 0, are sufficient to prove asymptotic stability in the large.

Proof of Theorem 1. The method of proof is that due to Popov [2]. Set

(5a) q,() _-- q[a()],2

(5b) qt(z) O, z > t.

Consider the function defined for z >_ 0

(6a) Xt(z) [j’(z x) + qj"(z x) + q2j(r x)]qt(x)dx + qm’(O)q)(z).

Since for r >

(6b) X(z) [j’(z x) + qj"(r x) + qj(z x)]q0,(x)dx,

by condition (ii) we see that X() is in L[0, oe) L[0, oe), and we have

(7a) A(ico) 2(z)e-i dr Z(ico)O(ico),

0<- z<t,

where

(7b) Z(io) (1 + icoql)Jl(io3 pql + qz[J(io3)- J,(O)],

(7c) q3,(i) q,(z)e-i, dz [a()]e-i dz.

Now consider the real function

Condition (iii) guarantees that q[a(t)] is locally in L2, hence that tp,(z) is in L for all _> 0.
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whence, by Parsevals relation,

(8a) q(t) z(io9)lcpt(io9)l 2 dog.

Since r/(t) is real, Im [Z(iog)] is antisymmetric in co and

(8b) ri(t) Re [Z(iog)]l(ot(iog)l 2 do9

and, by condition (iv),

(8c) n(t) =< 0.

Starting from the real form for 2t(r) we find (using (1, 1’) and the derivative of (1’)
as well):

fl fo flfo:q)[a(x)]a(x) dx + q q)(a’) da’ + q2 (p[a(x)] a(y) dy

(9) + qp q[o(x) dx (x y)qo[o-(y)] dy + (p + qj(O)) q[o-(x) dx
2

g(x)q)[a(x)l dx q q)(a’) da’ <= O,

where

g(x) f’(x) + qlf"(x) + q2(f(x) f(O)).

From condition (iii)each of the first two integrals is nonnegative. If a(t)(hence
qg[a]) has only a fixed sign then the third and fourth integrals are always positive.
However if a(t) changes sign then the third and fourth integrals are not necessarily
positive. We return to this in a moment. Consider the last three integrals: let

(I)(t) qg[a(x)] dx; then g(x)q)[a(x)] dx <= K sup I(z)l, 0 __< ; < t, where K

depends only on f(t) and its derivatives; hence the last three integrals sum to a
value greater than

f(o)f[p+ q2j(O)]Op2(t) K sup I(z)l- qa qg(a’) da’, 0 <= Z <= t.

Since (I)2(t) attains (sup 10)1)2 somewhere on the line [0, t] (if qg[a] has a fixed sign,
(t) is maximum at the endpoint of the line) we see that by conditions (i), (ii) and (v)
the last three terms sum positive for > some t* unless qg[a(t)] O. We find then
that the first four integrals and the sum of the last three are positive, contradicting
the inequality;hence a(t) cannot have a fixed sign unless a(t) goes asymptotically to
zero.

Suppose a(t) has only a fixed number of sign changes, and for > achieves a

fixed sign. This cannot occur either, since, q)(a(x))dx becomes unbounded

(unless lim:_oo (t)---, 0); hence the last three terms will again sum to a positive
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value for > t* > tl. Furthermore the third integral can be written in the form

13 q[o(x)] dx o(y) ely + a(y) ay q[r(x)] dx

(o

+ e[a(x)] dx a(y) dy,

where e > 0 is defined such that ](t)] > q for > t + e and similarly [O[(t)]l
> for > + e. Assume a > 0 for > then for > + e we have the follow-
ing lower estimate for Ia:

(t foe)23 + 6(t- e) o(y) dy + O[o(x)] dx o(y) dy;I >
2

for sufficiently large this term is and remains thereafter positive (similarly if
a < 0 for > ta). An equivalent analysis can be done for the fourth integral. Since
for sufficiently large we violate the inequality (9), a(t) cannot have a finite number
of zeros on [0, ). Suppose however o(t) diverges at a finite time tz after a finite
number of zeros. Equation (1’) shows that if o(t) diverges at t < then (since

flm’(t) is bounded by condition (ii)) both O(a) and m’(t x)o(a(x))dx diverge as

t; from conditions (i), (ii) and (1’) we also find

and if the last zero of a(t) occurs at < t then (taking a to diverge positively)

O[a(x)] dx diverges as well (similarly if + e < t, O[a] dx ).
+

We now consider the sign of the third and fourth integrals.

foI e[a(x)] dx o(y) dy

dx a dy + (y) dy dx + dx dy;

if we take the sign of (hence of [o]) to be > 0 for tf > > t then the first term
on the right is > 0. Now we add the second integral in (9) to the third and find

I O[a]a dx + q2 O[a] dx a dy

> [a] dx (x) + q2 (y) dy + q2 dx a dy.

The integral a(y) dy is a constant while a(x) is of fixed sign for t < < t and

diverges for t; hence a(x) + q2 a(y) dy attains the same fixed sign that
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q[a] has for some I > 2 => and diverges as - tl. Now for > 2 -+- g we

fi’ fi fofind that if a(x) + q2 o’(y) dy > r/then I > q O[r] dx + q2 q) dx r dy

and the sum of the second and third integrals diverges. The fourth integral can be
handled as follows"

I =- q) dx (x y)q dy

q dx (x y)q dy + q dx (x y)q dy / q dx (x y)q dy.
tl

The third term is positive since q[] has a fixed sign between t and t; the first
term is constant. We add the second term to I and find a new term in the bracket
of the form

q(x) dx or(x) + q2 or(y) dy + q2P (x y)cpcr(y) dy

Again, since a(x) diverges and the other two terms are bounded, there is a tz > 3

__> t for which the sign of the bracket becomes fixed and as before we find that
the sum of the integrals becomes positive, in violation of (9); hence a finite escape
time cannot exist. This proves the theorem since a(t) must either be a continuously
oscillating function, finite for all finite, or else go to zero asymptotically.

2. An application to linear systems. We assume cp(a) aa; in this case the
first three integrals of(9) are each >= 0. Theorem 1 states that any nonasymptotically
zero solution oscillates. If the fourth integral in (9) can be shown to be greater
than -A < 0 (A < o) on some sequence (tn, then on that sequence {tn} the
first three integrals diverge positively, and for n > N a violation of Theorem 1
is reached. By direct substitution in the fourth integral, solutions of the form
sin (cot)e2t show such a violation; hence no such solution can exist (independently
of co > 0 or 2 __> 0). Solutions of the form ext n a, sin co,t can however occur and
need not violate the criterion ifn an 0 (even for 2 0). Hence Theorem 1
does not guarantee boundedness.
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A NONGRADIENT AND PARALLEL ALGORITHM FOR
UNCONSTRAINED MINIMIZATION*

D. CHAZAN AND W. L. MIRANKER

Abstract. The purpose of this paper is to describe an algorithm for unconstrained optimization
which is suitable for execution on a parallel computer. A nongradient method similar in nature to
Powell’s method is used and it is shown that the algorithm terminates at the minimum for quadratics
and converges for strictly convex twice continuously differentiable functions.

1. Introduction. In this paper we consider an algorithm suitable for uncon-
strained minimization of strictly convex functions. The method is a nongradient
method since it requires no information about derivatives. In addition, it has been
designed as a parallel method and may be executed simultaneously on a set of
arithmetic processors. Parallelism has recently attracted some attention in various
fields of computation and computer science, e.g., [4], [5], [6]. This paper gives a
procedure for utilizing parallelism in the area of unconstrained minimization.

Algorithms for unconstrained minimization usually proceed by a sequence
of univariate minimizations. The directions in which to make a univariate search
typically depend on the gradient at the current point. Steepest descent [1],
conjugate gradient [13, and variable metric [2] are examples of such methods. Since
gradient computation is costly in certain computational situations, methods which
do not compute gradients have been devised. Apart from those methods which
estimate gradients by finite differences, such nongradient methods include pattern
search [1] and a conjugate method devised by Powell [3]. This latter method has
been the motivation for the study presented here.

We will now give a brief description of Powell’s minimization method which
requires no derivative computation. In m-space we are given a point p and m
directions v 1, .., vm. Starting at p we make m univariate minimizations in sequence
in the directions vl, vm, respectively. This procedure produces a polygonal
trajectory which terminates at a point, q, say. We now make one more univariate
minimization starting at q and in the direction vm+ q p. Let r be the point
which this last minimization results in. This is one cycle in the algorithm. To
execute the next cycle, we update p and v, ..-, v" as follows: r p and vi+ vi,
i= 1,..-, m.

Figure 1.1 illustrates two cycles of the algorithm in 3-space. Arrows denote
univariate minimizations and are labeled by their directions.

Powell tried out his algorithm and obtained convergence in several examples.
However, he did not produce a proof of convergence for his algorithm. He does
produce a discussion of the method when it is applied to a functionf(x) of the form

(1.1) f(x) xAx + bx + c,

where c is a scalar, b is an m-vector, and A an m x m positive, definite, symmetric
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V 2 V 3

q
FIG. 1.1

matrix. In this discussion Powell claimed that his algorithm terminates in at most
m cycles at the minimum off(x).

Except for a small gap, this discussion is a proof of convergence in this case.
Subsequently, W. Zangwill [6] modified Powell’s algorithm and filled the gap in
Powell’s argument for quadratic functions. Moreover, Zangwill produced a
convergence proof for this modification in the general case when f(x) is a strictly
convex function. Zangwill’s algorithm is identical to Powell’s, except that each
cycle ofminimizations is augmented by an additional minimization in a coordinate
direction. The coordinate directions are chosen in cyclical order.

The methods of Powell and of Zangwill, as well as most other minimization
methods, proceed by means of a sequence of univariate minimizations. Thus they
are, of necessity, sequential computations. If we have at our disposal a computer
with a set of arithmetic processors capable of simultaneous operation, and if we
seek to exploit this computer to improve the speed of execution of a typical sequen-
tial minimization algorithm, we will, in general, be unable to do so. The method
discussed in this paper proceeds by simultaneous univariate minimization, with
simultaneity ofdegree as high as the dimension ofthe problem, and so is appropriate
for exploitation of the type of parallel computer in question.

We will now sketch our parallel algorithm for unconstrained minimizations.
First we choose a set U of m linearly independent unit vectors ul,..., Urn.

At each cycle of the algorithm we will select a vector from this set in cyclical order.
We are given a point p and m 1 vectors vl, ,/A 1. We select a vector from
U and call it/Am. Starting at p, construct a polygonal path by stringing together the
m vectors/A1, ..., vm (no minimizations). Then from each vertex of this polygonal
path (excluding its initial point p), perform m simultaneous (in parallel) univariate
minimizations in the common direction v 1. These minimizations produce a
displacement czv 1, 1, ..., m, from the vertex p + Zj<=i/AJ, 1, ..., m, of the
polygonal path. Now update p and v, v as follows. Let p +/A1 + el vl
be the updated p. Let v+1 + (e+l e)vl be the updated v, 1,..., m- 1.
This completes one cycle of the algorithm.

Figure 1.2 illustrates one cycle in the algorithm. Line segments with arrow-
heads denote minimizations. The updated p and the updated v are given an asterisk.
In the schematic,/A3 is chosen as uj so that (v3)* must be uj+ 1. As above, parallel
and nonparallel lines may appear nonparallel or parallel, respectively, in the
schematic. For example, the broken line from p to p* given by p + v + 1vl is,
in fact, a straight-line segment.

It is seen that our algorithm uses features found in Powell’s method as well
as a feature resembling the modification introduced by Zangwill. However, it is
quite different from either of these methods and has as its principal objective
to increase the speed of a calculation by executing simultaneous or parallel
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FIG. 1.2

minimizations. In the case thatf(x) is a quadratic in m-space our algorithm isfinitely
convergent and employs m2 minimizations to locate the minimum. In the cases
that they are finitely convergent, Powell’s method requires m2 minimizations also
while Zangwill’s requires (m + l)2. (It is a simple matter to modify all of these
methods to cut these numbers in half.) However, the latter two methods are purely
sequential. If we assume that a univariate functional minimization takes one unit
of time, the latter two methods (suitably modified) require approximately m2 time
steps. The method in this paper is a parallel method and requires only m timeosteps
to find the minimum of a quadratic. Thus there is a gain in speed of computation
which is linear in the number ofprocessors used for minimizing a quadratic function.

We have not produced an estimate of the increase in speed of calculation for
our algorithm for the nonquadratic case. This remains an open question.

In 2 we define the parallel minimization algorithm in m-space. We then
consider the case of quadratic functions and show that the algorithm converges
in finitely many steps. In 3 we give an outline of the proof of convergence of the
algorithm for the class of locally convex functions. In 4, 5 and 6 the technical
details of the proof are furnished.

Remark on parallel operation. It is possible that in one cycle ofm simultaneous
univariate minimizations one minimization is much more difficult than the rn
others. This is a cost parallelism which in practice may be reduced in various ways.

2. Description of algorithm and the case of quadratic functions. Letf(x) denote
the function to be minimized. Then the parallel nongradient minimization algorithm
is given formally as follows.

Let U {ui, 1,... m}, where the ui are linearly independent m-vectors.
Let fir, r 1,.-., be a sequence of positive scalars tending to zero. Let

w, ui ifn imodm, l, ..-, m.
Let p, n 1,..., be a sequence of points in m-space, and let v+j,

j 1,..., m;n 1,..., be a sequence of m-vectors. For each n,n 1,...,
a step in the algorithm is given by a mapping

(2.1) )n+l )n+2 )n+m -’ +lUn+2Un+m n+m+l

defined as follows.
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Determine the scalars +a, J 1,..., m, by performing (simultaneously)
the m univariate minimizations

(2.2) minf p] + v,+i + e+ av,,+ j= 1, m.
OJn+ i<-j

Then the mapping (2.1) is defined by

Pn -t-( 1 -- tn+ +1Pn+l

-,)v, + v,+), j-- 1,..., m- 1,(2.3) v+ (+a s+a

fll)n + + mWn

The algorithm is schematized in Fig. 2.1.
would be zero and our algorithmWe may note that if v, turns out to be zero v,

(as defined) would simply imply that pnl+ P,,a and vJ, + v
Iff(x) is a quadratic given by (1.1) with A positive definite, it is easy to see

that the algorithm converges in at most m steps. Consider to this end the following
two lemmas found in [3].

FIG. 2.1
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LEMMA 2.1. If qX, qk, k <= m, are mutually conjugate directions, then the
minimum ofthe quadraticfunctionf(x), where x is a general point in the k-dimensional
space containing the directions qX, ..., qk, may be found by searching along each
of the directions once only and, moreover, in any order.

LEMMA 2.2. If y and z are the locations ofminima off(x) in a space containing
the direction q, then the vector y z is the conjugate to q.

is conjugate to v,_j, j 0,Referring to Fig. 2.1, we see that the vector v,+
m 2. This follows from Lemma 2.2 since is determined by two pointsVn+

which arc locations ofminima off(x) in a space containing v,_j,j=O,...,m- 2.
Thus any sequence of rn vectors v+ j, j 1, ..., m, r >= 0, arc mutually conjugate.
Lcmma 2.1 then implies that every point p, n >_ m, lies at the minimum off(x).

Notice that the proof is identical to Powell’s; but, whereas it is insufficient
for his own algorithm, it is complete for ours.

3. Outline of the proof of convergence. We have seen that the parallel mini-
mization Scheme defined in the previous section locates the minimum ofj(x) in
a finite number of steps ill(x) is quadratic. The purpose of this and the following
sections will be to demonstrate convergence of the sequence of iterates to the
minimum offwhenfis twice continuously differentiable, strictly convex, and tends
to as Ilxll-, . It is not at all clear that the strict convexity is essential for
convergence. Indeed, a close relative of this method, the method of coordinate
search, does not require such an assumption. This difficulty stems from the fact
that at some point in the procedure we have to guarantee that the search directions
keep spanning the whole space. This is always true for the method of coordinate
search. To prove this fact for our scheme, we shall use the strict convexity off(x)
to "localize" a finite sequence of steps around some point and use linearizations
of the function near this point to obtain the spanning property.

Since the proof, while elementary, is composed of a large number of disjoint
parts, we shall present here a short summary to serve as a guideline.

Let us start by noting that the sequence of points p] is a descending sequence;
i.e., f(p,,+ )<= f(p,,). Then proceeding by contradiction, we shall assume that
f(p) > ax > minpf(p). Thus there exists some value a2 so that f(p])$ a2 and
the sequence p, is bounded between the two contour surfaces f(p)= a2 and
f(p) a2 + e, with e. 0. Clearly, the accumulation points of p. lie on
{p :f(p) a2}. Let Po be one such point, and let go be the gradient at Po. Also, let
g, be the gradient at p..

The main part of the proof will consist of showing that there exist a positive
integer Jo and a positive scalar so that for each m-vector v,

max > .
(search directions)From this it will follow that any sequence ofJ0 >= m successive v

spans the space. We combine this with the fact that

(v.,g.)
0

and that g,+j, j 1, ..-, Jo, can be made arbitrarily close to go by continuity of
the gradient to conclude that (v,+j, go)/(]]v, Ilgoll), j 1, ,,,, Jo, has zero as a
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limit point. This contradicts the fact just cited with go taking the place of v, that
is greater than > 0.the normalized projection of any vector onto v,

As noted above, the critical part of the argument presented is the spanning
property of the vectors v,+j, 1 =< j <= Jo, for somejo. Iff(. were a positive definite

1 < j < m, would be pairwise conjugate andquadratic form, the vectors v,+j,
would, therefore, certainly have the spanning property. In general, this is not the
case. However, suppose we could localize a block of Fig. 2.1, i.e., a collection of
points {p+" 1 =< j =< Jo, 1 __< __< m}, inside a neighborhood N ofthe accumulation
point Po. We could then approximate f(.) by a quadratic consisting of the first
three terms in its Taylor series about Po and obtain approximate conjugacy state-
ments.

and is taken to mean (Conjugacy here of v,+ 1 v,+ 2 v,+ f,(po)v,+) O,
wherefxx(po) is the Hessian matrix offat Po. Thus, to conclude the proof, two facts
have to be verified"

(a) A "block" ofthe p can be put into an arbitrarily small neighborhood ofPo
(b) If the p are sufficiently close to Po, the search directions v,+j,1 1 =< j =< m,

are approximately conjugate.
Statement (b) as it stands turns out not to be true. There may be freak circum-

and 1 < J2 < m, are not even approximately conju-stances where l)n+jl l)n+j+jz,
is (approximately) conjugate to v+,gate. It is, however, always true that v,

1 =< j =< m. For j 1 this last property asserts that successive search directions
are (approximately) conjugate. This, together with the fact that the v, have the

l<jspanning property, is enough to induce the spanning property for v,+j,
<2m- 1.

The proof of statement (a) requires the following assertions"
(al) The sequence IIv,ll 0 as n - , 1 =< _<_ m;
(a2) P,+-P, 0asn.
From (a2) and the fact that Po is a limit point of p,, we are able to force the

whole sequence p, +j, 1 =< j =< Jo, for any fixedj0, into an arbitrarily small neighbor-
hood of Po infinitely often. Combining this with (al), we are assured that the
p+,l =<i=<m, 1 =<j=<jo, lies in N also.

The next section will be devoted to the statement of an elementary theorem
which will allow us to obtain (al). This uses the fact that the v," ---, 0, which in turn
follows from the fact that the//, 0. This theorem will also be used in 6 to obtain
the approximate conjugacy of v, to the v,+l, 1 =< j =< m.

In 5 we shall prove (a2) using the strict convexity off and the fact that
is in the strip {p’a <= f(p) <= a + ,,}.

In 6 we shall combine all these facts together to obtain the convergence
statement.

4. Proof of v, 0 as n . As noted above, the argument demonstrating
convergence depends on the approximate conjugacy of successive minimization
directions. We shall now state a lemma which will formalize the notion of approxi-

0 (assertion (al)).mate conjugacy, and apply it to deduce that v,
We recall that the function f(x) is twice continuously differentiable, strictly

convex and tends to infinity as Ilxll -’ .
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LEMMA 4.1. Let f(x) be a twice differentiable and strictly convex function of
the m-vector x and let f(x) --. Co as x - Co. Let v be a given m-vector and let S
be the subspace orthogonal to v. Let g’S - R be defined as follows"

f(w + g(w)v) <= f(w + kv)

for all real k. Then
(a) g(w) is a well-defined differentiable function;
(b) (V,fww(W + g(w)vAw) + (v, fww(W + g(w)v)vAg) + h(Aw)= 0,

where Ih(Aw)l o(Aw).
Furthermore, if S’ is the surface, S’ {vg(w) + w "w Rm} and ql q2 are two points
on S’ which have the form w + g(wl)v and W + g(Wz)V, respectively, then

(c)
(V, fww(ql)(ql q2))

O(llwx w211).
w w211

We may note that this also implies that

(V, fw(ql)(ql qe)) <= O(ql q2) ql q2 I1
since

ql qzll 2 w W2 12 + v 292(w)-- w1 w2 2.

Proof f(w + kv) is strictly convex in k and tends to Co as k Co. Thus it has
a unique, well-defined minimum at g(w). Let G(w) fw(W). Then g(w) satisfies the
equation (v, G(w + g(w)v)) 0. Since Gw(w + kv) is positive definite, it follows
from the implicit function theorem that g(w) is differentiable. This demonstrates (a).
Now

0 6(v, G(w + g(w)v)) (v, H(w + g(w)v). (6w + gw(W)fWV)) + h(Aw),

where H(w) Gw is the Hessian matrix off and (v, G(v + g(w)v)) was expanded
in a Taylor series. This demonstrates (b). Dividing through by Ilv wl w2
demonstrates (c).

COROLLARY. Let {q, q2,} be two sequences ofpoints in Rm, which are contained
in a compact set. Let qX, q2. 0 as n Co. Then q, + vg(q,) (q2, + vg(q2,)) O.

Proof The statement follows immediately from the uniform continuity of g
on a compact set.

We will now use this corollary to show that the network of Fig. 2.1 collapses
in its vertical direction as it evolves, so that the whole forms a narrowing tube.

Let qk p’ and qk
2 p’ + V’+ (see Fig. 4.1). Since 2jV=lflj < CO, the p’

do indeed lie in a compact set. Then the corollary allows us to conclude immediately
that m-1 0, j= 1Vk/ - 0 as k Co. By induction, it follows similarly that Vk/
.., m, as k Co. In this way we obtain m sequences, all of which converge to zero.
Thus for every e, there exist k, ..., k so that IIv,ll < for k >= ki. Hence IvY, =< e
for all k _>_ max1 <i<m ki.

5. Proof of p/ p 0 as n - , Let us note now that the sequence of
points p has the property"

(S.1) f(PJ+ 1) -<_ f(PJ),
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m+l
k+l

FIG. 4.1

m-I
Vk+

which follows from the fact that p)+ is the point where the one-dimensional
minimum offin the direction v)+ starting from p}+ is obtained, and that the
line p}+ + v)+ contains pj. In particular, f(p) <_ f(p).

Let us also remark that {p :f(p) __< a} is compact sincef(p) as Ilpll ,
and that the sequence pj must, therefore, lie in a compact set. We wish to show
that any accumulation point p of the sequence pj has the property f(p) <= f(q) for
all points q Rm.

In this section we shall show that IIPJ+ Pj 0. Thus ifp is an accumulation
point ofpj then pj,jl < j <__ j + Jo, can be made to stay within e of p for any fixed

Jo and for infinitely many values ofj. Consider now the following lemma.
LEMMA 5.1. Let q,, w, be a sequence ofpoints satisfying the following relation:

a <_ f(q, + ow,) <_ a + e,

with , O, 0 <_ <_ 1. lffis continuous, strictly convex, andf(p) oo as Ilpll ,
then [w,[[ - 0.

Proof Suppose otherwise. Then there exists a subsequence of Ilw,]l with
[[w,,[[ => c > 0. Since the set S {q:f(q) =< a + e} is closed and bounded, it is
compact. Similarly, the set {v’v ql q2; ql, q2 S} is also compact. Hence
q,,w, lie in compact sets and there exists a subsequence mi of ni with
(q,,, w,,) (q, w). By continuity, f(q., + Wm, f(q + ow). Clearly

a f(q + ow) <_ a + e,

for all n and

Ilwl c,

But then f is constant along w which contradicts the strict convexity off
Using this lemma, we obtain the stated conclusion, IP)+x- P)II O, by

letting qj p) and wj p)+l pj.

6. Proof of convergence. From the result of the last two sections, we may
conclude that foreverye > 0andjo > 0, there exists aj => 0sothat IlPj+k- Pll < e,
0 =< k =< Jo, 1 =< =< m. This statement may be viewed geometrically as a collapsing
of the array of Fig. 2.1 into an e-neighborhood offfor durations ofj0 steps at a time.
Ofcourse, p is an accumulation point of the sequence {p}. We now wish to use these
facts to show that for e sufficiently small, it follows that for infinitely many j,

max
<_k<_2m-

f(p)w, J+
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for some 7 > 0 and any w with [[wl[ 1. We shall accomplish this by noting that
if 2m successive search directions stay close to some subspace of R", then m
successive v’ will also stay close to that subspace. This contradicts the fact that
any m successive v’ are linearly independent and cannot collapse into a subspace.

Let H fpp(p), where p is a limit point of the sequence {p}, and let
I1112 (Hv, for any symmetric n.

LEMMA 6.1. There exists a positive 7 so thatfor an sufficiently small, whenever
IIP}+ Pll < , 1 <_ k <= 2m 1, 1 <= _< m, we have

max w, > 7

for any w.
Thus any 2m + 1 successive search directions have the spanning property.
Proof Suppose otherwise. Then for any e, 7 there exist j, w so that IlP}+k

=<e, 1 =<k=< 2m- 1, 1 __< i<_m, but

<_-7, 1 _<_ k_< 2m- 1.

.,,-i+1 i= 1 m- 1, z,, V)+k+,,. Then, byLet Z (07_+ Oj+k+ )l)j+k+i,
viewing Fig. 6.1, it is easily seen that

+k+m 7"i
i=1

Since the zi are all of the form c. v)+ for some real c and some integer k, we know
that

<7

2

j+k+ j+k+m

ORTHOGONAL- Zl=V -ql zz
TO v

FIG. 6.2
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We would like to conclude from this that

+_mW’
v"+/,

is small for m successive values of k to contradict the independence of m successive

V"++m. TO do so it is enough to show that IIv%/ll > cllzll for some constant c
independent of j, e. In this case,

{H VJm+ k_+ m__ } zi

Vj+k+m[[

C Z

=< yZ=
C C

and the desired contradiction would follow.
We shall now show that Vj%k+m satisfies

v’+k+,. 2 => clzi z(1 -O(e))/IIH- H

Indeed since

it suffices to show

q+ + ll >= IIq+ +ml / H

i=2

since tzilI >= zi[2/ H-ll. Referring to Figs. 6.1 and 6.2, we have i2zi
m-1
vj++. Let v z a, let P be the orthogonal projection onto the plane

_m-2+iorthogonal to v, let w p%+, w2 w + P(v++) and q pj++-2+,- - differ by a multiple of1, 2. Then qx qz V+k+. Since Vj+k+ and Vj+k+
m-1v, p(vj + k +) p(vj + k + ). Applying Lemma 4.1

m-1(z,fpp(qx)Vj+k+) O(W W2) Z W1 W211
o(e(vTkm)) ZlilUlleVj+km-l+ml H-1

< O(Vkm) ZI H
m-X
Vj+k+m H"

It follows that

IVY+k+ 2
H zx + 2zii=

Zl + Vj+k+m

Zx ZH+ i= 2
Z + 2<Z HV’kl+m>

m-1
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i=2 i=2 H

Continuing by induction by applying the same argument to i__ k zi, we obtain the
desired result:

vj%k+mll2n _>_ max z (1 O()).

With the help of this lemma and the outline of the proof given in 3, we obtain
our final result.

THORZM 6.1. The sequence p. defined in 2 converges iff is twice continuously
differentiable and strictly convex; i.e., fvv 0 andf(x) as x .
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A GENERALIZATION OF THE METHOD OF BALAKRISHNAN"
INEQUALITY CONSTRAINTS AND INITIAL CONDITIONS*

ARNOLD P. JONES AND GARTH P. McCORMICK,"

1. Introduction. The application of penalty methods to optimal control
problems has received a limited amount of attention since R. Courant’s original
efforts [2]. The method has been most fully developed in mathematical program-
ming both from a theoretical and computational point of view. This area of study
has been developed and exploited primarily by A. V. Fiacco and G. P. McCormick
[3]. Attempts to extend these methods to optimal control and trajectory optimiza-
tion problems have, in the past, been primarily aimed at removing troublesome
intermediate state and/or terminal state constraints via a penalty function a.nd
then utilizing the associated necessary conditions for optimality to solve the
transformed problem, still an optimal control problem. Investigations in this
direction may be found in [4], [5], [7], [10] and [11].

Recently, A. V. Balakrishnan [1] has succeeded in incorporating the system
differential equations into a penalty function, thereby avoiding the previously
essential step of having to solve these differential equations. In this paper we con-
sider a fixed endpoint optimal control problem with specified intermediate state
constraints and control constraints. We assume these constraints are given by
finite systems of inequalities. In contrast to previous works, we view the initial
conditions on the state vector as well as the system differential equations as
equality constraints. We construct a penalty function with appropriate terms for
all of these constraints and show that, under reasonable assumptions, we generate
a sequence of minimizing points of this penalty function which converge to the
solution of the original control problem. The penalty function used is a realization
from the class of so-called mixed interior-exterior penalty functions developed in
[3] and generalized in [6]. As such, this approach is a generalization of previous
works on penalty methods in optimal control theory. No computational exploita-
tion of the method is presented.

2. Statement of problem. This paper is concerned primarily with the following
problem which we will refer to as problem (A). Find admissible functions x(.

and u(.), where x’[0, T] E" and u’[0, T] - E’n, such that f(x(t), u(t), t) dt is

minimized,
dx

= Y(t) f(x(t), u(t), t) a.e. [0, T],
dt

and
x(0) Xo

hj(x(t),t) >= O, j= 1, q,

gi(u(t), t) >- O, i= 1, p,

* Received by the editors May 29, 1969, and in revised form November 10, 1969.
f Advanced Research Department, Research Analysis Corporation, McLean, Virginia 22101.
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The vector Xo is specified along with the functionsf,f, gi and hi. The notation
a.e.[0, T] means almost everywhere on the interval [0, T].

3. Admissible functions. We first consider the following definitions: For
each [0, T], let

x(t) {x(t)lhj(x(t), t) >- O,j 1,..., q} E",

(t) {x(t)lhj(x(t), t) > O, j 1,..., q},

D,(t) {u(t)[gi(u(t), t)>= O, i= 1,..., p} E;

,(t) {u(t)lgi(u(t), t) > O, i= 1,..., p}.

Now let

X {x(. )Ix(t)6 x(t), all [0, T]},

2 {x(. )Ix(t)e fi(t)a.e. [0, T], and
h(x(t), t)

U { u(. )1 u(t) e f,(t), a.e. [0, T]},

0 {u(. )lu(t)e fi(t)a.e. [0, T], and
gi(u(t), t)

< +o,j 1,...,q},

Q {(x(. ), u(. ))Ix(t) Xo f(x(s), u(s), s)ds O, all e [0, T]}.

We shall consider as admissible state functions all functions x(. which are
absolutely continuous with derivatives, 2(. ), which belong to L2[0, T] and such
that the functions x(. ) X. Bounded, measurable (Lebesgue) functions u(. such
that u(. ) Uare said to be admissible controls. We assume ’, t and Q are not
empty.

4. The penalty function. Consider a decreasing null sequence of positive
real numbers {rk}. For each rk > 0 consider the following definition.

DEFINITION.

P(r, x( ), u( ))

(4.1)

--1 [Ix(O) Xo 2 + fO(x(t), u(t), t)4-- lib(t)- f(x(t), u(t), t)]l 2
l"k lk

P

+rk
i= gi(u(t), t)

1 dt+ rk = hj(x(t),

Here denotes the Euclidian norm in E". It is to be noted that the penalty
function used in [1] is a special case of (4.1).

Essentially, the problem before us is to minimize, for each fixed k, i.e., rk > O,
the functional P(rk, x(. ), u(. )) over 2 x . If, for each k, a minimum (x(.), u(. ))
exists then we show that this sequence of minima converges, as k ---, + oe, i.e..
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rk $ 0, to a pair (x*(.), u*(. ))e (X x U) f) Q and that

lim P(rk, x( ), u( )) f(x*(t)u*(t), t) dt
k’-

min f(x(t), u(t), t) dt.
X UnQ

5. Assumptions. Let us make the following assumptions on the problem
functions f,fo, h; and gi. The functionf is assumed to be measurable in for fixed
x and u, continuous in x for fixed t, u, and continuous in u for fixed t, x. In addition,
we assume that there exists an integrable function M on [0, T] such that

[If(x, u, t)[[ _< M(t) for 0 _<_ _<_ T
for all admissible functions x(. ), u(. ). The functionf is assumed to be integrable
in for fixed x and u. The functions h;, j 1, ..., q, are assumed continuous in
for each fixed x and continuous in x for each fixed t. The functions gi, 1, ..., p,
are assumed to be continuous in for each fixed u and continuous in u for each
fixed t.

DEFINITION.

and

U nx(O
te[0,T]

a.= U
te[0,T]

We now assume that fx is bounded, as a subset of E", and f, is compact and
convex, as a subset of Em. Further, we assume"

rf(A.1) inf (x(t), u(t), t) dt > oo,
XxU

(A.2) for each e > 0 there exist functions (x( ), u( ))e 2 x f’l Q such th’at

f(x(t), u(t), t)dt < inf f(x(t), u(t), t)dt + e.
X xUcQ

Remark. Assumption (A.2) is an "interior" approximability assumption which
is necessary for penalty function approaches to control problems. For a somewhat
similar hypothesis as well as an example of where such an assumption is not valid
see [7].

(A.3) If u,(. )e converges weakly to Uo(" )e U, and x,(. ) X converges
uniformly to Xo(. )e X, then:

(5.1)

and

(5.2)

2o(t) f(xo(t), Uo(t), t)ll 2 dt <= lim.inf II.(t) f(x.(t), u.(t), t)I 2 dt

f(xo(t), Uo(t), t)dt <= lim.inf f(x.(t), u.(t), t)dr.
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Remark. Expressions (5.1) and (5.2) with x,(. Xo(" are precisely the lower
semicontinuity assumptions made in [1]. As remarked in [1], (5.1) and (5.2) are
valid if the problem is linear.

6. Fundamental results. We need the following lemma for subsequent
developments.

LEMMA. For each rk > O, P(rk, x(. ), u(. ))is bounded below on f( .
Proof By the definition of P(rk, x(. ), u(. )) we have, on ) , that

P(rk, X(. ), U(. )) >-- inf (x(t), u(t), t)dt

inf f(x(t), u(t), t) dt >
XxU

by (A.1) and the fact that " x = X U.
We now state and prove our main result.
THEOREM. If f, is convex and compact, fx is bounded, and the assumptions in

5 hold then:
(a) for each rk > O, P(rk, x(. ), u(. )) is minimized in ff (J at a point (x(.),

Uo( .)),

(b) limk_, P(rk, x(. ), u(. )) minx we f(x(t), u(t), t) dr,

(c) limit points of x(. ), u(. solve (A).
Proof. (It is to be noted that the proofof(a) is based, in part, on that given in 1] .)
(a) Let r > 0 be fixed. Let Bk denote the infimum, over 2 x r, of P(rk, x(. ),

u(. )). Bk is finite, by the previous lemma. Let {x(. ), u(. )} be a sequence of admis-
sible functions such that

(6.1)

P

+rk
i= gi(uk.(t), t)

-+- rk dt
=, h(xk.(t), t)

We now note that the range of x,( is bounded, i.e., f, is bounded as a subset of E".
From this it follows that x,( is a set of uniformly bounded continuous functions.
We shall now show that they are also equicontinuous. To this end we must first

show that [,(t) 2 dt is uniformly bounded. Consider II:t.(t) f(x,(t),

u(t),t) dt >__ O. SinceB __> > - wehavethati I1(0 f(x(t),u(t),t)ll dt

--. + oe then necessarily ,f(xk(t,, ,, u(t), t)dt -c. This is a contradiction of

(A.1). Hence 2(t)- f(x(t), u(t), t)ll dt A, where A < +oe, and we have
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the following"

0

_
ll2(t) f(x(t), u(t), t) 2 dt

112(0112 + IIf(x(0, u(0,0112 dr 2 ((0,f(x(0, u(0, t) dt A,

where (.,.) is the inner product of vectors in E". Remembering that Ill(x, u, t)II
M(t) we see

[[(t)[[ dt 2 [[(t)l[M(t)dt + M(t)dt + A.

By the Cauchy-Schwarz inequality we now have

II(t)ll 2 dt 2 :n(t) 2 dt MZ(t)dt

or

M2(t) dt <= A

=<A +2 M2(t) dt

Which implies

;: [(II(t)ll2 at _< A + 2 M2(t) dt + M2(t) at

Hence we see that 112(t)ll e dt is uniformly bounded. So that again by the

Cauchy-Schwarz inequality and the monotonicity of the integral, as a set function,
we have

Ilx(t)- x(t2)[[ 2 2(t)dt It2 tl II(t)ll 2 dt

and we see that the x(. )’s are equicontinuous. By Arzela’s theorem there exists a
subsequence, again denoted by {x(. )}, which converges uniformly on [0, T] to a

continuous function x(. ). Again, from the uniform boundedness of 2(t)l dt

we can extract a further subsequence from {2(. )} such that 2(. y(. ), where
the convergence is weak sequential convergence in L[0, T. Hence y(. e L[0, T]

and also x(t) x(O) (s) ds lim, x(s) ds y(s) ds. Therefore (.

y(.) for almost all e [0, T]. Hence, (.)e L[0, T]. Since is compact and
convex in E and since [0, is compact in E there exists a subsequence, relabeled
{u(. )), which has a weak sequential limit function u(. ), and which is bounded
measurable (see, e.g., [8]). Since {x(. ), u(. )) is a minimizing sequence for
P(r, x(. ), u(. )) we have as a consequence that the sequence (in n), for l, ...,
pandj= 1,...,q,

f 1

t)
dt fhj(x(t),

and
gi(u(t), t)

dt,
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are bounded and

and
hl(X,(t), t) hi(x(t), t)

g,(u,(t), t) g,(u(t), t)
a.e. [0, T].

Then by Fatou’s lemma (see, e.g., [9]) we have

(5.2) g,(Uo(O, )
& =< lim inf

and

dt

(6.3) h,(x)(t), t)
dt <= lim inf

hi(x,(t), t)
dt.

We note also that, since x.( -+ x(. uniformly on [0, T], we have

(6.4) lim x.(0) Xo 12 x(0) Xo I12.

As a consequence of (6.2) and (6.3) we see that (x(.), u(. ))e 2 x . Now by
recalling (5.1) and (5.2) and (6.2), (6.3) and (6.4) we have

llx(0) Xo 12 + f(x(t) u(t) t) / lilaC(t) f(x(t) u(t) 0112
rk rk

(6.5)

Therefore

P 1
+ rk ,,’= g,(u(t), t)

q- rk dt.
i=1 hi(x(t), t)

P(rk, x( ), u( ))

i.e., the infimum of P(rk, x(. ), u(. )) is actually achieved on ) x D and (a)is proved.
(b) and (c). We know from (4.1) that

yo(6.6) f(x(t), u(t), t)dt <= P(rk, x( ), u( )) <_ P(rk, x( ), u( ))

so that for pairs x(. ), u(. in 2 x f’l Q we have

To
fO(xo(t), t) <= P(rk, x( ), u( )).u)(t) dt

By (A.2) we have, for every e > 0, a pair 2(. ), 0(. in " x 0 gl Q such that

P(rk, x( ), Uo( )) <__ n(rk, 2(. ), ft( ))

(6.7) =< inf f(x(t), u(t), t)dt + /2
X UQ

+ rk
i= gi(ft(t) t)

+ dt
i= hi((t),
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Now we can choose k large enough so that

(6.8) rk dt < e/2
= g2(O(t), t)

+
= h((t)

since r $ 0 as k oe. From (6.6), (6.7) and (6.8) we get

(6.9) f(xo(t), Uo(t), t) dt <= inf f(x(t), u(t), t) dt + e
XxU cQ

and we see that f(x(t), u(t), t)dt is bounded above and below. As a conse-

quence of this we have that

(6.10) Ilx(0) xoll 2 0

and
T

(6.11) t ll2(t) f(x(t), Uo(t), 0112 dt 0 as k oe.
d 0

Now we observe that for each k, u(. ) 0 and x(. ) so by a repetition of
the same argument used in the proof of (a) we infer the existence of a weak limit
u*(. )ofa subsequence of {u(. )} and a limit x*(. of {x(. )} which has a derivative
&*(. belonging to L[0, T]. We observe that u*(. ) U and x*(. ) X. To prove
that (x*(.), u*(. )) Q we merely observe, using (5.1), that we have

112"(0- f(x*(t),u*(t), t)ll 2 dt <= lirninf 112(t) f(xo(t), u(t), 0112 dt

and by (6.11) the right-hand side is zero. Therefore we have that x*(t) f(x*(t),
u*(t), t) a.e. [0, T] and by (6.10) we have

x*(0)- Xo _-< x*(0)- x(0) / IIx(0)- xoll,

Hence x*(O) Xo and

lim P(r, x( ), u( )) f(x*(t), u*(t), t) dt inf f(x, u, t) dt,
k- X xUQ

for by (5.2) we have

f(x*(t), u*(t), t)dt <= lirninf f(x(t), u)(t), t)dt
0

and by (6.9) we have, for e > 0,
,,T

u(t), dt inf f
v

f(xo(t), t) <= f(x,u, t) + e;dt
0 X UcQ

hence

f(x*(t), u*(t), t)dt <= inf f(x, u, t) dt +
X UQ
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and we obtain

f(x*(t), u*(t), t) dt <= inf f(x, u, t),
X UcQ

which yields the desired equality; this proves (c).

7. Conclusions. The purpose of this paper was to extend, to certain optimal
control problems, methods which have enjoyed success in nonlinear programming.
To this end, a convergence theorem has been proved which allows for the in-
corporation of explicit control vector inequality constraints, explicit state vector
constraints as well as the system differential equations and initial conditions. This
represents the first work, to the authors’ knowledge, in which a state and control
constrained optimal control problem is replaced by a sequence of truly uncon-
strained optimization problems. As of now, no effort has been made to implement
these results from a computational point of view.
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MEASURABILITY PROPERTIES OF SET-VALUED MAPPINGS
IN A BANACH SPACE*

RICHARD DATKOf

1. Introduction. Let X and Y be two point sets. A mapping P is called a
set-valued mapping from X into Y if to every x in X the map P associates a subset
of Y In 1] Aumann made a measure theoretic study of set-valued mappings whose
domain is the real line and whose range is Euclidean n-space. He introduced notions
of measurability and integrability for such mappings and established important
properties for them such as the Lebesgue dominated convergence theorem.
Hermes [2] extended the work of Aumann. In addition he obtained necessary
and sufficient conditions for a general class of mappings to be the integrals of
uniformly bounded set-valued mappings.

Aumann’s work was extended in another direction by Debreu [3] who
replaced the assumption that the graphs of the mappings be analytic sets by other
criteria which are in practice sometimes easier to handle. He also extended the
study of measurable set-valued mappings to mappings with values in the nonempty
compact convex subsets of a real Banach space. Using an embedding theorem of
Rgtdstr6m [4] Debreu embedded the mappings he studied as the points of a convex
cone in a real normed linear space. In so doing he was able to preserve the Hausdorff
set distance as an isometry, set addition as vector addition and the operation of
set multiplication by positive scalars as multiplication of vectors by positive
scalars. In this way he reduced the theory of integration for set-valued mappings
with values in the nonempty compact convex sets of a real Banach space to the
theory of integration for vector-valued functions in a Banach space.

The purpose of this paper is to consider Banach space analogues of some
properties of set-valued mappings which were obtained by Aumann [1] and
Hermes [2]. Here we treat the case where the range space is a real separable
reflexive Banach space and the domain is a locally compact Polish space furnished
with a positive nonatomic regular Borel measure. The main results are Theorem 1
which is a Blaschke-type selection theorem for measurable integrably bounded
set-valued mappings, and Theorem 2 which gives necessary and sufficient conditions
for a class of set-valued mappings to be representable as the indefinite, integrals of
set-valued mappings. One interesting by-product of the techniques developed in
proving these theorems is that for the class of mappings under consideration their
integration properties are largely dependent on those of their closed convex hulls;
and the integration properties of the latter can be studied by examining their
support functionals. This reduces the problem to a consideration of scalar functions
which are amenable to the usual techniques of measure theory.

The most important new mathematical results utilized in this paper are those
obtained by K. Kuratowski and C. Ryll-Nardzewski in [19] and C. Castaing in [5].
More accessible sources of Castaing’s work are references [6]-[10]. However, all
reference will be made to [5] since complete proofs appear there. Reference [10]

* Received by the editors March 18, 1969, and in revised form October 11, 1969.
? Department of Mathematics, Georgetown University, Washington, D.C. 20007.
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is also a good source. A general reference for functional analytic concepts is [11],
for properties ofset-valued mappings [12] and for measure theoretic properties [13].
For completeness an Appendix is added which contains statements of results
from [5] which are used in this paper and also the statement of a result from [14].

2. Notations and conventions. will denote the empty set.
X will denote a separable reflexive Banach space over the real numbers and X’

its topological dual. The norm in X and X’ will be denoted by l" and, as usual,
if x’ X’ then IIx’ll sup (Ix’(x)l "x x, Ilxll 1}. s’ will stand for the surface of
the unit ball in X’.

The symbol 2x is the fa__mily of all subsets of X, ::((X) is the family of closed
bounded subsets of X and co (X) the family of closed bounded convex subsets
of X.

IfP c X then co P is the convex hull ofP and co P the closed convex hull of P.
P or cl (P) will denote the closure of P in the normed topology.

T will always be a locally compact Polish space (see, e.g., [15, p. 121] for the
definition of a Polish space). It will be assumed that there exists a nonatomic
positive regular Borel measure t on T and that/(T) < + .

LP(T, R), 1 =< p < , will denote the equivalence class of /-measurable
functions from Tinto the real numbers whose pth powers are/-integrable. LP(T, X)
will denote the collection of equivalence classes of t-measurable mappings from
T into X whose norms are in LP(T, R).

Let x’ X’ and K c X. Then

x’(K) sup {x’(x)’x K).
Let (q) be a sequence of elements in X which converges weakly to an element

q in X. This convergence will be denoted by either co-lim q. q or q - q.

3. Statement of definitions and basic lemmas. The following definition can be
found in Castaing [5].

DEFINITION 1. Let P: T --. 2x be a set-valued mapping. If for each closed subset
A c X the set

P- (A) T P(t) I’q A 4: ;}

is measurable, then P is said to be a measurable set-valued mapping.
DEFINITION 2. A set-valued mapping P: T - 2x is said to be p-power integrably

bounded if there exists a g LP(T, R) such that

sup {[Ix[[ :x P(t)} =< g(t) a.e. on T.

Notice that if p(T) < + , then g
DEFINITION 3. Let P be a mapping from T 2x. A measurable mapping a" T

X is called a measurable cross section of P if a(t) P(t) a.e. on T.
DEFINITION 4. Let P: T 2x and let ff denote the family of measurable

cross sections of P. Then for any measurable set A T we define

fP(t)dp(t)={fAa(t)dp(t)’a}.
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Remark 1. IfP" T 2x is measurable and integrably bounded with values a.e.

in the nonempty closed subsets of X, then _I P(t)d#(t) 4: for any measurable

A c T. This is a consequence of Theorem 5.2 in [5] and the Lebesgue bounded
convergence theorem.

Also notice that since X is a separable reflexive Banach space the same is
true for its topological dual X’. Hence the surface of the unit ball in X’ will contain
a countably dense set of points v {x}.

DEFINITION 5. Let v {__xl} be any countably dense subset of S’. For any two
nonempty sets Q and R in co (X) we define the distance function

1 Ix}(Q)- x’(R)l
dv(Q, R) ,.=12--7 1,+lx}(Q)-x}(R)l’ xi e v, i= 1,2,....

DFFINITION 6. The graph f# of a set-valued mapping P’T 2x is the set
f# {(t, u) e T x X :u e P(t)}. f# is said to be closed if it is closed in the topological
product T x X.

4. Some properties of convex sets and measurable set-valued mappings.
LEMMA 1. Let 7 be any countably dense subset of S’ and let K be a nonempty

closed bounded convex set in X. To each x} e 7 associate the closed half-space

Hi {x e X" x;(x) <__ x}(K)}.
Then K (")i%_x Hi. Hence any two closed bounded convex sets K and K2 are
equal if and only iffor all x’i e 7, x’i(K) x’i(K2).

Proqf. Each closed half-space H contains K. Hence K c O=1 Hi. Suppose
there exists p e (-’1= H K. Then there is an x’ e S’ and constants c and e > 0
such that

c x’(p) => c e, >= x’(K)

(see, e.g., 11, p. 417]). Since K is bounded, there exists a positive constantM < + o
such that pll _-< M and Ilkll -<_ M for all k e K. Choose xl e 7 such that Ilxl I’ll
< e/(4M). Then the inequalities

and

hold.
Thus, for all k e K,

Ixi(k)- x’(k)l < Ilkll IIx, < /4,

Ix}(p)- x’(p)l <

xi(k) < x’(k) + <= x’(p) - < x}(p) +
4 4

xi(p)
2

keK,

This shows that xl also strictly separates p and K. But this is impossible since
x(K) >= xj(p) for all xj e 7. This proves the lemma.

COROLLARY. The distance function dv of Definition 5 makes the nonempty sets
in co 3g’(X) a metric space.
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Proof If P, Q and R are nonempty sets.in co off (X), then it is immediate from
Definition 5 that"

(a) d(R, Q) d(Q, R);
(b) dr(R, Q) <= a,,(R, P) + dr(P, Q);
(c) 0 =< d(P, Q) < +
By Lemma 1, R Q if and only if xi(R) x(Q) for all x v. Hence
(d) d(R, Q) 0 if and only if R Q.

Properties (a)-(d) establish that d is a metric on the nonempty subsets of co off(X).
Remark 2. Observe that a uniformly bounded sequence {K,} of nonempty sets

from co off(X) converges in terms of the metric d to a nonempty set K ofco off(X)
if and only if lim,-,oo xi(K,) xi(K) for all

LEMMA 2. Let {K,} be a sequence of nonempty closed convex subsets of X
which are uniformly bounded. Let 7 be any countably dense subset of S’. For each
xl 7 define the numbers

h- xi(K,), n 1,2,

and suppose that for each i, lim,-oo h’ hi exists. Define the closed half-space
H, {x:xi(x) <= hi} and the set K ("= H,. Then K is a nonempty bounded
closed convex set in X and is hence in co off(X).

Proof To prove the lemma it is only necessary to show that K = 5. For each
integer n select an element k, K,. Since X is a reflexive Banach space and the
sequence {k,} is uniformly bounded there exists a subsequence {kq} c {k,} and
an element k in X such that kq -% k. But this implies that for each xl v,

xi(k) lim xi(kq) <= lim xi(Kq)= hi.
q-*

This shows that k (’-i Hi. Hence K is nonempty.
COROLLARY 1. Let the hypotheses ofLemma 2 be satisfied. Then in terms of the

metric d of Definition 5 lim,_,o d(K,, K) 0.
Proof. Let xl e v. Since the sets K,} are uniformly bounded nonempty closed

subsets of a reflexive Banach space there exists for each integer n an element
k, e K such that xi(k) h’. Again making use of the reflexivity of X we can find
a weakly convergent subsequence {kq} c {kn} with limit point k in K. But then
x(k) limq_,oo x’i(kq)-- limq-,oo x’i(Kq)-- lim,-oo x’i(K,)= lim,_oo h’ hi x’i(K).
Since this is true for all x e v it follows.from Remark 2 above that lim,_ d(K,, K)
=0.

COROLLARY 2 (Blaschke-type selection theorem). Let {K,} be a sequence of
closed nonempty convex sets in X which are uniformly bounded. Then there exists
a subsequence {Kq} c {K,} which converges in the metric d,, to a nonempty closed
bounded convex set K.

Proof For each xle / define the numbers h’ x(K,). Since the {h’} are
uniformly bounded for all indices (i, n) the Cantor diagonalization process can be
used to find a subsequence {q} c {n} and a sequence {h,} such that for each
x’i e 7, limq_, hq hi. We then apply Lemma 2 and Corollary 1 above to the sets
{Kq} and the numbers {h,q} to obtain a nonempty convex set K which satisfies the
conclusion of this corollary.

Remark 3. The conclusion of Corollary 2 is not new. It is essentially a special
case of Proposition 3.5 and Theorem 4.2 of [16]. To see this observe that if B is a
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closed ball containing the sets K,} and K then the topological space (B, a(X, X’)I B)
(a(X, X’) denotes the weak topology on X) is metrizable (see, e.g., [11, p. 434]).
The metric on this space gives rise to a Hausdorff metric (see, e.g., [17]) on the set
co of(X fl B) (i.e., the nonempty closed convex subsets of X which are contained
in B). It can be shown that the Hausdorff metric on co 3U(X f’l B) makes
co 0f(X fl B) into a compact metric space and determines a stronger topology on
it than that induced by the metric dv of Definition 5. Since co oU(X fl B) is compact
in the Hausdorff metric the same must be true of co 3U(X B) with the metric dr.

The reason for using d in this paper is that because of its analytic representa-
tion it is easier to handle than the Hausdorff metric. Moreover it is defined on the
entire space co ,X(X) whereas the Hausdorff metric is not, unless X is finite-
dimensional.

LEMMA 3. Let p’X’- R be a continuous positively homogeneous sublinear
functional. For each x’ 6 S’ define the half-space in X:

I4x, x x’(x) <__ p(x’)}.

Then(")x’s’ Hx, K is a nonempty closed bounded convex set in X.
Proof K is closed and convex since each of the sets Hx, are. The boundedness

of K is a consequence of the fact that p is positively homogeneous, continuous
and subadditive. Thus it is only necessary to prove that K - .Choosex S’ and consider the one-dimensional subspace M’ { fix; fl R}.
On M’ define the continuous linear functional xj which is given by x’(flX’o) flp(x’o).
Since p is sublinear and positively homogeneous p(flX’o- fiX’o)= 0 <__ p(flX’o)
+ p(-fiX’o), which shows that

and

x;(/x;) p(x’o) <- p(/X’o)

x;(fix’o) flp(x’o) x;(flx’o)

iffl<0

iffl>_0.

Thus p majorizes x on M’ and by the Hahn-Banach theorem x can be extended
to a continuous linear functional X on X’ such that X’(x’) <__ p(x’) for all x’ e X’
and X’(X’o)= p(x’o). However, since X is reflexive, this means there exists an

Xo e X such that X(x’) x’(Xo) for all x’e X’. Thus x’(Xo) <= p(x’) for all x’e S’
and X’o(Xo) p(xo) which proves the intersection is nonempty.

COROLLARY. Let the hypothesis of Lemma 3 hold; then a by-product of its
proof is that for each x’ e X’ there is a k K such that x’(k) p(x’). Hence x’(K)

p(x’)for all x’ S’.
LEMMA 4. If K is a nonempty closed bounded convex subset of X, then there

exists a continuous positively homogeneous sublinearfunctional p :X’ R such that

K 0 {x’x’(x) <= p(x’)}.
x"S’

Proof Define p’S’ R as follows"

p(x’) x’(I,:).

It is immediate that p satisfies all the conclusions of the lemma.
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LEMMA 5. Suppose P" T --+ 2x is measurable. Let x’ S’ befixed and define
h(t) x’(P(t)),

H(t) {x’x’(x) <= h(t)},
(t) {x’x’(x) >= h(O}.

Then the.function h and the set-valued mappings H, ffI and H VI ffI are measurable.
Proof. For any r R define

H {x’x’(x) <__ r} and

Then since H and/ are closed subsets of X and P is by assumption measurable,
it follows that

{ P( H, :/= j { n( I"1 ffI :/= }
P(t) I"1H, 3} P(t)

are all measurable sets. Hence the set

E(q) t" h(t) q}

{t’P(t) l"l H, g= } fq [
I"1

n--1

is measurable and thus the set

{t.q > h(t)} {t. P(t) #, } q {t.P(t) fq } F(q)

is measurable. This proves that h is a measurable function.
To see that H is measurable we proceed as follows.
The function h is measurable and p is a positive regular Borel measure. Hence

given any e > 0 there exists a closed set A c T such that hlA is continuous and
p(T- A) < e (this is the Lusin property of regular Borel measures). We shall
show that H[A has a closed graph and this is accordingly Souslin (see, e.g., [15,
p. 1253).

Consider to e A and Xo H(to). Then by the definition of H(to), x’(xo) h(to)
eo > 0. Let V(xo) {x" [Ix Xo]] < o/2} and choose U(to) to be any open set

in the relative topology of A such that ]h(to) h(t)[ < eo/2 if U(to). We claim
that if U(to) then V(xo) CI H(t) and hence H]A has a closed graph.

To see this suppose the contrary. Then there exists 2e V(xo) such that
H(t). This implies that x’() <= h(t) <_ x’(xo) eo/2. However,

eo x’(Xo) h(to) <-_ x’(Xo) h(t) / Ih(to)- h(t)l

gO
X’ /30 gO gO

< x’(xo) x’() / - <= Ilxo :11 / - < -5 / - o.

The above contradiction shows that H[A has a closed graph.
Application of Theorem l(v) of [18] then shows that H is measurable.
It can be shown in a similar manner that/ and H / are measurable.
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LEMMA 6. Let 7 be any countably dense subset of S’. Let P" T 2x be a measur-
able set-valued mapping. For each x’, 7 define h,(t) x’,(P(t)) and H,(t) {x’x’,(x)
__< h,(t)}. Then the mapping Q ("),x H, is a measurable mapping from T into
the closed convex subsets of X.

Proof Let > 0 be given. Applying the same argument used in proving
Lemma 5 we can find for each n a closed set A, T such that p(T- A,) < e/2"
and H,IA, has a graph which is Souslin in T x X. By Proposition 8 in [15, p. 125],
Q x (-’)n=l A, is also Souslin in T x X. But #(T- ("),= A,) < e and (-,)n= A,
is a closed and hence Souslin subset of T. Hence by Theorem l(v) of [18] Q is
measurable. The last assertion of the lemma follows from the definition of Q.

In the proof of Lemma 6 only the fact that {H,} is measurable was used.
Hence with the same proof, the following corollary is valid.

COROLLARY. Assume a sequence offunctions { h,} is measurable and define {H,}
as in Lemma 6. Then the set-valued mapping Q (") ,= H, is measurable and maps
T into the closed convex subsets of X.

LEMMA 7. Let P’T (X) be an integrably bounded measurable set-valued
mapping and let g in LP(T, R), for some p, < p < , be the bounding function.
Then for any measurable A T with #(A) :/: O,

cl P(t) dl(t) co P(t) dt(t).

Moreover the set-valued mapping co P(t) is measurable.

 eorem eI’) "t’t/is   ose bou. e  o.v xsub-Proof By

set of X. (Theorem 1 in [14] is stated for bounded mappings. However it remains
valid for integrably bounded mappings by a slightly extended but straightforward
argument.)

We want to prove that the mapping co P(t) is measurable.
For each xl 7 (7 is any countable dense set on S’) define the function hi(t)

xi(P(t)) and the set-valued mapping Hi(t) {x’x(x) <__ h(t)}. By Lemma 1,
co P(t)= (")= Hi(t), and by Lemma 6, co P is measurable.

We now show that -- P(t)dla(t) is closed for all measurable A T. Let

r e cl co P(t)dla(t) Then there exists a sequence {r,} co P(t)dla(t) which

converges weakly to r (this is a consequence of the fact that strong convergence

implies weak convergence). Each of the r, has a representation r, 1-, p,(t)d#(t)

where {p,} co P. Since co P is integrably bounded by g LP(T, R), where
< p < o, there exists a subsequence {p} {p,} which converges weakly in

LP(T, X) to a limit/3 which is also integrably bounded by g (see, e.g., [13, p. 282]).
But co P(t) is closed and convex for each Tand this implies that/3(t) co P(t) a.e.

and hence, by Lemma 1, that r P(t)dla(t)e co P(t)dt(t). This proves that

co P(t)dt(t) is closed.
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Clearly co P(t) dla(t) cl P(t) d(t) Suppose there exists an

e co P(t)dt(t) such that cl P(t) did(t) Applying the argument used in

proving Lemma 1, we can find an x}?, and an e > 0 such that

>= x}cl f P(t)dl(t)) + e. Notice that f -p-dl(t) for some ec--P.

x}()= xi(p(t))dt(t). But x(p(t))<_h(t) for all in T. Hence x}()

.f h(t) d(t).

By Theorem 5.4 in [5] there exists a denumerable family of measurable cross
sections o} in P such that{ q(t)} is dense in P(t) for each e r. For each integer n
define the set

E. t" x(q.(t)) >__ (t)

Then T , E,. We now construct from the {E,} a measurable partition of T
as follows"

A1 =El,

A2 E2 El,

-1

A E- ,) E,
j=l

Define the mapping q , ):A,q, (A is the characteristic function of a set
A c T). Since 0 e P, we can write the chain of inequalities

xi q)(t) dla(t >= hi(t) d(t)
2

>-_ xi() >= xl q(t) d(t) + ,
which is a contradiction. This proves co P(t)dlu(t) cl P(t) d(t) and thus

that the two sets are equal.
COROLLARY 1. If Pi’T-’* 5:U(X), 1, 2, are measurable p-power integrably

boundedset-valuedmappingsandifcl(fAP(t)dl(t =el fAP2(t)d(t)forall
measurable A T, then co P1 co P2 a.e. in T.
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COROLLARY 2. For all x’ X’ and measurable A T,

x’(fa- P(t) dl(t)) x’ cl f P(t) dl(t))
fa x’(P(t))d#(t)

x’(co P(t)) d(t)

if P" T :)if(X) is an integrably bounded measurable set-valued mapping.
Proof Let h(t) x’(P(t)). By Lemma 5, h is measurable, and by Lemma 7, so is

co P. There exists a sequence of measurable cross sections {p} of co P such that
{opt(t)} is dense in co P(t) for all in T (see, e.g., Theorem 5.2 in [53). Let e > 0.
Define for each natural number n the set

E.(e) {t’x’(q.(t)) >_ h(t)- e/#(T)}.
Let

A,(e) E,(e),

A() E()- C) E().
j=l

Let q = za.q,. Then (p e co P. If A is a measurable set in T,

fAX’(P(t))d#(t)=fAx’(-dP(t))d#(t)>--x’[fAU6P(t)dla(t)]
Xt[.fA q)(t)dl2(t)l
fA x’(q(t))dl(t)

x’(qh(t)) dk(t)
i= Ai

> h(t) did(t)
cAi i: la(T)

>= fA h(t) dl(t) e

fA x’(co P(t))dlz(t) e

fa x’(P(t))dt(t)- e.
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Since is arbitrary this proves that

x’ co P(t) did(t) =x’ cl faP(t)dp(t)
fA x’(P(t))dla(t)

;A x’(c-- P(t))dl(t).

LEMMA 8. Let K1 and K2 be any two closed bounded convex sets in X and let
x’X’. Define KI + K2 {keX’k +k2 =k, where kK and k2eKe}.
Then x’(K + K2)= x’(Kx) + x’(K2).

Proof. Trivial.

5. The main results.
THEORFM 1. Let {P"} be a sequence of nonempty measurable mappings from

T 3U(X)which are integrably bounded by somefunction g in LP(T, R), < p < 00,

and let v {xl} be any countably dense subset orS’. Then there exists a subsequence
Pq} P"} and a measurable mapping P" T co s(((X) such thatfor any measurable

set A in T,

lim d(fAPq(t)dla(t),fAP(t)dla(t)=O.q--

Proof. One consequence of Lemma 7 is that for each n and measurable set A in
T,

W(t) dl(t) co W(t) dl(t).

Let ? {x} be a countably dense subset of S’ and define the mappings - h(t)
x’(co P"(t))= x’(P"(t)). By Lemma 5, the functions {h’} are measurable, and

since {P") is integrably bounded by g e LP(T, R), so is {h’}. Thus the {h’} are weakly
compact in LP(T,R). This means we can find a subsequence {q} {n} and
measurable mappings (h} such that for each i, h,q. h. Define the sequence
{Hi} by Hi(t) {x’x(x) <= hi(t)} and the set-valued mapping P’T co ,;((X) by

P(t) 0 Hi(t) co P(t).
i=1

By Lemma 5, each of Hi is measurable, and by the corollary to Lemma 6, P is
measurable. Using Corollary 2 to Lemma 7 and the corollary to Lemma 3, we can
write for each x} e 7 and measurable A c T,

lim x[f. P(t)da(t)] lim xi[cl f. P(t)da(t) ]
lim x co P(t) did(t) lim x}(co Pq(t)) d(t)
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=limq_. f4 hq,(t) dkt(t) fahi(t) did(t)

=xlfAP(t)dl(t)
Now application of Corollary 1 of Lemma and Remark 2 establishes the desired
result.

COROLLARY (Hermes [2]). Let {P"} be a sequence of measurable closed non-
empty set-valued mappings defined from T - :(E") with values lying in some fixed

bounded subset of E. For each measurable E c T define Qk(E)= .I Pk(s)dl(s)

and assume that for all such E, {Q(E)} converges in the Hausdorffset topology to a
set-valued mapping A(E). Then there exists a measurable set-valued mapping P such
that for all measurable E T,

Q(E) 1 P(t) dl(t).

Proof The proof is an immediate consequence of Theorem once it is noted
that if X E", then any measurable integrably bounded mapping P’T :(X)
satisfies the equality

co P(t) dl(t) P(t) dl(t)

for all measurable E c T (see, e.g., Theorem 4 in [1], or Theorem 7.1 in [5]).
THEOREM 2. Let E Q(E) be a set-valued mapping from 2r - c--d (X) such

that Q() Ko, a nonempty closed bounded convex set in X. In order that Q be

in the form Q(A)= Ko + j-, P(t)dl(t), where A is any measurablerepresentable

set in Tand P" T co s(X) is a measurable integrably bounded set-valued mapping,
it is necessary and sufficient that there exist a functional h’X’ T R such that"

(i) For a.e. in T, h(. t)" X’ R is a continuous positively homogeneous sub-
additive functional.

(ii) For all x’ X’, h(x,. is a measurable function satisfying the inequality
Ih(x’, t)] <= g(t)llx’ll for some fixed g in LP(T, R), where p satisfies the con-
dition 1 < p < .

(iii) For any x’S’ and any measurable set A T, x’[Q(A) x’(Ko)

+ _tA h(x’, s) dl(S).

Proof of necessity. Suppose for all measurable A T, Q(A) Ko
+ t’, P(t)d/(t), where P’T--. c-- 3/f(X) is measurable and integrably bounded by

some fixed g in LP(T, R). Then by Lemma 8 and Corollary 2 of Lemma 7,

x’[Q(A)] x’(Ko) + x’I fAP(t)dl(t)
x’(Ko)+ fax’(P(t))dl(t).
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For each x’e X’ let h(x’, t)= x’(P(t)). By Lemma 5, h(x,.) is measurable and
integrably bounded by g(. )]]x’ll. Thus conditions (ii) and (iii) above are satisfied.
It is trivial to verify condition (i) if we apply Lemma 4.

Proof of sufficiency. Assume conditions (i)-(iii) are satisfied. Let 3’ {xl} be
any countably dense subset of S’. For each define

Hi(t) { q x;(q) _< h(t,

By the corollary to Lemma 6 there exists a measurable mapping P from T into the
closed convex subsets of X given by the expression P(t) (-’1= Hi(t). Lemma 3
shows that P(t) = for all e T. Since

sup {llqll :q 6 P(t)} sup {x(q):x 7, q P(t)} =< g(t),

it follows that P is integrably bounded by g and that P(t) co #d(X) a.e. on T.
Applying Lemma 8, Corollary 2 to Lemma 7, the corollary to Lemma 3 and
cbndition (iii) we can write for any measurable set A

xi[Ko + fA P(t) dp(t)l xi(Ko) + x’(fA P(t) dlz(t)

xi(Ko) + fa xi(P(t))dla(t)

x’(Ko)+ fa h(xl, t)

x’i(Q(A)).

By Lemma 1, this shows that

Q(A) Ko + f P(t) dlu(t)

and completes the proof of sufficiency.

Appendix. The following definition and results are found in [5].
DEFINITION. Let T be a locally compact space and/, a Randon measure on T.

A set-valued mapping F from T into a topological space will be said to be/t-
measurable if the set F -A { e T F(t) f’l A 4= is/,-measurable for all closed
sets A in E.

THEOREM 5.2. Let T be a locally compact space, la a measure on T and F a set-
valued mapping from T into a Polish space E with values in the nonempty closed
subsets of E. Then F admits a 12-measurable section.

THEOREM 5.4. Let T be locally compact, l a measure on Tand F a la-measurable
mapping from T into a Polish space E with values in the nonempty closed subsets of
E. Then there exists a denumerable family {ai} of #-measurable sections of F such
that the collection ai(t)} is dense in F(t)for all in T.

Let F be an integrably bounded set-valued mapping from a locally compact
space T into a finite-dimensional space F which is #-measurable and takes its
values in the compact subsets of F. Let fir {f:f is measurable and f(t) F(t)
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for e T} and/r {f’f is measurable and f(t)e co F(t) for e T}.

THEOREM 7.1. Let f f’dp= {f fdlt’feflr}andf Fdp= {f fdla:feflr}.
Then if p is atomless and if In is bounded then .t" f" d. .t" F dp.

The following result can be found in [14] and is used in the proof of Lemma 7.
This result is essentially a rephrasing of Theorem 1 in that paper.

THEOREM. Let T be a measure space endowed with a finite positive nonatornic
measure and let X be a Banach space. Suppose P is a measurable set-valued mapping
from T into X which is uniformly bounded. Then for any measurable set

AcT, cl( fa P(t) du(t)} is a closed bounded convex subset of X.

It should be remarked that in 14] the assumption that P is uniformly bounded
can be replaced by the assumption that P is integrably bounded, since the bounded-
ness of P is used only to establish that every measurable cross section in P is
integrable.

Acknowledgment. I should like to thank the referee for his many useful
suggestions, in particular the need to correct one serious error in the statement and
proof of Lemma 7 and for calling to my attention references [3], [16], [18] and [19].

REFERENCES

[1] R. J. AUMANN, Integrals ofset-valuedfunctions, J. Math. Anal. Appl., 12 (1965), pp. 1-12.
[2] H. HERMES, Calculus of set valuedfunctions and control, J. Math. Mech., 18 (1968), pp. 47-59.
[3] G. DEBRFU, Integration of correspondences, Proc. 5th Berkeley Symposium on Mathematical

Statistics and Probability, vol. II, Part I, Univ. of Calif. Press, Berkeley and Los Angeles,
1967, pp. 351-372.

[4] H. R.DSTR/SM, An embedding theoremfor spaces ofconvex sets, Proc. Amer. Math. Soc., 3 (1952),
pp. 165-169.

[51 C. CASTAING, Sur les multi-applications mesurables, Doctoral thesis, L’Universite de Caen, Caen,
1967.

[6] --, Sur une extension du theoreme de Liapunov, C. R. Acad. Sci. Paris S6r. A-B, 260 (1965),
pp. 3838-3841.

[7] --., Quelques problemes de mesurabilite lies d la theorie de la commande, Ibid., 262 (1966),
pp. 409-411.

[8] , Sur les equations differentielles multivoques, Ibid., 263 (1966), pp. 63-66.
[9] ----, Sur une nouvelle extension du theoreme de Liapunov, Ibid., 264 (1967), pp. 336-339.
10] ., Sur les multi-applications mesurables, Rev. Franqaise Informatique et Recherche Opera-

tionnelle, (1967), pp. 91-126.
[11] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators. Part I, John Wiley, New York, 1958.
[12] C. BERGE, Espaces topologiquesfunctions multivoques, Dunod, Paris, 1959.
[13] N. DINCULEANU, Vector Measures, vol. 95, Pergamon Press, London, 1967.
14] R. DATKO, Convexity properties ofsome integral operators, J. Differential Equations, to appear.

[15] N. BOURBAKI, Topologie genera&, Elements de mathematiques, Livre III, Hermann, Paris, 1958,
Chap. 9.

[16] E. MICHAEL, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), pp. 152-182.
[17] J. L. KELLEY, General Topology, Van Nostrand, Princeton, 1955.
18] C. J. HIMMLBRG, M. Q. JACOS AND F. S. VAN FLECK, Measurable Multifunctions, Selectors and

Filippov’s Implicit Functions Lemma, J. Math. Anal. Appl., 25 (1969), pp. 276-284.
[19] K. KURATOWSKI AND C. RYLL-NARDZEWSKI, A general theorem on selectors, Bull. Acad. Polon.

Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), no. 6, pp. 397-403.



SIAM J. CONTROL
Vol. 8, No. 2, May 1970

ON CERTAIN CONVERGENCE QUESTIONS IN SYSTEM
IDENTIFICATION*

M. AOKI AND P. C. YUE"

Abstract. This paper examines the asymptotic properties of the maximum likelihood estimates of
the unknown parameters and the unknown initial state of linear, stable, constant coefficient, discrete
time dynamic systems where plant noise and observation noise are present. Necessary and sufficient
conditions are obtained for the system parameter estimates to converge with probability one, to be
asymptotically normal and to converge in mean square. These conditions require that the system
representation be unique and impose a simple constraint on the input sequence. Under these con-

ditions, the initial state estimate is shown to be asymptotically unbiased and have finite covariance.

1. Introduction. Problems of estimating the parameters and the initial state of
a dynamic system are known as identification (or system determination) problems.
The method of maximum likelihood has been widely accepted as a standard
estimation technique and it is generally believed that this method provides
estimates with many attractive asymptotic properties. These properties were first
treated by Wald [1] specifically for identification problems where the observables,
in general, are not independent samples from the same distribution. Wald’s
sufficient conditions for the estimates’ consistency are overly restrictive for most
systems of interest. Levin 2] considered deterministic systems with noisy observa-
tions of input and output signals. The estimation method he adopted only gave an
approximate maximum likelihood estimate. Levin referred to Koopmans’ early
work [3] for the asymptotic properties but Koopmans’ discussion was not very
precise, and the presentation rather obscure. Recently, a complete analysis of this
method has been given 4]. Computational experience is reported by many authors
(see, e.g., [4], [5], [6]).

Astrom et al. [7] treated the case where the random disturbance may also be
present in the system itself. They used a combined model which directly relates the
system’s input to the noisy output observations without explicitly distinguishing
between plant noise and observation noise. (See (46)-(48) for exact mathematical
models used by Astrom in comparison to this paper.) Since for both prediction and
control purposes the main interest lies in how the input affects the output (rather
than the noisy observations), it is more suitable to separate the plant dynamics from
the observation equation. However, their discussion on the asymptotic properties
of the combined model parameters are fairly complete; and they established suf-
ficient conditions for convergence with probability one.

This paper considers the formulation which involves explicit equations for the
plant dynamics and the observations, and shows that even though the likelihood
function in the formulation of the paper differs from Astrom’s, analogous results
on the asymptotic properties of the m.l.e. (maximum likelihood estimate) can be
obtained. In particular, a set ofconditions are given which are not only sufficient but
also necessary for the system parameter estimates to converge in probability, with

* Received by the editors July 1, 1969, and in revised form October 17, 1969.

" School of Engineering and Applied Science, University of California, Los Angeles, California
90024. This work was supported in part by the National Science Foundation under Grant GK-2032.
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probability one and in mean square. The necessity part is important in optimal
input synthesis for identification since in general the least amount of constraint on
the input is desired. The significance of various assumptions is also discussed.
Furthermore, the initial state estimate is shown to be asymptotically unbiased and
bounds are obtained for its covariance.

by

()

2. System representation. First, we consider dynamic systems representable

z(t + 1)= z(t) + but,

x, (h,

where the state z(t) is a k-vector. The reduced state space (reduced in the sense that
no distinct states are equivalent, following Zadeh [12]) is known a priori to be
k-dimensional. Thus, by a suitable choice of basis., the pair {, h} has the following
completely observable companion form"

-a 1 1

--a2 1 0---- h----
1

--ak 0 0 0 k 0

and b (bx, b2,...,b)v. The initial state, z(0)= z0, is an unknown constant
k-vector. {a, b, 1 __< =< k} are unknown constants.

Observations are made on the output such that

(2) y, x, + r/,,

where the additive noise {r/} is assumed for simplicity to be independent and
identically distributed as N(0; a2). The input sequence is known exactly and is
assumed to be uniformly bounded.

It is straightforward to verify that (1) has a simple input-output relation"

k k

x, + aix,- biu,_ i,

i=1 i=1

and for the interval {t 0, 1, 2, ..., N 1}, a compact notation using Toeplitz
matrices can be adopted to represent the system’s behavior as follows. Let

UN (/gO’ Ul’ HN- 1)r’ IIN (q0, ql, qN-

XN (XO, Xl XN- 1)T Y (Yo, Yl, YN- 1)r"

Then,

(1.A)

where

ANXN BNUN + ENZO,

k

AN= IN+ aiSi (N N),
i=1
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k

(3) B= b,S’ (N x N),
i=1

(4) EN 0N-k,k
(N x k),

and S is the N x N shift matrix whose (i,j) element is equal to bid+ 1.

Since the set of lower triangular Toeplitz matrices form a commutative ring
with identity under the ordinary matrix operations (with the usual zero and
identity) and the subset of nonsingular lower triangular Toeplitz matrices are the
group of units of the ring, this notation will prove to be very convenient for
algebraic manipulations.

Another way of expressing the input-output behavior of (1) is in terms of the
parameter vector 0, the initial state Zo and a matrix HN such that

(1.B) xN HN0 + ENZo,
where

(5) 0 (a l, a2, ak, b l, b2, bk)T,

and

(6) HN (-- SIN, S2xN, SKIN, SuN, S2uN, "’, SUN)N 2

since, by (1.A),

(7) xN a,SixN + 2 biSiuN + ENzo"
i=1 i=l

This notation is useful in stating many major results in later discussions.
Both (1 .A) and (1 .B) are equivalent to system (1) with respect to uN and xN for

arbitrary Zo. There remains, however, the question whether these representations
have a unique set of values for the parameter vector, 0.

PROPOSITION 1. For any initial state Zo, 0 is uniquely determinedfrom uN and xN
if and only if HTHN > O, whereupon

(8) 0 (HHN)-1H(xN ENzo).

Proof. It follows immediately from (1.B). This result was first stated in [9].
PROPOSITION 2. Suppose zo 0; then 0 is uniquely determinedfrom uN, xN if

and only if:
(i) N > 2k;

(ii) {bi} are not all zero, 1 <= <= k;
(iii) {ui} are not identically zero for 0 <= <= N 2k;
(iv) the polynomials A(z) and B(z) do not have a common divisor where

k

A(z)= 1 / 2 aiz’, B(z)= Z
i=1 i=1

Proof of necessity.
(i) HN is N x 2k. HVHN > 0 implies N => 2k.

(ii) If b :- 0, then BN 0, xN Aft 1BNuN 0.
Consequently, any AN satisfies (1A).
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(9)

where

and

(iii) If ui=0for0=<i=<N-2k, thenby(1),xi=0alsofor0Ni=<N-2k.
Thus, in (7), the first N 2k + 1 rows of HN become zero, rank HN < 2k,
and vHNHN : O.

(iv) If A(z) and B(z) have a common divisor, then

AN ANDN, BN BNDN,

k k

A’s IN + iSi BN 2 )isi, k <5, k,
i=1 i=1

k-kl

DN dolN + diSi, do = O.
i=1

Substituting (9) into (1.A) and multiplying both sides by D; since IDN[ : 0, we
obtain

ANXN BNUN
then (1, 2,’", k,, 0,..., 0, 1,’’’, k,, 0,.’’, 0) would satisfy (1.A) and
contradict the uniqueness assumption.

Proof of sufficiency. Let (ill, fi2, "’", ilk, ,2, "’", k)v be any vector
such that the corresponding matrices A-N, /N satisfy (1A). Then NXN /NUN,
ANxN BNuN. Therefore,

Let

(11)

Let

(12)

(13)

ANBNUN ANANXN
ANANxN ANBNuN.

CN ANBN ANBN
2k

2 CiSi"
i=l

UN,2k (SUN S2UN, S2kUN),
c (c, c.,..., c)-.

Combining (10)-(13), we obtain

(14) UN,2kC CNUN O.

By (i) and (iii), UN,2k has rank 2k. Hence c 0, and by (11),

ANBN ANBN.
This implies B(z)/A(z) B(z)/(z); and by (ii), (iv), a 3, b ft. This completes
the proof.

The parameter being unique means that ui, x are realizable as the input and
output sequences of a dynamic system (1/1.A/1.B) such that the realization has
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minimal order, k. The conditions (ii)-(iii) are equivalent to complete control-
ability of the pair {tI), b} (see, e.g., [12]). See also [11] for a more general discussion
of the realization problem in the case of multiple input and multiple output.

When the parameter in the representation is unique, all discussions on para-
meter estimates can be simplified greatly since there exists a unique set of values
that can be qualified as the true parameter values. Otherwise, the parameter
estimation problem is solvable only up to an equivalence class (input-output
equivalence) and the question of canonical form would inevitably complicate the
treatment.

3. Characterization of the maximum likelihood estimates. In the sequel we
will restrict ourselves to the case where the true parameter 0 is known to lie in the
interior of a given compact subset (s of R2k and where every system with 0 in ()s
is stable, i.e., A(z) has zeros outside the unit circle. The assumption of stability is
made to facilitate the study of asymptotic properties. The assumption of compact-
ness, however, is a practical one since usually, from a priori knowledge ofthe system,
the parameter values must fall within a certain range thus allowing us to contain
the parameter set in a compact region.

From (1.A) and (2), the observables are related to the unknown parameters
and the unknown initial state by

(15)
YN--qN + XN

qs + A (BNUN + ENZo),

(16) P(Y10,o) const..exp 2-lly A(B + Eo)ll

Let 0, o be the maximum likelihood estimates (m.l.e.) of 0 and o from and
y; that is,

(17)
/(0, os) max 1(0, Zo),

Oe (s,zoRk

where l(0, Zo) log p(ysl0, Zo). For any 0 (s, maX-o/(0, Zo) is achieved by

(18) ,o(0) (EvA-A Es)- ra-,ss (ys ABsus).
Thus, 0s is obtained by

min Js(0)= Js(0s),
0e ()s

(19)

where

(20)

and

(21)

JN(0) I[YN- A l(Bu + EZo(0))[I 2

2[[mNyN BNUN EN,ON()I[(ArAN)

o
Astrom ct al. 7] suggested that Wald’s classical proof 8] for the consistency

of m.l.e, could be easily modified if the almost sure (a.s.) convergence of the likeli-
hood function could be established.
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(22)

PROPOSITION 3. For all 0 (s, JN(O)/N --, J(O) with probability one, where

J(0) lim
1

N--, -EJN(O)

a + lim
1

T
N IIANXN Bsu [(aa)-,.

Proof In (20), the vector ENoN has only a finite number, k, of nonzero ele-
ments. As N --, oe, it contributes nothing to JN(O)/N in the limit. Therefore, oN can
be dropped from (20) without any loss of generality.

2 T(23) JN(O) IIANqN + ANXN- BNUNII(AAr)-

(23a) IIANxN BNuNIIa,ar) -1 + (qN, xN Aft 1BNuN) + llnull .
The first term is deterministic. In the second term, both xu and Aft Buuu represent
output sequences of some stable system with a bounded input sequence. Thus
xu Aft Buuu is uniformly bounded. The limit in (22) exists, and

1 1
(24) (, xs A Buuu)

,=o

where i < for all i. Since {q) are independent random variables with

Ei 0, Eq if2 <

and

the strong law of large numbers applies. Hence, with probability one,

1
(25) --, o,

(26)

and substituting (24)-(26) into (23a), we have

with probability one. This completes the proof.
Note that J(0) r2 min J(0) for any 0 which satisfies (1.A), namely, the

true parameter vector if 0 is unique in the representation (1.A). Throughout this
paper, Ag, Bv, Cv, A(z), B(z), C(z) denote AN, BN, CN, A(z), B(z), C(z), respec-
tively, with 0 as parameter. As we see in the next proposition, only those 0 which
give rise to J(0) J(0) a2 are of interest to us.
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(27)

PROPOSITION 4. With probability one, t)N converges to I) (o f-) (s, where

(R)o {Ol (o)

Proof This is a modification of Wald’s theorem [8] with the "independent
observables" assumption replaced by the results of Proposition 3. The proof for
dependent random noises has been given by Astrom et al. [7], and is valid for our
formulation with slight refinement. See Appendix A.

PROPOSITION 5. J(0) J(0) if and only if

(28) lim
1

N-.o ll(Ang ANnm)umll 2 0.

Proof. From (22),

J(O)=J(O)+ lim
1 2 v_-IIANXN BNtiN (ANAN)-I"

lim
1 2 T

N- -IIANXN BNUNII(AA)-

lim IIANA-a(BUN + ENzo)- BNUNII,2ANAOT,-,.
No

lim
1 BONUN + ENZo A,AvBNuNII2aoT_,A_

From Appendix B, pllN <= AuA p2Iu for all 0 6 @s, where

(29) 0<p <p2 < .
By repeated application of (29), we deduce that J(0) J(0) if and only if

0 lim
1

N
]BuN + ENz A 1ABNUNII 2,

or

0 lim
1

N-
lIBNuN A 1AONBNtiN 2

lim
1 2 T

and by (29), this is true if and only if

1
ANBNIIN O.lim 11 o AONBNUN 2

N-o

4. Consistency and mean-square convergence.
PROPOSITION 4a. Given that 0 is unique, the m.l.e. N converges to 0 with

probability one if and only if( I"l (s is a singleton.
Proof It follows immediately from Proposition 4.
A necessary and sufficient condition is now given to ensure that the condition

of Proposition 4a is always satisfied.
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THEOREM 1. Given the linear dynamic system (1/1 .A/1 .B) such that b # 0 and
{, b} is completely controllable, the m.l.e, t)n converges to 0 with probability one if
and only if

(30)

where

(31) U, (Suv, S2u, S:u).

Proof ofsufficiency. Define the matrix Cn and the associated vector c by

(32)
Cu AuBn- AnBu

2k

E CiSi
i=1

(32a) c (ca,c2,.", C2k)T.

Then,

if and only if

(33)

0--lim (AuB- ABn)uulI 2

lim Cvuv 2 (C, lim
1

N-*oo N-"
UV’2kUN’2ke> O.

Condition (30) implies that c 0, or, equivalently,

C(z) A(z)(z)- A(z)(z)= O,

B(z)/A(z) B(z)/A(z).

Hence, by controllability, b b, a a, 0 o and ()s f’) (o is a singleton.
This result is essentially due to Astrom [7].

Proof of necessity. It suffices to show that if (30) is not satisfied, then there
exists 0 (a + 6a, b + fib) such that 6a - 0, fib # 0, the condition (28) is satis-
fied, and 0 (o f3 (s.

Note that the vector c as defined in (32), (32a) can be reexpressed as

(34)

where

c Tboa + Taob + E2kbO,

To o (2k x k)--A2kE2k
Tbo o (2k x k)B2kEEk

E2k -15 (2k x k).

U U NLet V lims_,o T
N,Ek N,2k/ If the matrix V is not positive definite, then there
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exists a nontrivial solution to the equation

(3 5) 0 V(To, To)

It is immediate from the definition of CN that C 0 and thus

(36) 0 Tboa + Tob + E2kb.

Therefore, letting a a + . 6a, b b + . 6b for any scalar , we obtain by
combining (34)-(36)_that (e, Ve) 0 which by (33) implies that the condition (28)
is satisfied and 0 H. It only remains to show 0 ()s.

Suppose {2i(A)}, 1 =< _<_ k, are the roots of A(z). Then 2i(A) are exterior
points of the unit disc D {z :lzl =< 1} on the complex plane by stability. Since
the roots of A(z) are continuous in a at a in the sense that there exists a neighbor-
hood (a where (a {a’lla- a[[ < e} such that 2(A)D for all at (,
clearly a a + . 6a is stable if < e/{16a{{. Furthermore, 0 is an exterior point
of (s. Thus, can be chosen to have

0 (a + oz. 6a, b + . fib) s (s.
The necessary and sufficient condition of Theorem 1 can also be stated in

various forms for the purpose of different applications.
COROLLARY 1.1. Given the linear dynamic system (1/1.A/1.B) such that b 0

and {tI), b} is completely controllable, the m.l.e. {)N converges to 0 with probability
one ifand only if

(30a) lim
1
HvN- NHN>0

or, equivalently,

1
lim MN > 0,

(30b) N-

where

1
T T -1Ms -HN(AsAs) Hs

Proof It suffices to recognize that Proposition 5 can be restated in many
equivalent forms as follows. From (22), J(0) J(0) if and only if

lim
1

2 T
N-, - IIANxN BNUNII(AAN)- O,

or, equivalently,

lim
1

N’-*
ANXN Bu[I 2 0
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by (29), or, equivalently,

lim
s-

Hs0 xs ]2 0

by the equivalence of (1.A) and (1.B). Therefore J(0) J(0) implies 0 0 if and
only iflims_ HruHs/N > 0, or lims_. Ms/N (1/a2) lims_/ I-Iru(AsAV) 1Hs/N
> 0 by (29).

Theorem can be viewed as a stochastic version ofProposition 2, and Corollary
1.1 corresponds to Proposition 1. The matrix Ms is actually the information matrix.
The derivation is implicit in the proof of Proposition 6. See [9] for details.

Note that the a.s. convergence of Js(O)/N does not require any conditions
other than the basic assumptions of bounded-input and stability. Since
p-lims_ Js(O)/N J(0) if J(0) exists, either condition (30) or (30a) or (30b) is
necessary and sufficient for consistency, i.e., for 0s to converge to 0 in,probability.

PROPOSITION 6. If the conditions of Theorem 1 are satisfied, then Os is asymp-
totically normal, with covariance matrix M(0) where M(0) lims_. Ms(0).

Proof By (20), Js(O)/N [lYs- A XnsusllZ/N, with the term s omitted
since it does not affect the value of Js(O)/N as N . Define

(37)

For all N,

(38)

s(O) VoJs(O)/2Na2.

o 4,(G)= 4,(o) + vo4,(o?o(G o),

where 0] 011 u 0 u(0o) is normal since by direct calculation,

Thus

(39)

where

2Nor2 Js(0) (qs, Ag- SJxs)/N62,
aj

bj 2Na2 Js(0) (qs, Au SjuN>/Nor2 for N large.

1
bs(O) Normal 0;-Ms(0)

1 I_/TA0 TMs -"ss A- XHs (k x k).

By Theorem 1 and Corollary 1.1, MN > 0 for all N.
Vobu(0u) can also be calculated directly.

82 1
vaic3a 2Nor2JN(O) 2(qN + xN A, 1BNUN, A3 BNSi+JuN)/N72

+ (A2BNSiUN, A2BNSJUN)/No2
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2 1

cait3bi 2Ncr2JN(O) 01 + xn- A Bnun, AeSi+un)/Na

(AeBnSiun, A Sun)/Na,
bib 2Na2J(O) (A Siu, A Su)/Na for N large.

Since s 0 by Theorem 1, 0 0. The law of large numbers implies

1
(40) VoWs(0}) EVos(0) lim Ms(0)

Combining (38(40), we conclude that Os 0 converges with probability one
to -lims NM (0)4s(0) which is normal, with zero mean and covariance
lims Ms(0) since

lim ENEM (0)4s(0)(0)Mff (0) lim Mff (0).

THEOREM 2. Given the system (1/1.A/1.B) with b 0 and {, b} completely
controllable, Os converges to 0 in mean squarea only coition (30)/(30a)/(30b)
is satisfied.

Proof As noted before, the three conditions (30), (30a) and (30b) are equiva-
lent.

Suciency. By Proposition 6, E(Os 0)(Os 0)r lims Mff(0).
Equation (30b) implies that lims Ms(O)/N > 0. Thus; all the eigenvalues of
Ms(O)/N are bounded from below by some positive number for large N, and
tr Mff (0) 2k/(pS). As S , tr lims Mff (0) 0, Ell0s 0l e 0.

Necessity. Since (30)/(30a)/(30b) is necessary for the consistency of 0s, it is
also necessary for convergence in mean square.

5. Convergence of the initial state estimate. We have seen that the initial
state does not affect the convergence of the parameter estimates, Os. The initial
state estimate itself, however, is given uniquely by (18) and (21) as a function of
0s and ys"

(41) os (EsAs Es) r2r-

The asymptotic properties of os depend heavily upon 0s and are much weaker
than those ofs.

TOREM 3. If the coitions of Theorem 1 are satisfied, then Eos Zo as
N a the covariance ofos converges to Ro lims(EAgr- A Es)- a2,
which is finite, Ro > O.

Proof Let

(41a)

where

(42)

r(N) Fr(N)(yr- fi,/r,sur),

FK(N) v "T- -’V3V-(EKAK,I AK,uEK) "-’KK,U

Ar,N Ar())
G,,,

(k K),

(K x K),

(K x K).



250 M. AOKI AND P. C. YUE

Er is defined analogously to EN of (4). For each K,

(43) r(U) Fr(N)(xr .,/r,vur)+ Fr(NK.

If EK(N)converges to K uniformly in K as N , then Eou lim_o r as
K , by (41), (41a). Since 0 as N , we note that for every K,.

Ar, A, BK,N -* B:,
(44)

FK(N) " FK (E[Av- 1A-IEK) twra ov-t
X.KZXK

Substituting (44) into (43), we obtain for every K, as N ,
K(N) FK(XK A-BUK) + FKqK

FgA-Egzo +
Zo + FKqK

Since
a.s.

(45a) K(N)- Zo FKqK

and

(45b) J Fq dPOIK) 0,

by the Lebesgue convergence theorem,

E(K(N)- Zo)-- lim f (r(N)- Zo)dP(r(N))lim

f FKK dP(K) 0;

hence, limK E2OK limK lim EK(N) Zo. Also,

Zo)(K(N)- Zo)v .(E(x(N) FKqKqKFKdP()

FKFa2

hence

lim E(2or Zo)(2or Zo)r lim FKFrK0"2
Ko

By the result of Appendix B,

a2 1+ Igil
i=1

by (44).

uniformly in K;

lim ’K’TAOT- 10.2rr A- lEt) Ro.

_2

I Ro 5 r2 + ail
i=1

2

6. Generalization and discussion. The above analysis extends easily to systems
containing random disturbance with rational spectrum, i.e., systems which are
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representable by the following Gauss-Markov model"

(46)
z(t + 1) z(t) + bu, + dt,

xt (h, z(t)) + bou, + ,,
where {,} is Gaussian white noise identically distributed as N(0; 22); the input
sequence {u,} is given and uniformly bounded; d (dl d2, .-., dk)r; ,h, b are
defined as before. Thus, the unknown system parameters are a, b, d, bo, 22 and the
input-output relation is

x + aix,_i bou + biu,_i + , + d,_i.
i=1 i=1 i=1

The output is observed with additive noise"

(47) Yt xt + qt,

where {r/t} is again assumed for simplicity to be independent and identically
distributed as N (0; 1), t and tit are independent. In Toeplitz matrix notation, (46)
and (47) become

(46.A)

(47.A)

where

ANXN BNUN q- DNN "+ ENZo,

y x + I1

k

AN IN + aiSi,
i=1

BN= bolN + b’iSi,
i=1

ON=IN + diSi.
i=1

When (46.A) and (47.A) are combined,

(48) ANYN BNUN + DNN + ANqN + ENZO.

Clearly, the combined model of Astrom is the special case of (48) with r/i 0
for all i. Furthermore, if we attempt to replace (48) by a model with only one single
noise source, for instance, by the proper canonical representation of L6vy (see,
e.g., [13], 1-14), then (48)can be rewritten as

(49.A) ANyN BNtlN + WNeN + EN,O

with some WN defined analogously to DN in (46.A), which corresponds to

(49)
[(t + 1) O(t) + but + we,,

Yt (h, [(t)) + bout

where {et} is a white noise sequence known as the innovation process. In appear-
ance, (49.A) resembles the form of Astrom’s model. Note, however, w- (wl,
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W2,’’" Wk)T that appears in WN is no longer constant, nor is the variance of et.

In fact, the variance of et is given by a Ricatti equation with the unknown constants
a, b, d as parameters, and is thus time varying and unknown. Clearly, this model is
inconvenient to use in comparison with the two-noise model of (48). Even in the
simple case of no plant noise wherefore AN WN, this should be explicitly in-
corporated into the likelihood function; consequently a and w should not be
treated as distinct quantities as in [73.

We now demonstrate that by using techniques similar to the previous sections,
the various convergence questions can be studied for the general case. Only the
results for convergence with probability one are presented since the other
generalizations can be made in like manner.

p(yN[a, b, d, 2, Zo) 2-llFul- 1/2 exp -1/211YN Aft *BNuN Aft 1ENzol[ 2r‘,

where

I-’N ff2IN 4- )2Aff 1DND}Aff IT.

Astrom treated the case where r/i 0. Thus, FN =/].2AIDNDAlV and the
determinant reduces simply to ,2. The analysis of our previous sections treats the
case i 0. Thus, FN IN and the determinant reduces to 1. In the general case,
the m.l.e, is obtained by minimizing JN, where

Ju- lnlI-’ul + lYu- AIBNuN- AfflENzo 2..

Again, assume that 0 (a, b, d, 2) must lie in the interior of a given compact
subset (s of R3k+ 2 and that A(z) and D(z) are known to be stable.

As for computing the m.l.e., there are many existing algorithms for both
unconstrained and constrained minimizations of JN(0). There are various versions
of small and large step gradient methods and the second order methods such as the
Newton-Raphson with possibly some modification to prevent divergence or the
Fletcher-Powell-Davidon algorithm for unconstrained minimization and various
versions of feasible direction methods, for example, for the constrained case where
the parameter set is defined implicitly by a set of inequality and/or equality
constraints. See, for example, [16; and [17] for further detail.

lim JN Jl(a b d 22) 4- J2(a d 22)

where

J: lim {lnFN+trFff
N--*

By Proposition 4, t]N converges with probability one to 0 if and only if the set
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(o f’l (s is a singleton, where

(R)o {o1,(o)+ (o)= (o) + (o)}
{0lJl(0) Jl(0) and J2(0) J2(0)}

since J + J2 > J(0) + J2(00) by definition of the m.l.e, and J2 > J2(00) 0.
To establish results similar to Theorem 1, we need the following lemma.
LEMMA 1.

1 11
In Irl + tr rffr > In Irgl + 1(so)

Equality is achieved if and only if D(z)/A(z) D(z)/A(z), /],2 /02.
Proof The matrix o-2Is -k- 22As DDrAu v is positive definite and is there-

fore equal to the product RsRVu where Rs is a nonsingular matrix.
Let Qs RrFff Rs and let qx, q2, "’", qs be the eigenvalues of Qs. Then,

qi > 0 since Qs is positive definite.

N

In Irffrgl In IQul In 1--I qi,
i=1

N

tr (FffFu) tr Qs qi.
i=1

Since exp (qi 1) => qi for qi > O,

N N

exp (ql 1) => l--I qi,
i=1 i=1

N N

In IFff 1Fgl In l-I q, <= (q,- 1)= tr (r’rg)- N
i=1 i=1

from which (50) immediately follows. Equality is achieved if and only if qi

for all i; or, equivalently, Qs Is, Fs--Fu and hence AIDs As-Dv,
,2 /],02.

In situations where it is known a priori that the random disturbance is not
confined to any invariant subspace of o, the plant noise actually has the effect of
persistently exciting all the system modes. Consequently, a milder set of conditions
on the input is require’d as seen in the following theorem.

THEOREM 4. Given the system (46) with d 0 and {(I), d} completely con-
trollable, s converges with probability one to 0 ifand only if

V lim
oo

tT,O, > 0,

where ts (us, Sus, ..., Skus).
Proof J2--J2(t))= 1 + lims_,lnlFsl/N if and only if D(z)/A(z)

D(z)/A(z), 22 22, by Lemma 1 or, equivalently, d d, a a 22 202
by controllability. J J(0) 0 if and only if 0 limsoo I(Bs Bzv)llsllZ/N
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by a a and by arguments similar to Appendix B; or

O (bOo bo,bOr br)V
b o).bo

Therefore, bo b and b b if and only if V > 0. This completes the proof.
Note that if b= 0, i.e., without deterministic input, 0 (a, d, 2), we need

only the controllability of {, d} since the condition on {ut} is only required for
the convergence of the estimates of b and bo.

Lastly, when {, d} is not known to be controllable, we have the following
theorem.

THEOREM 4a. Given the system (46) such that {, (b, d)} is completely control-
lable, N converges with probability one if

Proof The proof invokes Lemma 1 to guarantee that 22= 22, D(z)/A(z)
D(z)/A(z) and uses the same techniques as in Theorem 1 to guarantee that

B(z)/A(z) B(z)/A(z). The details can be found in [15] and are omitted here.
The assumption of this theorem is a condition to ensure that the model in (46) is a
minimal realization of the joint distribution of {

Conclusion. The above discussions have exhibited the significance of a
priori knowledge of the structural properties of a system’s model on the con-
vergence of the estimates. Under various assumptions, necessary and sufficient
conditions have been derived for the maximum likelihood estimates to converge
with probability one. Sufficient indications have also been given to show the mean-
square convergence of the system-parameter estimates, to show the asymptotic
unbiasedness of the initial state estimate and to obtain upper and lower bounds
for the initial estimate covariance.

Appendix A.
Proofof Proposition 4 (Wald-Kendall-Astrom [7]). It suffices to show that for

every 0N defined by (19), the distance of 0N from (o tends to zero that is,

inf IIN Oil 0

with probability one as N - . Define the set ( as"

( (.J 0 ]10-]l < ,
and denote its complement by (.

Clearly, ( fl (s is compact and ( fq (s = (o f’l (’ns if e > 0. Let 0
be any vector in (s which satisfies (1.A); hence 0 ()o fq (s. For any e > 0,
if o*( fq (R), then 0" (o f) (s and there exists fi(0*, 0) > 0 such that

I(A.1) J(0*) J(0)l 6..
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Since JN(O)/N J(0) for all 0 ()s, there exists No(6) such that for all N => No,

(A.2)
JN(O*) J(O*)

Jn(O) J(O)

(A.1) and (A.2) imply that-JN(O* --JN(O) {J(0*)- J(0)} < IJ(o*)- J(o)l,

and Jn(0) :/: Jn(O*), a.s. for all N __> No.

EyNioo[Ju(0) Jn(0*)] Ey,loo log p(yN[0*)
p(ysl0)

(A.3)
p(y10*)

< log EylOOp(ysl0o 0

by Jensen’s inequality. Since Js(O)/N EJt(O)/N for all 0 (s, if lim EJ(O)/N
< then limN_ (Jn(O)/N Js(O*)/N} < 0, a.s. The same is true if EJs(O*)/N

since EJ(O)/N o"2 < OO. Hence, there exists N 1(0", 0) such that

JN(0) < Js(0*), a.s. for all N __> Sl(0*,0).

By the compactness of () f’l (s and ( f) (s, and the continuity of Jn(0),
there exists N which depends only on e such that for all N __> N,

max Jn(O) < min Jn(O*), a.s.
0%o (R) o* (R) (R)

But, Jn(0) => Jn(0n). Therefore, for 9very e > 0, On @s or On e @
@s, a.s. and by the definition of @,

inf IIN 011 < , a.s. for all N N.

Appendix B. We give bounds on AnAVn, where

k

An IN + aiSi.
i=1

For general systems, AriA} <-(1 + =lal)eln. For bounded input-bounded
-N- Soutput systems, A goIn + 2.,= g such that =ogl < . Hence,

(ANAI)- A 1TA Igl IN Igi IN
i=o i=o

and

where P 1/(2i__ olgil)2.
ANATN >_ pllN,
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ON THE CONTROL OF A LINEAR FUNCTIONAL-DIFFERENTIAL
EQUATION WITH QUADRATIC COST*

HAROLD J. KUSHNER- AND DANIEL I. BARNEA

1. Introduction. Let H be the space of bounded measurable n-vector-valued
functions y(qg)= (yl(qg),...,y,(qg))’ on the finite interval [-r, 0],r > 0, whose
components are continuous on [- r, 03. Suppose x(t) is an n-vector-valued bounded
measurable function defined on the interval [-r, T], T > 0. Fix e [0, T]. Let xt
denote the element of H which takes the value x(t + qg) at qg, p e [- r, 0_. Let x(.
be the solution of the delay equation2

()
o

2(0 A(t)x(t) + B(t)x(t r) + C(t, qg)x(t + qg) d(p + D(t)u(t),

where A(t), B(t), C(t, qg), D(t), and the derivatives of B(t) and C(t, qg) are given
continuous functions of (t, q) in 0, T] I-r, 0], and the initial condition,
Xo, is in H.

u(. is a control which may take several forms. The majority of the paper is
devoted to showing that a linear feedback form (5) (given by the construction of
Theorem 5) is optimal, with cost (2). All the work up to Theorem 6 uses the linear
form (5). In Theorem 6, it is shown that the linear form (5), constructed in
Theorem 5, is optimal with respect to the class of

(a) linear feedback controls (5), with bounded measurable coefficient matrices,
(b) any control u(t) which is square integrable on [0, T],
(c) any control u(x, t) for which there is a continuous solution x(t) to (1), and

for which u(x(t), t) is square integrable on [0, T].

(2)

where M(s) and N(s) are continuous,3 M(s) >= O, and N(s) > 0 for each s in [0, T].
Special forms have been considered by other authors, e.g., Krasovskii [1, [2] how-
ever, that work is quite vague and, in particular, the crucial fact that the relevant
Ricatti-like equation has a solution of the proper form or even some solution
is not shown. Since the Ricatti equation is a rather complicated coupled set of
first order partial differential equations, the questions of existence and uniqueness

* Received by the editors November 7, 1968, and in revised form July 10, 1969.
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The prime denotes transpose.
Equation (1) is treated for simplicity" it will be obvious that replacing the term Bx(t r) by

Bix(t ri) demands few changes in the development.
M >= 0, N > 0 denote that M is nonnegative definite and N is positive definite.
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require some treatment. In fact, this is the most difficult part of the entire problem.
Theorems and 2 give representation of V(xt, t) as a quadratic functional of
when u is in the linear feedback form (5). Theorem 3 proves the smoothness of
solutions to certain partial differential equations, and Theorems 4 and 5 contain
the basic result on iteration in policy space. Theorem 6 is the final optimization
theorem. Unfortunately, as is common with works on functional-differential
equations, some of the calculations are somewhat tedious. Although the problem
has an intrinsic interest of its own, owing to the appearance of delays in many
situations, the authors’ interest in it stemmed from an attempt to analyze a problem
where u(t) was actually a functional of noise corrupted observations taken on the
interval It- r, t]. This was part of an attempt to use the theory of stochastic
delay equations to study certain approximations to nonlinear filters, and to
stabilize a system when only noise corrupted observations are available. The
latter investigation led to the consideration of the problem of the paper. See
Barnea [3]. A rather thorough bibliography of time lag control problems appears
in Oguztoreli [5].

2. Preliminary lemma.
LEMMA 1. Let u 0 and let A(t), B(t), OB(t)/Ot, c3C(t, )/tt and C(t, q) be

continuous. Then the solution x(s) has the representation, for s >_ t,

(3) x(s) K(s, t)x(t) + (s, t, qg)x(t + tp) dip,

where K(s, t)= 0 for s < t, K(t, t)= 1, the identity, and K(s, t) is continuous in
(s, t) for s >= t. Forfixed t, it satisfies (1), as afunction ofs (with u 0). For.[ixed s,
it satisfies (as a function of t) the adjoint of (1)(with u O) for _<_ s. The terms
c3K(s, t)/3s and 3K(s, t)/t3t are continuous for s >= except for a finite discontinuity
at s + r. Also

I(s, t, qg)= K(s, + r + qg)B(t + r + q)
(4)

+ K(s, + q9 + p)C(t + q9 + p,-p) dp.

(The upper limit r can be replaced by min (s- t- qg, r).) The first term on the
right of (4) is zero for s < + r + qg, continuous in (s, t, qg) for s >= + r + qg, and
its derivatives with respect to s, t, q9 are continuous for s >= + r + q, except at
s + 2r + qg, where there is a finite discontinuity. The second term of (4) is
zero for s < and is continuous together with its derivatives with respect to

for T >= s >= >= O, -r_< qg <= O.
Note. /(s, t, qg)= 0 for s < t. For the computations of Theorem 1, it is

convenient to redefine K(s, t, qg) for s < so that (3) gives the solution for s >= r.
Then define/(s, t, qg) =/(s, t, tp) for s => and, for q9 =< s < t, define the symbol

o
I7((s, t, q)x(t + qg)dq9 to mean x(s); i.e., s < t,/(s, t,for is the Dirac f-function

4 By convention, if + + q, the derivative with respect to is a right-hand derivative, and
with respect to and tp a left-hand derivative" i.e., the limits are taken within the segment >= + r +
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b(s --(t + q)). Thus for s >- t- r,

(3’) x(s) K(s, t)x(t) + (s, t, q))x(t + q)) do.

Proof The forms (3), (4) and statements concerning K(s,t) follow from
Halanay [4, pp. 369-370]. The statements concerning/(s, t, q) are straightforward
consequences of the properties K(s, t), by virtue of the representation (4).

Remark. In (1) let u(t) take the form

(5) u(t) Eu(t)x(t + Fu(t, q)x(t + q) dq.

Then
o

(1’) (t) A,(t)x(t) + B(t)x(t- r) + C,(t, q)x(t + q),

where
Au(t) A(t) + D(t)Eu(t),

C,(t, q) C(t, q) + D(t)F,(t, ).

Let D(t), E.(t), F.(t, ), OD(t)/Ot and OF.(t, )/Ot be continuous. Then Lemma 1
remains valid, where we replace K, R by K,, ,, respectively, the kernels corre-
sponding to (1’).

3. Representations for the cost. By substituting (5) into (2), we obtain

V"(xt, t) {x’(s)M,(s)x(s)} ds

+ ds dx’(s)L(s, )x(s +

(6) + ds dx’(s + )L’,(s, )x(s

+ ds d dpx’(s + )G(, , p)x(s + p

where the T are the terms on the right of (5), and

(7) ,(, e) ()g()(s,

6(s, e, p) F’(s, e)N(s)F(s, p).

THeOreM 1. Le u(O rake he form (5), and assume he conditions of Lemma 1
and he remark following i. In addition, le C(, )/ and F(, )/ be con-
i,uous and F(, ) and (t) end o zero as T Le M(s) and N() be symmetric
and cominuously deremiable for s e [0, T]. Then’

The Si, $i are defined as the terms on the right of (8).
If (2) contained a terminal cost term x’(T)Zx(T), then (9), (10), (11) would each contain one

additional term (which is not of an integral form). However, we have not been able to show that the
additional terms have the smoothness that we will require (i.e., be differentiable).
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VU(xt, t)-- S q- 82 + 82 1_ $3

x’(t)Pu(t)x(t)+ x’(t) Qu(t, q))x(t + q))dq)

(8) + x’(t + q))Q’(t, q))x(t) dq)

+ dq) dpx’(t + q))R(t, q), p)x(t + p).

The Pu(t), Q,(t, q), R(t, qg, p) are sums of the terms in (9), (10), (11), respectively.

(9a) P.(t) K’.(s, t)M.(s)Ku(s, t) ds,

(9b) P2(t) ds dK(s, t)L.(s, )K.(s + , t),

(9c) n3(t) P’.2(t),

(9d) P.4(t) ds dq) dpK.(s + q), t)G(s, q), p)K(s + p, t),

Qu (t, q)) K,(s, t)M.(s).(s, t, q)) ds

(lOa)
K(s, t)M.(s)K.(s, t, q)),

*t

Q.(t, q)) ds dzK.(s, t)L.(s, z).(s + z, t, q))

min[t + + q,T]

(lOb) dsK’(s, t)L.(s, t- s + q))
*t

+ ds dzK.(s, z)L.(s, z)g..(s + z, t, q),

Q.(t, q)) ds dK(s + z, t)L(s, r. .(s, t, q))

(lOc) r f,ds dzKu(s + z, t)L(s, z)K.(s, t,

Q.4(t, qg) ds de dpK.(s + e, t)Gu(s, e, p .(s + p, t, q)

min[t + + tp,T] f_.9(lOd) ds deK(s + e, t)G(s, e, s +
at

+ ds de dpKu(s + e, t)Gu(s, e, p)Ku(s + p, t,

(lla) r
K.(s, t, q))M.(s)i.(s, t, p) ds,
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(llb)

(lld)

R.2(t, go, p) ds d.cK.(s^’ t, go)L.(s, z).(s + z, t, p)

min[t + +p,T]

dsK.(s, t, 9)Lu(s, t- s + p)

+ ds drK(s, t, )L(s, )R(s + , t, p),

(llc) R3(t , p) R2(t, p, ),

R.4(t, e, P) ds da dflK.(s’ + a, t, e)G.(s, a, fi)K.(s + fi, t, p)

(mi.[t+,+,t++p,W] G.(s, s + , s + p) ds
at

m[t + + p,T] fO (+ ds d s + , t, )Gu(s, , t- s + p)

+ ds deG.(s, e,t- s + O s + e, t,p)

+ ds da dflK.(s + a, t, )G.(s, a, fi)

g(s + fi, t,p).

Furthermore, the have the form (8) where P, Q. and Ru are replaced by
P.i, Q.i and R.i, respectively; P., Q and R. have bounded derivatives in their
arguments for70 Z -r 0, -r p 0, and satisfy (12). The
derivatives are continuous, except for the or p derivative of R.(t, , p) at p
where there may be finite discontinuity. 8

(12a) P.(T) Q(T, go) Ru(T, go, p) O,

(12b)

(12c)

dP.(t)
dt--+ A’.(t)P.(t) + P.(t)A.(t) + Q.(t, O)+ Q’.(t, O)

P.(t)C.(t, go) + A’u(t)Q.(t, go) +

M(t)- E’.(t)N(t)E.(t)= M.(t),

c3Q(t, go) c3Q(t, go)
+ Ru(t, O, go)

E’u(t)N(t)F(t, go) L(t, go).

C’.(t go)Q.(t p) + Q’u(t go)C.(t p) + -t-(t go, p)
c3go

(t, go, p)
c3p

(t, go, p)

(12d)
F’u(t, go)N(t)F.(t, p) G.(t, go, p),

At (p 0 or q or p 0 or p or 0, the derivatives are replaced by the appropriate
one-sided derivatives.

For future reference, we note that the discontinuity in Ru is in the terms Ru_ and Ru3. However,
it is easy to verify that R,2 and Ru3 are differentiable in the (1, 1, 1) direction in the (t, 99, p) set

[0, T] x E-r,O]
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(12e) B’(t)P(t)- Q’(t,-r) O,

B’(t)Q(t, q)) R(t, -r, q)) R(t, q), -r) + Q(t, qg)B(t) O.

Finally, the solution Pu(t), Q,(t, q)), R,(t, q), p) is unique within the class of
symmetric9 differentiable P,(t), R,(t, tp, p) and differentiable Q,(t, q)).

Proof The evaluation of the T-terms on the right of (6) is straightforward
by merely substituting the expressions for x(s), x(s + q)) and x(s + p) from (3)
into the T and separating the result into a sum of the form of the right side of (8),
where the P,, Q, and R, are given by (9)-(11). The right sides of (9)-(11) are
obtained from the center expressions by replacing K by its definition in terms of
K and the 6-function, and noting that K(s, t, (p)= 0 for s < t. Then (8) follows
by merely summing the T. The statement concerning the continuity of the
derivatives of P,, Q, and R, follow from Theorem 3 and the differentiability of
M,(s), L,(s, (p)and G,(s, q), p)for 0 =< s =< T, -r __< (p __< 0, -r __< p __< 0.

Now, we evaluate

d
[x’(t)P,(t)x(t)] A,(t)x(t) + B(t)x(.t r) +

dt
C.(t, q))x(t + q)) dq)] P.(t)x(t)

(13a) + x’(t) dP.(t)dt x(t) + x’(t)P,(t) [Au(t)x(t) + B(t)x(t r)

o
C,(t, q))x(t + q)) dq)1

dt
x’(t) Q,(t, q))x(t + (p) d x’(t) Q.(t, ,c t)x(r‘) dr,

(Ox(O + (Ox(t- r + c.(t, ex(t + (t, ex(t +
(13b)

[ f,’ c3Q"(t’r‘-t)x(r‘)dr‘]+ x’(t) Qu(t, O)x(t)- Qu(t,-r)x(t- r) 4-
c3t

where

(13c)
c3Q,(t, t)

x(r‘) dr‘ .3Q,(t, (p) c3Q,(t, (p
x(t + q)) dq).

h

Similarly,

do dpx’(t + q))R,(t, q), p)x(t + P)I
dr‘ dax’(r‘)Ru(t, p t, a t)x(a)

By symmetric M we mean M’(t) M(t)" by symmetric G(t, p, q), we mean G(t, tp, p) G’(t, p, q).
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da[x(t)’R.(t, O, o t) x’(t r)R(t, -r, a t)]x(a)
t-r

+ dx’()[R,(t, "c, O)x(t) Ru(t, z, -r)x(t r)]

ft ft ,[R ’1+ ddax’z ut,- t,a- txa

(i3d) dp[x’(t)Ru(t, O, p) x’(t r)R,,(t, -r, p)]x(t + p)

+ dqgx’(t + qg)[Ru(t, qg, O)x(t)- Ru(t, qg,-r)x(t- r)]

+ x’(t + qg) t c3q9 fp. R(t, 99, p)x(t + p)dq9 dp.

Note (for reference in Theorems 5, 6) that the representations (13b), (13c),
(13d) are valid if Q(t, q) only has a uniformly bounded derivative almost every-
where along each line in the (1, 1) direction in the set q [-r, 0], [0, T],
and if Ru(t, qg, p) has only a uniformly bounded derivative almost everywhere
along each line in the (1, 1, 1) direction in the set [0, T], qg, p r, 0]. These
conditions and the differentiability of P(t) assure the differentiability (in t) of
V(xt, t). Next, adding (13a), twice (13b) and (13d), and using the substitution
(13c), yields an expression for c3V(xt, t)/c3t. However, c3V(xt, t)/c3t also equals the
negative of the sum of the bracketed integrands in (6), evaluated at s t. The
equality of these two forms1 of c3VU(xt, t)/ct for all xt H and 0 __< =< T implies
that the coefficients of like terms in x(t), x(t + qg), etc. in each form must be equal.
This yields (12). Note that, by construction and Theorem 3, (12) has a smooth
symmetric solution; i.e., the terms have continuous derivatives and P(s) P’(s),
R(t, q, p) R(t, p, qg) (except that the qg, p derivatives of Ru are discontinuous at
q,= p).

Let P(t), Q(t, q), /(t, (p,p) be differentiable solutions ix to (12) with /3(0,
R(t, q), p) symmetric and define Z(xt, t) by (14). Then, by reversing the argument
leading to (12), we get d/dt[Z(x,, t)] -x’(t)M(t)x(t) -u’(t)N(t)u(t).

fox’(t).(t)x(t) + x’(t) ((t, q)x(t + qg) dq + x’(t + q)Q’(t, qg)x(t) d

(14)

However,

+ dq9 dpx’(t + qg)(t, tp, p)x(t + qg)= Z(x,, t).

Z(XT, T) V"(XT, T) 0

Note that OV"(x,, t)/Ot also equals -x’(t)M(t)x(t) u’(t)N(t)u(t).
11 In fact, it is readily verified that we only need that O(t, p) and/(t, p, p) have uniformly bounded

derivatives, i.e., in the (1, 1) and (1, 1, 1) directions on the sets [0, T], [- r, 0] and [0, T],
p, p I-r, 0], respectively. More generally, for uniqueness we only need that OR,(t, q) t, p t)/Ot
and OQ,(t, q) t)/Ot be uniformly bounded for almost all p, p.
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and

T

Z(x,, t)- Z(XT, T) [x’(s)M(s)x(s) + u’(s)N(s)u(s)] ds

V(x,, t) VU(x, T)

or, equivalently,

( 5) Z(x,, t) V"(x,, t).

Using the identity (15), the representations (14) and (8), and the continuity of the
p,/3, Q, Q, R,/, and symmetry ofP,/3 and R,/, it is easily shown that 12 P,(t) P(t),
Q,(t, ) Q(t, ), R,(t, , p) (t, , p); thus the uniqueness is proved.

In the sequel, it will be helpful to separate out the u-dependent terms in the
coefficients of P., Q. and R. in (12b, c, d) and to eliminate the u-dependence of
the kernels K, and , in (10). Write (12b, c, d) as

dP.(t)
+ A’(t)P.(t) + P.(t)A(t) + Q.(t, O) + Q’.(t, O)= .(t),(12b’)

dt

P.(t)C(t, q)) + A’(t)Q.(t, q)) +

(12c’)

c3Q,(t, tp) c3Q,(t,
Ot

C’(t, q))Q.(t, p) + Q’(t, q))C(t, p) +

+ Ru(t, O, q)) L.(t,

OR(t, q), p) OR(t, q), p)

(12d’)

where

(16a)

8t

3R(t, q), p)
G.(t, qg, p),

f/l.(t) M.(t) + E’.(t)D’(t)P.(t) + P.(t)D(t)E.(t)

L.(t, q)) L.(t, q)) + P.(t)D(t)F.(t, q)) + 1/2[E’.(t)D’(t)Q.(t, qg) + Q’.(t, q))D(t)E.(t)],
(16b)

(16c) (.(t, qg, p) G.(t, q), p) + F’.(t, q))D’(t)Qu(t, p) + Q’.(t, q))D(t)F.(t, p).

The boundary conditions (13a, e) do not depend on u.

THEORrM 2. Suppose the conditions of Theorem 1. Define P,i, Q,i and ., as
the terms in (9’)-(11’), or, equivalently, the respective terms in (9)-(11) with K,,
f/1., L, and , replacing K,, ,, M,, L. and G,, respectively. Then

4 4 4

(17) P.(t) P.i(t), Q.(t, qg) O_.i(t, q)), R.(t, qg, p) .i(t, q), p),

(9a’) P.l(t) K’(s, t)f/l.(s)K(s, t) ds,

12 In fact, under the weaker hypothesis of the last footnote, the equalities hold between Qu, 0
and R,,/ almost everywhere in (tp, p) for each t.
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(9b’)

(9c’)

(9d’)

(10a’)

(10b")

(10c’)

(lOd’)

P.z(t) ds

P.(t) P’.2(t),

P.(t) ds

T

Oul(t, q) j,
O.2(t, q)) ds

dzK’(s, t)L.(s, z)K(s + , t),

dpK’(s + q), t)u(s, q), p)K(s + p, t),

dsK’(s, t)f/l.(s)g.(s, t, q)),

d’cK’(s, t)Lu(S, "c)g(s + , t, q))

(1 la’)/.,(t, qg, p) rjt
T

R,,2(t, q), p)

K’(s, t).(s, t- s + qg) ds,

drK’(s + , t)L.(s, r)R(s, t, q)),

dsg’(s, t, o)Y4.(s)g(s, t, p),

dg’(s, t, o).(s, )g(s + :, t, p)

-[" min[t + + p,T]

(11 c’)/.(t, q, p) R’.2(t, p, q)),

R.(t, q), p)

g.(s, t, q))u(S, s + p) ds.

(1 ld’)

ds dz dfig.’(s + a, t, q)).(s, a, fl).(s + fl, t, p)

.(s,t- S + q),t- S + p)ds

ftrnin[t + + p,T] 0/ ds

min[t + + tp,r] f+ ds

dag’(s + z, t, q))d.(s, , s + p)

dad.(s, o, s + q))I(s + , t, p).

Proof. In the integrals (9) in the expression 4 P.i(t), replace K. and/, by
K and/, respectively, and M., Lu, G. by r.,., 0., respectively. In Theorem 1,
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let u _= 0, Lo L,, Mo ,, Go (,. With this replacement, the P.i terms in (9)
become the P,i terms in (9’). Then, by Theorem 1, the P,(t) are differentiable, and

Pui(t) P,(t) satisfies (12b’)(or, equivalently, (lZb)). This follows similarly for

Z O,,(t, ) Ou(t, ) and .(t, , p) .(t, , p). Then, by the symmetry
of P,(t) and ,(t, , p) and the uniqueness part of Theorem 1, we have (1 7).

THEOREM 3. Suppose that N(t), m(t), A(t), B(t), C(t, ), D(t), E.(t) and F.(t, )
satisfy the condition of Theorem 1. Then the P.(t), Q.dt, ) and R.dt, p,p)
of (9)-(11) are continuously derentiable in their arguments for 0 T,
-r O, -r p O, except that the or p derivatives of Ruz(t , p) and
R,3(t, , p) may be discontinuous at p. However, R,(t, , p) has a derivative in
the (1, 1, 1) direction.

Proof Since the evaluations are tedious and straightforward, we give the
details for one "typical" term only, namely Quz(t, ). We note only that the asserted
discontinuity in Ru2 arises from the latter term of (1 b’) and that it is easy to verify
that (O/Ot /) applied to this latter term yields a continuous function. For
future reference note that the discontinuity is uniformly bounded if the L, are.
Write

Q.2(t, ) g(s, t)L(s, ),(s + , t, ) ds d

m[t + + o,T]

+ K,(s, t)L,(s, t- s + )ds.

Recall that L,(t, ) E’,(t)N(t)F,(t, ).
Denote the second term of Q,z(t, ) by (t, ). Observe that it is continuous

in(t,).Lett+ r+> ZThen

’.(s, t)(s, t- s +

which is continuous in (t, ). For + r + < T, we have

OB(t, O) K;( + r + O, t)L.(t + r + O,-r) + K;(s, s, t- s + O)

which is continuous in (t, 99) in the desired range. In addition, Lu(t + r + 99, r)
as + r + p T, since Fu(t, 99) 0 as T. Thus fl(t, 99) has continuous
derivatives for t, 99 [0, T] -r, 0]. The details for O(t, q)/3t are similar and
are omitted.

Write the first term of Quz(t, 99) as

T

(t, q) h(s, qg, t) ds,

where

h(s, qg, t) ffax[t + p, r]
K.(s, t)L.(s, z)g,(s + z, t, qg) ds.

If s + 99 > 0, the lower limit is replaced by zero.
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For each fixed >_ 0, let k(s, qg, t) satisfy" (a) k(s, qg, t) is continuous on
It, T] x [-r, 0]; (b) There is a bounded measurable function k,(s, q, t) so that for
each and each s, not in some null set in It, T], ko(s, qg, t)= Ok(s, 99, t)/c3q9 for

almost all q in [- r, O] (c) ko(s, q), t) ds is continuous on [0, r x [- r, 0].

Then k(s, q), t)ds 8/c3q9 k(s, q), t)ds and is continuous on [0, T] x [-r, 0].

Let k(s, q), t)= h(s, qg, t), and note that h(s, q), t) is continuous for each fixed t.
Lett-s+q< -r. Then

h(s q) t)
K’(s, t)Lu(s z)

c3(s + r., t, q))
ds(s, q, t) =_

q)

which is continuous in all three variables.
Now, let0> t-s+ 99> -r. Then

,92(s, o, t) _-- Ok(s, q), t)
K.(s, t)L.(s, t- s + q))K.(t + q), t, q))

+ K’.(s, t)L.(s,)(s + z, t,
t-s+

The first term of 62(S, q), t) is zero since K,(t + 99, t, 99) 0 and the second tends
to 61(s, q9, t) as s + q9 $ -r. It can now easily be verified that (a)-(c) hold and
that z(t, 99) has a continuous 99 derivative on [0, T] x I-r, 0]. The details for
ce(t, qg)/Ot are similar and are omitted.

4. Iteration in policy space. In Theorem 4, the basic result on "iteration in
policy space," we will require the time derivative of the function V"(x,, t) evaluated
on the path corresponding to a control w (and written 9"’w(xt, t)); to be specific
the time derivative of V"(xt, t) along the path corresponding to w is defined by

l?"’W(xt, t) x’(t)P,(t)x(t) + 2x’(t) Q,(t, q)x(t + q) de

(18)

fo o+ x’(t + q)R,(t, 99, p)x(t + p) dp dq9

where for (t)--c3x(t)/c3t we use the derivative evaluated along the trajectory
corresponding to w; i.e.,

(19) 2(t) A(t)x(t) / B(t)x(t r) / D(t)w(t) + C(t, q))x(t + q)) dq).

Using (19) in the calculations (13), we have

f/u"(xt, t)= 2w’(t)D(t)Pu(t)x(t) + 2w’(t)D’(t) Q.(t, q))x(t + q)) dq)

+ x’(t)
k dt + A’(t)P.(t) + P(t)A(t) + Q(t, O) + Q’.(t, 0 x(t)
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+ x’(t) 2 - Q(t, q) + 2P(t)C(t, q)

(19a)
+ A’(t)Ou(t’ q) + Q’u(t, q)A(t)

+ R,(t, , O)+ R(t, O, )[x(t + )d

+ x’(t + ) t p

)Q(t, p) + Q’(t, 9)c(t, p)lx(t + p) d dp.+ C’(t,

THEOREM 4. Let u have the form (5), and define ’W(xt, t) by (18). Assume the
conditions on A, B, C, D, E, F, N and M of Theorem 1, and let N(s) be positive
definite and M(s) positive semidefinite in [0, T], and let D(t) be continuously der-
entiable in [0, T]. The control w which attains the minimum in (22) has the form (5),
and

(20a)

where

(20b)

o
w(t) Ew(t)x(t) + Fw(t, q)x(t + q)dq,

Ew(t) N- ’(t)D’(t)Pu(t),

Fw(t, q) N- ’(t)D’(t)Qu(t,

Ew(t) and Fw(t, qg) satisfy the conditions on the Eu(t) and F,(t, qg) in Theorem 5. Also

(2) vw(x,, t) <= v"(x,, t)

for all x, H, and [0, T].

(22) H(x,, t)= min [l?"’W(xt, t) + x’(t)M(t)x(t) + w’(t)N(t)w(t)].

Remark. Note that, with w u, the bracketed term in (22) is zero by the
definition of l?"’"(xt, t) V"(x,, t)/ct.

Proof In computing the minimum in (22), only the terms

o
c’(t)P,(t)x(t) + x’(t)P,(t)Jc(t) + 2,’(t) Q,(t, q)x(t + q) dq9 + w’(t)N(t)w(t)

(23a)

or, equivalently, only the terms

o
2w’(t)D’(t)P,(t)x(t) + 2w’(t)D’(t) Q,(t, q)x(t + p) dq + w’(t)N(t)w(t)

(23b)

need be taken into account. The other terms in the brackets in (22) do not contain
w by (19a). The w(t) minimizing (23b) is of the form (20a), whereas Ew and Fw satisfy
(20b). By the hypothesis and by Theorem 1, the coefficients Ew and Fw satisfy the
smoothness conditions required in Theorem 1 on the E,, F, there.
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Now, for any w of the form (20), V"(XT, T) Vw(XT, T) 0 and
r

t) V"(XT, T) V"(x, t).l>,(x,, dt

The bracketed term in (22), with the minimizing w inserted, is nonpositive since
the bracketed term is zero if w is replaced by u. Thus

0 >= (Tu’v(xs, s) ds + [x’(s)M(s)x(s) + w’(s)N(s)w(s)] ds

or

0 >_ V"(xr, T)- V"(xt, t)+ V(x,, t)- VW(xr, T)= V(xt, t)+ VW(xt, t)

and (21) holds. This completes the proof.
Suppose the conditions on A, B, C, D, N and M of Theorem 4 hold. Let u0

satisfy the conditions in the remark below Lemma 1. Define the improved control
u, recursively in terms of u,_ by the method of Theorem 4. Then, by Theorem 4
(where we write E, E,., F, Fu,, V" V""),

(24)

(25)

o

u. E.(t)x(t) + F.(t, q))x(t + q)) dq),

E,+ ,(t) N- ’(t)D’(t)P.(t),

F.+ ,(t, q) N- l(t)D’(t)Q.(t, q),

and, for all e [0, T] and x, e H,

(26) V"+ l(xt, t) - Vn(Xt, t).

Next, it is shown that (26) implies that the P,, Q,, R, and u, converge.
THEOREM 5. Assume the conditions of Theorem 4. The P,(t), Q,(t, qg), R,(t, qg, p),

E,(t) and F,(t, q) are uniformly bounded and converge pointwise to functions P(t),
Q(t, qg), R(t, qg, p), E(t) and F(t, qg), respectively. P(t) and R(t, q, p) are symmetric
and

(27)

V"(xt, t)= x’(t)P(t)x(t) + x’(t) Q(t, tp)x(t + tp) dip

fo+ x’(t + tp)Q’(t, tp)x(t) dq

+ x’(t + tp)R(t, tp, p)x(t + p)dip dp,

where u is the limit of the u,"

0

(28) u(t)-- E(t)x(t) + F(t, q)x(t + q) dq.

Furthermore, the f/I., . and . in (9’)-(11’) converge pointwise and are uniformly
bounded and the P, Q and R are the limits of the sums of the P.i, Q.i and Rni,
respectively.
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Finally, let v be the (1, -1) direction in the (t, (p) set [0, T] x I-r, 0], and a
the (1, 1, l) direction in the (t, q), p) set [0, T] x [-r, O]2. Then the derivatives
cP(t)/c3t, c3Q(t, q))/cv, cR(t, q), p)/ca exist and satisfy

(29a) + A’(t)P(t) + P(t)A(t) + Q(t, O) + Q’(t, O)= -l(t),

OQ(t, q))
(29b) x/ -t + P(t)C(t, q) + A’(t)Q(t, q)) + R(t, O, q)) -f.(t, q)),

OR(t, ep, p)
(29c) x/ . + C’(t, q))O(t, p) + Q’(t, q))C(t, p) -G(t, ep, p),

where the f/I, i’ and are the f/1,, ,, L,, with E, and F, replaced by their limit.
Also

(29d)
B’(t)P.(t) Q’(t, r) O,

S’(t)Q(t, ep) R(t, -r, ep) R’(t, ep, -r) + Q’(t, q)S(t) O.

cbP,(t)/ct, cbQ,(t, qg)/cbv and dR,(t, p, p)/cba converge to cbP(t)/cbt, cbQ(t, qg)/Ov and
OR(t, qg, p)/cba, respectively.

Proof The other statements follow readily from the uniform boundedness
and convergence of the P,, Q, and R, and Theorems and 2; hence only this will
be shown.

and

We note only that

(O/c3t c3/c3ep)Q.(t, q)) x/ c3Q.(t, q))/Ov,

(c3/c3t c/c3q c/c3p)R.(t, q), p) x/ c3R.(t, q), p)/c3a.

These derivatives converge if the P., Q. and R. do, and are uniformly bounded by
(12) and (12’). If the P., Q. and R. and their (t, v, a, respectively) derivatives all
converge, then the (t, v, a, respectively) derivatives of the limits are the limits of the
(t, v, a, respectively) derivatives. In (26), let x(t + q)= 0 for q 4: 0. Then (26)
implies that x’P,+ l(t)x <-_ x’P,(t)x for any vector x. Hence, P,(t) converges point-
wise to a symmetric measurable matrix P(t). Since the diagonal elements
are nonincreasing, and Ip,,i.i(t)[ <= max/Pn,u(t), the P,(t) are uniformly bounded.

Let x(qg) be any continuous function on I-r, 0] with x(0)--0. Then, for
such x(qg), (26) implies that

fo fo ff ff(30) x’(qg)R,+ l(t, qg, p)x(p) dq dp <= x’(qg)R,(t, qg, p)x(p) dq9 dp.

By the continuity of the R,(t, qg, p), (30) holds if x(q) is a Dirac b-function. In
particular, if -r < qgo < 0, -r < Po < 0 and x(qg) xb(q9 qgo) + yb(q9 Po),
then (30) and the fact that R’,(t, qg, p) R,(t, p, qg) yield

x’R,+ l(t, qgo, qgo)X + y’R,+ l(t, Po, Po)Y + 2x’R,+ l(t, qgo, Po)Y
(31) <= x’R,(t, qo, qgo)X + y’R,(t, Po, Po)Y + 2x’R,(t, qgo, Po)Y.
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But, by continuity of the R,(t, tp, p), (31) holds for any tp0, Po in I-r, 0]. Let y 0.
Then, as shown for the P,, (31) implies that the R,(t, qg, qg) are uniformly bounded
and converge to some R(t, tp, tp). Using this and (31) and the arbitrariness of x, y
implies that the R,(t, p, p) are uniformly bounded and that R,(t, qg, p) converges to
some R(t, qg, p). By similar reasoning, (26) implies that, for each tpo e [-r, 0],

(32)
x’P.+ t(t)x + 2x’Q.+ t(t, q)o)y + y’R.+ l(t, q)o, q)o)Y

<= x’P,(t)x + 2x’Q,(t, qgo)y + y’R,(t, qgo, qgo)y.

Using (32) and the conclusions concerning P, and R,, we may deduce that the
Q,+ l(t, qg) converge to some Q(t, qg) and are uniformly bounded.

COROLLARY. For any control w(t) which gives bounded continuous paths x(t),
and which is bounded for any bounded continuous initial condition, f’u’W(xt, t) exists
and (/u"’W(xt, t) converges to it for any continuous initial condition. The class of
w(t) includes all controls which are linear in xt and have bounded coefficients.

Note. Recall that l?"’W(x,, t) is the time derivative of V"(x,, t) along x, paths
corresponding to the control w.

Proof. Since V""(xt, t) converges to V"(x,t) for any continuous initial
condition, we only need to show that (/u"’W(xt, t) is uniformly bounded (in n) and
converges for any continuous initial condition. 12"W(x, t) is given by (19a) with
u, replacing u, and Theorem 5 implies that 12"-’W(xt, t) converges.

5. The optimality theorem.
THEOREM 6. Let w(x, t) be any control for which a solution to (1) is defined on

[0, T] for any initial condition, and let u be given by (28). Then V"(xt,t) <__ VW(xt,t)
for all and initial conditions xt. Let u w and E. and Fu be given by (28). Then
the set of equations (29) has a unique solution (for symmetric P(t) and R(t, qg, p))
and determines the optimal control w.

Proof Calculating the minimizing w in (33) (see Theorem 4 for terminology)

(33) min ["’W(xt, t) + x’(t)M(t)x(t) + w’(t)S(t)w(t)]

yields (see (19a))

w(xt, t) N- x(t)D’(t) P(t)x(t) + Q(t, tp)x(t + qg) dq9

which is exactly u. Also the bracketed term in (33) is zero if u replaces w. Thus
for any u :/: w, we have

l)’"’W(xt, t) + x’(t)M(t)x(t) + w’(t)N(t)w(t) >__ 0

or

0 <- (/"’W(xs, s)ds + [x’(s)M(s)x(s) + w’(s)N(s)w(s)]ds

-V"(x,, t) + V"(XT, T) + VW(x,, t)- Vw(XT, T)

or, equivalently, VW(x,, t)>_ V"(xt, t). The last sentence of the theorem follows
from Theorems 5 and 2.
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OPTIMAL CONTROL OF VIBRATING THIN PLATES*

VADIM KOMKOV"

Summary. This paper establishes some basic generalizations of Pontryagin’s principle for vibrating
thin, inhomogeneous plates, subject to mixed boundary conditions. (Part of the boundary is simply
supported, part of it is free, and part of it is built in.) An instantly optimal control, as defined by the
author in [7], is studied, and a corresponding principle is developed. Finally some comments are made
regarding the nature of an optimal excitation for thin plates.

Introductory remarks. The results of this paper, concerning an optimal
control of thin plates for a fixed time interval, are similar to those for the symmetric
hyperbolic case, as given by Russell in [16]. In some cases they are a direct
generalization of the optimal control theory for vibrating beams [7]. In some
cases no obvious attempt to generalize the beam theory will succeed, and
Pontryagin’s principle assumes a very complex form.

1.1. Assumptions and notation. We assume the usual linear hypothesis of thin
plate theory. These assumptions imply Duhamel’s principle as given in 1.9. The
plate is assumed to occupy a compact simply connected region of the Euclidean
space E2. The interior of will be denoted by f, and the boundary of by c3f.
The boundary c3f consists of smooth Jordan curves. The problem of corner points
will be considered in the final paragraphs of this paper. Prior to that the boundary
curves will be assumed smooth (i.e., of the class C1).

Notation and the physical meaning of symbols used here is as follows:
x, y, z will denote Cartesian coordinates of E3.
will denote time.

The plate occupies a region f E2, the plane of f being spanned by the
coordinates x, y.

u, v, w may denote the displacements in the directions of the axes x, y, z
respectively.

v--transverse velocity v dw/dt
E--Young’s modulus (E > 0)
v--Poisson’s ratio (0 < v < 1/2)
h--thickness of the plate (h > 0 in f)
D--flexural rigidity D Eh3/(12(1 v2))
p--the mass density (mass per unit area)
n--the unit vector in the direction of the outward normal to
z--the unit vector in the direction tangential to
ds--increment of length
Exx, Exy, yrrathe linear strains
Zxx, Zxr, zrr--the linear stresses (The stress system is assumed to be two-

dimensional.)
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Mij--the moments
Qi--the shear forces (per unit length)
T--kinetic energy
U--strain energy
g--total energy (g T + U)
The displacement functions u(x,y,t), v(x,y,t), w(x,y,t) will satisfy the

"elastica" hypothesis listed below"
(El) For a fixed the functions u, v, w and their time derivatives t3u/dt, v/t3t,

t3w/& possess in f the partial derivatives of order one and two with respect to
x and y.

(E2) The two-dimensional strain components are twice differentiable func-
tions almost everywhere in .

(E3) For each fixed x and y the displacement function w(x, y, t) is a con-
tinuously differentiable function of t.

(E4) The functions D(x,y)(V2w)2- (1- v)(w, w)and p(x, y)(CW/C3t)2 are
bounded and measurable functions of and are square integrable in f (for every
fixed value of e [0, ]). V2 denotes the Laplace operator, is defined by the
formula (1.12).

1.2. The basic equations. The assumptions suggest that the plate may be
considered to be a subset of the Euclidean plane E2, and the displacements u, v
in the directions ofthe Cartesian coordinates x and y respectively (ofE2) are linearly
varying with the distance z from the mid-plane of the plate.

The strain components are given by the usual linear approximations:

cu c2w
(1.1) c3-- z--fix Z etc.

The effects of the strain components x, %z, zz are going to be ignored.
We assume the correctness of Hooke’s law:

1
(1.2) xx -(Zxx- vzrr),

2(1 + v)
(1.3) Y E rxy,

1
(1.4) %y -(zy, w:).

The moments acting on the plate are given by the formulas:

(1.5a) M, z , dz D +
d-hi2 (X2 "l)-Y2

+ h/2 (2W
(1.5b) Mxr Mrx ZZxy dx D(1 v) 3xc3y’d h/2

f+h/2 [2w O2Wl(1.5C) Mrr | z "crr ds
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The shear forces (i.e., forces normal to the plane of the plate) are expressed in
terms of moments as follows:

8Mxx 8Mxr(1.6a) Qx= x + 8y

8Mvx Mvv(1.6b) Qv x + c--"
Using the expressions (1.51), (1.5b), and (1.5c) we have

Qx= -D + v,,2 + -D(1- v)
(1.7)

8x 18x2 4- V-y2] --y 1- v)-X--y"
If D const, then this reduces to

(1.8) Q -D-(V2w).
The equation of equilibrium expressed in terms of the moments is

(1.9) tZMxx 2Mxy c32Myx 82M
(X2 xSy xOy

q 0
y2

and substituting formulas (1.51), (1.5b), and (1.5c) we obtain the well-known
deflection equation of small deflection, thin plate theory:

L(w) D + + 2(1 v) Do,cSy
(1.10)

F w w+ q.

This can be rewritten in the form

(. 1) V(DV:w) ( v)’(D, w) q 0,

(1 12) 4(A, B) d
2A O2B 2A O2B OA2 02B
OX2 Oy2 2xOy OxOy Oy2 OX2

1.3. The case of a constant cross section. In this case h const., D const.
The equation (1.1 0) assumes the simplified form

q
(1.13) V4w .

1.4. The basic dynamic equations of small deflection theory. Since the nature
of the load q has not been specified, we may assume that q is in part the inertia load,
opposing the acceleration of the plate; that is, the load q consists partially of an
outside load qo(t) and partially of an inertia load -p(x, y)2w/t2, where p(x, y) is
the mass density of the plate.
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The dynamic load q(x, y, t) is the controlfunction, or simply control.
The corresponding homogeneous equation is

(1.14) L(w) O.

1.5. The boundary conditions.

FIG.

Assuming that except for finitely many points of t3f the outward normal unit
vector n and the tangential unit vector r are defined, then selecting a point p 8f
at which these directions exist, we define g/On, t3/t3r to be the directional derivatives"

f_ f f
c3n 3- cos (x, n) + y cos (y, n),

f_ f f
r - cos (x, r) + cos (y, r).

We have

(1.16)

where c3/8s denotes the differentiation .along the coordinate following the boundary
t3f, and x is the curvature of the boundary.

We assume here that the second derivatives in (1.16) are defined on
possibly with the exception of finitely many points. (It is clear that c3w/c3z dw/ds
whenever this derivate is defined on

The boundary conditions will be of either of the three types"
The clamped edge:

W
(B1) w =0 and -n=O"
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The simply supported edge"

(2W (2W
(B2) w 0, ffn2 + v--z2 0.

The second condition in (B2) may be replaced by

(B2a) M..
2w [/2W+ + 0.

The free edge" The absence of external moments or forces on the free edge
would require the simultaneous vanishing of M,,, M,, and Q, on the subarc of
c3f2 which is the free edge. It has been shown by Kirchhoff 22] that these three
conditions are equivalent to the pair of conditions

M,, 0,
(B3)

OM.Q, + =0.

Substituting the expressions (1.5a), (1.5b), and (1.6a), we can rewrite (B3) in the
form

2W ((2W (W)cn--+ v +tcffn =0,

o + + + +

+ 2(1 v) O’[ O2w w) =0.

Obvious simplifications occur in the formulas (B1), (B2a), (B3a) in the cases
when either the edge is a straight line (that is x 0), or when the flexural rigidity
of the plate D(x, y) is constant in . We recall that in the case of D const., the
second formula (B3a) can be rewritten in the form

2W W)O(VEw)+(1- v) - 0.n
1.6. The initial conditions. We shall consider the solutions w(x, y, t) of (1.10)

in the region f2 c E2, for values of >_ 0, where w obeys the conditions (B 1), (B2),
and (B3) on subarcs F1, F2, and I3 of c3, such that 1 U 13 3 (’" (Bars
over the symbols indicate the closure operation.) w(x, y, t) also obeys the initial
conditions

(C1) w(x, y, O) (x, y),

(C2)
cw(x, y, O)

rl(x y).

1.7. The energy terms. If only the bending action of the plate is considered,
and no energy is supplied or absorbed on the boundary, then the strain energy of
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the plate is identified with the complementary energy and is given by

u(t) D(x, y) O2WI 2 2W 2W
63y2] -+- 2V

x2 y2 2(1 v)

-----1 [|D[(72w)2--ee (1- v)4(w, w)] dx dy.
2

The kinetic energy of the plate is

lff (1.17) T p

and the total energy is

-ff dx dy

(1.18) 8(t) U(t)+ T(t).

Since no provision was made in the assumptions for internal dissipation of
energy, the total energy is assumed to be constant in the case of a free vibration.

1.8. A general discussion of the applied loads. Before proceeding with the
theoretical discussion of the control principles it will be necessary to define exactly
the class of functions to be considered as the admissible controls.

The most common assumptions found in the mathematical papers concerning
the optimum controls of partial differential equations of the hyperbolic type
induce the square integrability of the inhomogeneous term. (See, for example,
[17] or [2].) In our case this would imply the square integrability of the function
q(x, y, t) in (1.11) as a function of x and y (t is regarded as fixed) in the region

(1.19) ffoqi ,y, ) a ay < oe for all t [0, o).

An additional assumption of integrability and uniform boundedness in the
La-norm is also included in the usual hypothesis:

(1.20) ffn Iq(x, y, t)l dx dy <_ C for all t [0, o),

where C is some a priori given constant.
Without any loss of generality the inequality (1.20) may be replaced by

(i.20a) q o fro Iq(x, y, t)l dx dy __< 1 for Mite [0,

Physically this implies that the load has been distributed over the surface of the
plate in a manner determined by a bounded, measurable function of x, y:q(x, y, t),
and the total force exerted does not exceed unity.

A dynamic load q(x, y,t) satisfying the inequalities (1.19) and (1.20a) will
be called an admissible distributed load control. The distributed load controls may
fail to contain suitable functions, required for a formulation of certain extremal
problems. In fact any engineer would feel most unhappy if simple point loads were
excluded from his consideration. The necessity of considering point loads or point
moments also was implied by our assumptions concerning the class of solutions
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w(x, y, t) of the equation (1.11) which would satisfy the "elastica" hypothesis. On
physical grounds we excluded solutions w(x, y, t) which would be discontinuous
functions of either x or y, for a fixed (a broken plate), or would have discontinuous
first derivatives Ow/cx, cw/cy for a fixed t, or for a fixed Xo, Yo f would have a
discontinuity in the derivative Ow/Ot for some [0, ) on a set of positive measure
in f (an infinite acceleration of some neighborhood of a point (Xo, Yo), which
would imply an infinite force acting on that neighborhood). We have not however
ruled out the possibility of discontinuities of the higher order derivatives of
w(x, y, t), and we have not implied that the expressions pcqZw/t2, V2(DVZw) or

4(D, W) are defined in the usual sense in f [0, ), i.e., that they are measur-
able, locally integrable functions of x, y, t. Instead the above expressions and
consequently also their linear combination q(x, y, t) will be regarded as general-
ized derivatives of w(x, y, t,) in the sense of Sobolev (see [19, .5, pp. 39-41] for the
definition).

The point loads will be represented by the Dirac delta function

(1.21) (6(x XO, y YO), (X, y)) de___f (XO, YO)"

We shall denote the product (6(x- xo, y- yo),(x,y))n by the symbol

ffn 6(x Yo) (x, y) dx dy. This symbolism is commonly accepted inX0 Y

physics and engineering and results in an economy of notation.
Similarly we shall denote the derivatives (O6(x Xo, y- yo)/Ox, (x, y)) by

l ot .

Let N denote an e-neighborhood of for some e > 0. In analogy with the
admissible distributed load control we define the admissible concentrated load (or
point load) control to satisfy the inequality

(1.22) [[q in lim sup II [q(x, y, t)[ dx dy lim sup ([q(x, y, t)[, 1)n-N < 1.
-N e> 0

Here 1 denotes the test function (x, y, t) 1 for all x, y f N(c) and any
fixed [0, ). Point load controls (,(x, y, t) 0 outside of f) will be considered
of the form i, 6(x i(t), y rli(t))chi(t), where i(t), q(t) are functions whose
domain is [0, ) and whose range lies in f; i.e., for any [0, ) the pair ((t), q(t))
can be identified with the x, y-coordinates of a point in f. In addition the functions

4)(t) are bounded and measurable on [0, ) obeying

N

i=1

Hence our controls are allowed to be distributions in the sense of Schwarz
in f(x, y) but are assumed to be measurable functions of t.

To summarize our discussion we offer this definition: A bounded linear
functional f(x, y, t) over the space of test functions obeying the elastica hypothesis
will be called an admissible control, if IJf(x, y, t)]Jn 1; that is, the usual norm
ofthe functionalfover the domain f is bounded above by 1, and F(t) f(x, y,
is a measurable function of the time variable t. Since F(t) is measurable and
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uniformly bounded on the finite interval [0, ] it is a square integrable and also an
absolutely integrable function of t. This immediately implies that the total energy
of the plate is also uniformly bounded on [0, :].

1.9. The statement of Duhamel’s principle. In what follows we shall assume
without proof the existence and uniqueness of the solutions of the mixed boundary
value and initial value problem (MBVP), i.e., of the problem posed by (1.11) with
suitable boundary conditions of the form (B1), (B2), (B3) prescribed on cQ, and
with initial conditions (C1) and (C2) and with an admissible control q(x, y, t)
given a priori. Such a system will be denoted in the future by MBVP. Let wz(x, y, t)
denote the solution of the homogeneous MBVP (i.e., it corresponds to the case
when q(x, y, t) -= 0), with the appropriate boundary value conditions of the form
(B1), (B2), (B3), and the initial conditions of the form (C1), (C2). Let q(x, y, t)
be a distributed load control function. Then Duhamel’s principle asserts that the
solution of MBVP, w(x, y, t), will be given by the formula

(1.23)

w(x, y, t) wn(x, y, t) + G((x {), (y r/), (t z))q({, r/, ) d{ dr/dz

wn + G,q,

where G(x , y rl, ) depends only on (1,11) and on the boundary condi-
tions, but does not depend on the initial conditions or on the function q(x, y, t).
The symbol denotes the convolution operation.

The proofs of Duhamel’s principle for linear systems of differential equations
can be found in textbooks. The usual proof (see, for example, Yosida [24, pp.
76-80]) utilizes the Ascoli-Arzela theorem, and clearly is not applicable in the
case when q(x, y, t) is a point load; however, it is not hard to extend the proof
to cover this case as well, by considering the point load to be the limit of a
g-convergent sequence.

1.10. Some identifies arising from (1.11). Following our initial assumptions,
the total energy is given by the sum of strain energy, kinetic energy, and the
potential energy due to the effects of the boundary forces, where

(1.24) UB Q,w M,, M,-s ds,

will denote the potential energy due to the constraint forces applied to the
boundary c. The total energy is given by

(1.25)

(t) D(V2w)2 D(1 v)O4(w, w)dx dy

f Q,w-M,.-n-M, ds+- p - dxdy.
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Differentiating both sides of (1.25) with respect to the time variable, we-obtain

(1.26)

dg(t)
dt

D[(VZw)(V2v) (1 v)’(w, v)] + pv-- dx dy

ds

(as before, v cw(x, y, t)/ct).
With regard to the last term of the formula (1.26), we note that it vanishes

identically in the case of a free edge, since then Q, M,, M,s =- 0 on Of, and
that it also vanishes in the case of a simply supported edge, since then w cw/cs

0, and M,, 0 on cf. In the only remaining case, i.e., the case of a fixed edge,
we have w cw/cs =_ 0 and Ow/On 0, and again the entire expression is iden-
tically equal to zero on the boundary ?f.

We rewrite (1.26) accordingly"

d
(1.26a)

dt
D[(V2w)(V2v) (1 v)4(w, v)] + pv-; dx dy.

In the entire discussion, which follows, we shall consider only the cases when the
boundary conditions are of the (B1), (B2), or (B3) type and therefore when
Q,w M,,cw/On M,scW/OS =-0 on cf. We manipulate the formulas (1.25)
and (1.26) by using the Green’s identity:

D(V2w)(VZw) dx dy ffVZ(DVZw) dx dy + ds

We recall also the formulas for the moments and shears"

M,, + Mss -O(1 + v) + c3r2 -D(1 + v)V2w.

Hence, DV2w (M,,,, + M)/(1 + v).
We shall need the following formula"

(M,, + M)D(Vw)(Ww) dx dy wV(DVw) dx dy
1 + v

ds

w (M + M) ds++
In the case of the free edge, M, 0 on fl. In the case of a simply supported edge,
w 0 on fl and the second boundary integral vanishes, and finally in the case
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of a fixed edge, i.e., c3w/(3n =_ 0 and w -= 0 on (3f, we have

Following these remarks we rewrite the formula (1.26)"

dgdt - - (wV2(DV2w) D(1 v)4(w, w)} dx dy

(1.27a) qv + w dx dy + - v p--ff-dx dy

l+v Z -n + w--n ds,

where v =- dw/dt and ; denotes the invariant quantity Myy + Mxx. (Note: The
proof that M, + My- M,, + Mss for any orthogonal coordinates following
the directions n, s comes directly from the well-known fact that the Laplacian
Vmw is invariant under any orthogonal transformation of coordinates.) We use
the fact that w(x, y, t) obeys the equation

v p.c3t2 v[q V2(DV2w) -Jr- (1 v)4(D, w)]

and obtain

(1.27b)

W" gm(DV2v) 2D(1 v)4(w, v) dx dy (qv) dx dy

+ 2
’(D, v) dx dy

+ v (3t ;(-n + w ds.

We shall be interested in various modes of optimal control, or of excitation,
and one of our main problems is to find q, such that either -dg/dt is maximized
in some interval [0, 1], that d assumes some value in the shortest possible time,
or that d assumes an extreme value at some given time -. In all cases the
formula (1.27b) is crucial.

We introduce the following inner product of two admissible transverse dis-
placement functions"

(1.28)

<Wl, Wm> [DVZwl Vmw2 (1 v)D4(wl, w2)] dx dy

1 ff (3w (3w2
dx dy.+ - P c3t c3t

We see in particular that <w,w> U(t)+ Tl(t)=g(t), and d(w,w>/dt
dg/dt.
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We need to check the fact that (wl, W2) does indeed satisfy all axiomatic
requirements of an inner product. That is a routine exercise, and it will be omitted.
From the fact that (wl, w2) is an inner product, follows immediately the Cauchy-
Schwarz inequality

(W1, W2)2 (W1, W1)" (W2, W2) 1’2,

valid for all [0, T]. We note that the exact equality (wl, W2)2 O1’2 is true
only if there exists a constant C, such that V2Wl CV2w2, t3wl/c3t Ct3w2/ct,
and 4(w1, wl)= C’(w2, w2), valid for all t[0, T]. We compute the time
rate change of this product"

(1.29)

d(wl WE) lff{dt
D[V2w V2/)2 -" V2w2V2/)1]

D(1 v)E’(vl, w2) + <)4(v2,

I 2w: :w]) dx gy+ P v
g3t2 + U2 63t2

We use Green’s identity

;Dg2w1 V2/)2 dx dy ff/)2" (V2DV2w1) dx dy

and obtain

d--t - v2 V2(DV2wl) + p-- (1 v)(D, w)

(2W2
d- /)1 V2(DV2w2) -+- /9 tt2 (1--v)4"(D, w2)ltdxdy

(1.29a) -- (1 ];)Ev24(D, w1) D4(v2, Wl)

+ vl 4(D, w2) D(vl, w2)] dx dy

-+- DV2wl-n v2 (DV2wl)

+ OVwn v (OVw) ds.
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In the case when D const, the above formula reduces to

d v2 V(DVw)

(1.29b)

vllV2(OV2w2) 2w27_1+ + P tt |

D(1 v)[4(vz, W1) q- ’4(/91, W2)t dx dy

+ - D(VZwa)-n + D(VZw2)-n + v2Q,,, + VlQn2* Ms

= (v2q + Vlq2)- D(1 v)[4(wa, w2)] dxdy

+ on D Vzwl! tn -- (V2w2)
6l’l 3

+ 1)2Qnl

+ vQ,2} ds.

However, we note that if D const., then ffD(w, wz)dxdy 0 for

any displacement functions Wl, W2 which solve the basic equation (1.11). We use

the well-known fact that I’t’D4(w, w) dxdy 0 if 4(D, w)--0. (See, for

example, [9, (6.5), p. 80 and the discussion of 1.4].)
To prove our claim we first observe that when D const., we have

ff f; 14(w2, w2)} dx dy4(w1, w2) dxdy {4(wl, W2) "l
t- 1/24(W1, W1) -I- 2

2W1 2W2 (2W2 2W (2W (2W2-2
X2 ty2 X2 ty2 C3X y x

2W1 2W1 2Wl/2 2W2 2W2
X2 y2 (X y]

f X2 y2
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Hence if we denote by w3 the displacement w3 (wl + w2)/2, we can easily obtain

ff. det (A(wa+ W2) dx dy= ff det (A(w3+ w3))dx dy

f f 4(w3’w3)dxdy--O’
and consequently

ff 1’ W2) dy4(w dx 0

for any wl, w2 which solve (1.11).
The matrix operator A in the above manipulation stood for

2 82 1A
x2 xy
2 2

8xSy

This result enables us to simpli[y our [ormula (1.29b) in the case D const.,
whereupon we obtain:

d
<w ,w2>

l ffd (v2q + vaq2)dxdy

+ D (VZwx) + (V2w2) + v2Q,, + vxQ,: ds.

An identical result is obtained if we assume that 4(D, w) 0 for any w(x, y, t)
which is a solution of (1.11).

1.11. The case of (D, w) 0. The above expressions and formulas can be
greatly simplified if 4(D, w) 0, which is true in the physically important cases
when D const, in , or when D depends linearly on x and y. The second case
occurs in the optimum weight design of plates. The equation (1.11) becomes

82w
(1.11a) + q,

and if D const., this becomes

D 82W q
(1.11b) V4w + D 0t2 "The expression for the strain energy is

(1.30) U D(VZw)2 dx dy.
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(A variational argument for this statement also follows easily. See for example
[9, pp. 79-82], or [12].)

A similar conclusion is reached in the case when 4(D, w)--0 even if
D const, in ff. The product (wl, w2) assumes the form

(1.28a) <w, W2> D(V2Wl)(Vawa)dxdy + - P 63t t
dxdy.

The rate of change of this product is given below"

d--(w1, w2> (vlq2 -+- v2ql) dx dy uI-n(DV2w2)

(1.29c) +/)2 (DV2wl) DV2w2 DV2Wn] ds.

We substitute Z1 M + Mrr -D(1 + v)VzWl and Z2 -D(1 + v)VZw2
to obtain

d(Wx, W2> (Vq2 + v2ql)dxdy

(1.29c’)

-2(l+v) n Z + Za- v- V2 n]
dS.

If D const., we can rewrite (1.29c’) in the form

(1.29d)

+- n
’Qn2 + /)zQnl

1 (v2 Ovl/]+ v Z-n + Z2--] dS,

where Q,, are the shear forces which are related to the moments by (1.7).
We note that in the case of the clamped edge (condition (B 1)) (1.29d) reduces

to"

(1.29e)
d
(w w2>=

l ffd- (/)lq2 + v2ql)dxdy,

since in this case v =/)2 /)1/63n 63v2/n =- 0 on t?f, and the contour integral
vanishes.

The next result will be used in proving the basic theorem, Theorem 2.2. We
shall state it as a lemma.

LEMMA 1.1. Let f(x, y, t) be an admissible control and w(x, y, t) be the corre-
sponding deflection of a plate, whose flexural rigidity D and density p are constant.
Let wn represent the solution of the homogeneous equation (1.11). Let both w(x, y, t)
and wn(x, y, t) satisfy the condition w 0 on c and wn 0 on ) (the boundary



OPTIMAL CONTROL 287

of the plate). Then

d(w, wn) lfn DfO(2I)H 2

d-t - wnf dx dy + - n
v W-n + V wn-n ds

where, as before,

w (wH
St’ vu 8t

The proof follows from the formula (1.29b) upon substituting ql q, q2 -= 0,
w, w2 wn and from the observation that

f f 4(w’ wu) dx dy O.

2. Optimal control principles for small deflection theory in mixed boundary
and initial value problems for thin plates.

2.1. Statement of the control problems.
(a) The minimal time control problem. We consider (1.11) and the correspond-

ing MBVP. The initial conditions (C1) and (C2) determine the initial value of the
total energy g0 g(0). Given a real number 0 =< g < go find an admissible con-
trol q(x, y, t) such that the total energy of the vibrating plate g(t) is reduced to the
value o in the shortest possible time.

(b) A similar problem is defined below as the minimal time excitation problem.
Again the initial conditions determine the initial value of the total energy go. We
allow go >= 0. Given a real number g > go find an admissible control q(x, y, t)
such that the total energy of the vibrating plate g(t) is raised to the value g in the
shortest possible time.

(c) The fixed time interval optimal control (or the optimal interval control).
Given suitable boundary and initial conditions of the MBVP, and given a time
interval [0, T], find an admissible control c)(x, y, t), such that the total energy of the
plate is reduced (raised) to the lowest (highest) possible level at the time T,
i.e., g((x, y,t), T)<__ g(q(x, y,t), T) for any admissible control q(x, y,t) (or in
the excitation problem g(gl(X, y, t), T) >__ g(q(x, y, t), T) for any admissible control
q(x, y, t)).

Remark. Optimal controls are generally not unique. However, some form of
nonuniqueness turns out to be acceptable, but other forms will defeat the whole
idea ofa meaningful control. (See [7] for an analogous discussion.)

We consider the MBVP with suitable initial and boundary conditions.
LEMMA 2.1. Let gl(X, y, t) be an optimal time control reducing the total energy

from the initial value E(O) to a given value 0 < < E(O) in the shortest possible time
T > O. Then gl(X, y, t) is also an optimal interval controlfor thefixed interval [0, T].

(See [17 for the proof.)
Lemma 2.1, above, implies that it will suffice to develop the control principles

for the fixed interval case, since any optimal time control will also be a fixed
interval optimal control and the validity of our results will be preserved.
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2.2. Some mathematical preliminaries.
LEMMA 2.2. Let denote the class offunctions u(x, y, t) and of the time deriva-

tives cu/& of such functions obeying the "elastica" hypothesis in , and satisfying
the condition that either the displacement w(x, y, t) or the moment Mn,(w(x, y, t))
vanishes on f for all [0, or), where Mn, is defined by (B2). Let * denote the
space of all continuous linear functionals mapping elements of into the real line.
We shall consider only a subset* * ofall suchfunctionalsfobeying Iflln =< 1,
where Ilf - supll,ll=ll(f, u)nl. (If supllull=l(f, u)l does not exist we assign

f In oe.) Then we assert that the space * is complete.
The proof of this lemma is more elementary but similar to the lemma stated in

[5, Appendix A, pp. 368-369].

2.3. The basic convexity lemma.
LEMMA 2.3. The set ofadmissible controls is convex (i.e.,/ffl, f2 are admissible

controls then 2fl + (1 2)f2 is also an admissible controlfor any 0 __< 2 =< 1).
Combining the result of this lemma with Duhamel’s principle we obtain an

important corollary.
COROLLARY. The set of all admissible transverse displacements is convex (i.e.,

if w(x, y, t) is an admissible transverse displacement corresponding to an admissible
controlf, and if w2(x, y, t) is an admissible displacement corresponding to an admis-
sible control f2, then w 2Wl + (1 2)w2 is also an admissible displacement for
any 0 <= 2 <= 1. Of course, w l, w2 are assumed to be solutions obeying the stated
boundary and initial conditions of the MBVP).

2.4. The uniqueness of the finite state.
LEMMA 2.4. Let us assume that no energy is transmitted at the boundary. Let

fl(x, y, t), rE(x, y, t) be two admfssible controls, which are optimal controls for the
[0, z] fixed time nterval. Then the corresponding shapes of the plate, and the cor-
responding velocities coincide at the time z, i.e.,

and

w(A, x, , ) w(f, x, , )

Ow(f, x, y, ) w:(f:, x, y, )
?t t

Proof Let us assume to the contrary that w = 1122 at the time z, where

def / W(X, y,

-(x, y, t).

Let us denote by of-(z) the lowest value of total energy attainable at the time z.
By the convexity of the set of admissible displacements we conclude that w(x, y, t)
(W -- 14;2) is also an admissible displacement.

The corresponding total energy at the time is given by (1.25)"

(w, )= c() + r()= {1/4D(Vw + Vw2V

-1/4D(1 v)’(wl + w2, wl + w2)} dxdy
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By the Cauchy-Schwarz inequality, (wa, W2) -- N//(W1, W1)(W2, W2). Since
(w, w),=, (w2, w2),=, o(r) we obtain

However g(r) was the lowest possible level of total energy attainable at the time. Hence we must have the strict equality

e(w,

This equality means that

(w,, (w,,

which implies that 2 where a is some constant; but the only suitable
constant turns out to be 1, and the uniqueness of the final condition is
established.

2.4.1. Discussion of the niqeness of the optimal excitation. We observe that
the above arguments Nil in the case of the optimum excitation of a plate. Again
let us denote by N(r) the greatest level of energy attainable at the time
following an admissible excitation of the plate. Let f(x, y, t) be an optimal excita-
tion (assuming that it exists) and # be the corresponding transverse displacement,
# #(f). Then if two such optimal admissible excitation functions exist, say
f, f, so that g(f, r) g(f2, r) , then Afa + (1 A)f2 is again an admissible
excitation, with Aa + (1 A)2 being the corresponding displacement.

Then g(w, ) g(r) + (w, w2),=, N g(r), if we substitute A . And
the strict inequality must be true ifw 2 at the time r, since then (w, w) < d.
Hence if fl and f are optimal excitations, (fa + f) cannot be optimal if
(r) z(r). In fact, Afa + (1 A)f2 cannot be optimal if w() w2() for
any 0 < A < 1. This lack of convexity of the set of optimal excitations prevents
us from following an identical argument, and reaching a conclusion analogous to
the optimal control case.

2.g. Pontryagin’s principle. The formulation of Pontryagin’s principle
for thin plates with uniform rigidity and density, as given in 2.5.1 of this paper,
is in complete analogy with the corresponding formulation for the vibrating beam
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as given by the author in [7]. The more complex formulation given in 2.5.4 and
2.5.5 results from the presence of the terms of the form ’(.,. which do not

occur in the beam theory, and from our inability to integrate by parts on the
boundary of the region f, and then omit the troublesome boundary terms.

Even more complex formulation of Pontryagin’s principle would result if
we dropped the assumption that no energy is transmitted at the boundary. Since the
complexity of the problem increases immensely with the removal of each assump-
tion, for the sake of clarity we shall first discuss the maximal principle in the
simplest possible case, then formulate the increasingly more complex cases, rather
than attempting to formulate it in the most general case, and derive the simpler
cases by ignoring appropriate terms of the general expression. In all cases discussed
below, we shall assume no energy transfer at the boundary of the plate.

2.5.1. Pontryagin’s principle for the case D const., p const, with boundary
conditions of the type (BI). The rate of change of the total energy is given by the
formula (1.26a) with the term 4(w, v) vanishing. Since the energy is conserved,
we obtain

dg
(2.1) 0

dt
D (V2w)(g2u) dx dy + p v-- dx dy.

The formula (1.29c) is applicable in this case"

d<ww2>= 1 f{c3v I.)2 2 Zl}d- " 2(1 + v) Z2-n + Z’-n + v’-n + VZ-n ds

+ - (vlq2 + v2ql) dx dy.

It is clear that if the condition (B1) is valid on cf (v =_ 0 =_ cv/On on f), then

(2.2)
d <w w2>

l ffd- 1, (vlq2 -t- v2ql) dx dy.

In particular, if q2 0, that is, if w/ w2 is a solution of the homogeneous
equation (1.14), we have

(2.2a) (Wl, wH> (vHql) dx dy.

We are ready to state the simplest version of Pontryagin’s principle for thin plates.
THEOREM 2.1. Let us assume that p(x, y, t) is an optimal control on the fixed

time interval [0, t] for a thin homogeneous plate, whose flexural rigidity and density
are constant in the domain f of the plate. Let the plate’s edge be clamped along the
entire boundary c. (That is, on c3f the displacement function w(x, y, t) satisfies the
condition (B1): w =_ O, cw/n =-0.) Let wn(x, y, t) denote the displacement of this



OPTIMAL CONTROL 291

plate vibrating freely, so that the final conditions at the time T are

wn(x, y, T) w((x, y, t), T),

awn(x, y, T) aw((x, y, t), T)
ct 3t

Then the following inequality is true"

(2.3) ffI--(xy t) C3WI’I(x’y’t’; ffl ]-[ dx dy > -f(x, y t)
c3wn(x, y, t)

dx dy

for all [0, T], where f(x, y, t) is any admissible control.
We note that this statement is completely analogous to Theorem 3 of [7].

The proof turns out to be a repetition of the proof given in [7] and for that reason
will be omitted. As in [7], (2.2) is crucial in the proof of (2.3).

Let us now observe that Pontryagin’s principle as given by the inequality
(2.3) is inapplicable, if g((x, y, t), T) 0. If the total energy of the plate can be
reduced to zero at the time T, then vn(x, y, t) 0, e [0, T], and clearly the
inequality (2.3) is meaningless. However, if g((x, y, t), T) 0 but g((x, y, t), )
> 0 for any 0 < < T, it is possible to introduce a sequence of optimal controls
{qSi} converging to q(x, y, t) with the inequality (2.3) applicable to each element b
of that sequence. A detailed description of this limiting process will not be given
here.

We observe also the usual shortcomings of Pontryagin’s principle. To effect
a comparison of an arbitrary control with supposedly an optimal control we need
to know the final state of the vibrating plate obtained after the application of an
optimal control. Again, however, this principle may be useful in a negative way.
That is, we can use the inequality (2.3) to demonstrate that some control b(x, y, t)
is not an optimal control.

Example 1. Let us consider a homogeneous circular plate subjected to a uni-
formly distributed load of intensity Po. The edge is clamped. At the time ---0
the load is suddenly removed. The initial deflection is then given by

P R"
4D -r212(2.4) w(r,O) [_1- r w/x2 + y2, r <= R.

It is clear that w(0, 0) max w(r, 0), 0 <= r _< R.
A control consisting of a constant load b(x, y, t) Cpo is suggested for the

fixed time interval [0, T], T 1/4nl, with the constant C chosen to be C 1/(poR2),

to assure t-1141 dx dy 1.

The time interval n selected above corresponds to one free vibration cycle
of the plate. We observe that the freely vibrating plate will vibrate with the angular
velocity o 4T/(2rc); we also note that the average velocity will be distributed
in the same manner as w(r, 0), and that

R2 I r212wn(r, T)
64tD

1
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so that

t3wn(O, t) c3wn(r, t)
> r#0, t[0, T].

8t 8t

Hence the sign of our control load was correct, but its distribution certainly was
not optimal. Choosing, for example, a time independent admissible load fl(x, y, t)

4Cpo when 0 <= r <= R/2, and fl(x, y, t) 0 when R/2 <= r. <= R (C is given as
before by C 1/(rcpoR2)), we obtain

fl(x y t) dx dy > -c-- dx dy,

showing that b was not an optimal control.
A gradual improvement technique using the standard form of Pontryagin’s

principle was discussed by the author in [7]. Clearly the same technique, which
is also suggested by the above example, can be used to improve a control in a
number of iterative steps.

The technique is obviously tedious, and in addition we should point out that
while such iteration results in improvements of some of the arbitrarily selected
controls, we offer no assurance that this iterative process will result in the controls
fi(x, y, t) converging to the optimal control.

We remark that the choice of "optimal" control was made in this example
in a deliberately clumsy manner.

2.5.2. Pontryagin’s principle for the homogeneous plate (D const., p const.)
with a simply supported part of the boundary consisting of straight lines. The ex-
pression (1.29c) for the product d(Wl, w2)/dt becomes

d
(w w2)

l ffd- 1, (Vlq2 -4- v2ql) dx dy
2(1 + v)

Assuming that q2 0 (w2 WH) we have

(2.5)
d
(w, wn)

l ff 1 fd - (vtq l)
2(1 + v)

Z1 -- q- Z23n ds.

As we remarked following the development of (1.29c), the contour integral
in (2.5) does not have to vanish if the boundary ofthe plate is only simply supported.
In an exceptional case when a part of the simply supported boundary (say F1) is
a straight line and D - 0 on F1, we have

(2.6) ZI- -JI- 2 c3n
dx O,

because 1 Z2 0 on 1-" independently of the controls ql, q2.
It follows easily now that the inequality (2.3) is applicable to the case when

c consists of subarcs F1 and F2 such that F1 U F2 c3fl, and F1 is the simply
supported part of the boundary (condition (B2)) consisting of a straight line,
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while F2 is the part of the boundary (not necessarily straight) on which the edge
is clamped (condition (B1)).

We intend to show that the inequality (2.3) is also applicable to the physically
important case when the simply supported part of the boundary meets the clamped
part of the boundary at a corner point. Let us now state the following theorem.

THEOREM 2.2. Let us assume that the boundary off consists ofa finite collection
ofsmooth arcs Fa, such that condition (B1) is satisfied on F (i.e., w =- O, cw/c3n 0
on F) and ofafinite number ofline segments F, such that the plate isj?eely supported
on F2 (the condition (B2)). Let us assume that all corners are internal corners, i.e.,
the angle contained in 2 between F2 and the tangent to Fx at the corner point does
not exceed re. Let (x, y, t) be an optimal (admissible) control on the fixed time
interval [0, T] and let f(x, y, t) be any admissible control. Then the inequality (2.3)
holds, i.e.,

ff[ (x, y, t)
cwu(x’ y’ t)] dx dy > ff [ f

c3wu(x, y, t)]y, t) -- dx dy,

where wn(x, y, t) has the same meaning as in the statement of the Theorem 2.1.

Proof. Let us replace the corner points by circle segments of radius r. 1/2
with chosen sufficiently large to permit such change. The segment of the circle
drawn with the radius e is contained in D., and is tangential to the arc of F at
a point P2, and to line F2 at a point p, as shown on Fig. 2. The rounded part of
the boundary, that is, the circular arc PP2, will be denoted by C. The modified
region now occupied by the plate (with all corners rounded off) will be denoted
by i.

We assume that conditions (B1) will be satisfied on C and on the unchanged
part of F, while condition (B2) is satisfied on the unchanged part of F2.

The conditions are now satisfied for the correctness of the inequality

ff[’wHIdxdy>_]

where is an optimum control for the region f, fi is an arbitrary admissible
control for t2, wn, is the solution of the homogeneous equation of MBVP,

FIG. 2

(freely supported)
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FIG. 3

satisfying the same final condition as w(bi(x, y, t)). In the region ’i the boundary
conditions are posed as stated above and as illustrated on Fig. 3. Let N, denote
the ei/2 neighborhood of the rounded corner. In the region - (i f-I N,) we
have

w(x, y, O)
w(x, y, O) O(x, y), cqt rl(x’ y)’

which are the specified initial conditions for w(x, y, t) in f as given in the initial
conditions (C1), (C2). In fi f’l N, we apply a mollifier function (of class C)
which meets both the conditions (C1), (C2) on the boundary of N, and the
condition

cw
w(x, y, 0) 0, -n(X, y, 0) 0 on C.

(We recall that C is the rounded part of Of drawn with the radius e.) For
example, the well-known type of function

exp {(-e/2)/(e4- r2)}, r <
(r,)

0, r >= ell2

(where r is the distance from c3N, Fi), could serve as the mollifier function. If
we consider a sequence of numbers F.k 1/2k, k i, + l, + 2, ..., and the
corresponding sequence of optimal controls {qk}, we are assured (Lemma 1 of
Appendix 1 of [7]) that there exists a control , such that some subsequence of
controls {bk} (say {bk,,})converges to as k . Moreover,

is valid for any admissible controlf acting on fi. A serious problem arises at this
point of the proof. Namely, we observe that while f is an admissible control on
f, i.e., IIflln, =< 1, it may be an inadmissible control on f, or even on fi+a.

We recollect however that either the applied loads and moments are given
by a finite number of Dirac delta functions and their derivatives applied at a
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finite number of points in , in which case there exist e > 0 and a neighborhood
N of c3ff2 which is free from such loads, or that they are square integrable functions
in if2, bounded in the maximum norm, so that we can choose e2 > 0 and a neigh-

U, of c3ff2 such that given 0 <e<< 1, tt f dx dy < e/2’ (for aborhood
dd j=l

fixed i). Hence [] dx dy < 8/2 if 8 rain (ca, 82).
Ne

Since WH is continuously differentiable and 8WH/St 0 on 8fl we can choose
e > 0 and a neighborhood N of 8 such that

dxdy</2,
N

and finally denoting min (es, e) we have also

f. SWH’ 2/22(2.8) a - dx dy <
N

All we need to do now is redefine the class of admissible controls to satisfy
the inequality

Zlt, 1 e/2’.
Now if is an admissible control on , that is, if llll, < -el2i, then after
reducing the radius of the corner to 1/2i+ , we have [,+, ] , + [[ s
< 1 e/2 1 el2i+ , and+ is again an admissible control. We conclude
that given an optimal control (x, y, t) acting on , and a sequence of regions ,
we can select a sequence of optimal controls {}, each acting in , such that
(x, y, t) limi+ i(x, y, t).

If it were not so, then we could find e > 0, such that - > e, for all
optimal controls (acting on ) for suciently large indices i. Regarding as
controls on fl (i.e., Otm on fli and it 0 on fl fl), and remembering
that each is an optimal control on , we obtain an easy contradiction to the
statement (2.8). This shows that such an e > 0 cannot be found, and that indeed
such a sequence {Oi} can be selected.

The corresponding sequence w, of displacement functions satisfying the
homogeneous equation must also converge to the function w((x, y, t), x, y, t).
To prove this statement we use the Arzela-Ascoli theorem, since {w,} forms an
equicontinuous family of functions. Hence, some subsequence of {w,} must
converge to a function (x, y, t). Because of the elastica hypothesis concerning
each function wu,, #u(x, y, t) is also a differentiable function. Using Duhamel’s
principle we have

f’ffx, , t) x, , t) x ), ,), t z))
0

[(x, , t) lim (x, , t) dx d dt 0

so that u(x, , t) wu(x, , t), [0, T].
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Now given an arbitrary admissible control f acting on , we can select a
sequence of admissible controls f} on such that limi_ f f. (The argument
is identical with the preceding one.) Since for each f the inequality (2.7) is valid,
we have in the limit

i--l dx dy >= ,-!im dx dy,

and finally

-P c3t >= -f--t- dx dy,

which was to be proved.
Example 2. Consider a semicircular plate occupying the region as shown

on Fig. 4. The plate is simply supported along the diameter F2 and clamped along
the entire arc F1. A uniform load Po is applied to this plate, then suddenly removed
at the time to. Show that an admissible load uniformly distributed on some
circular disc contained in f applied the instant to and maintained for some time
interval [to, tl] cannot be altered at tl, so that the resulting control (x, y, t),

[to, T] (tl < T), will be optimal on the fixed interval [to, T], where T is chosen
for convenience to be 1/4 of the time necessary to complete one cycle of vibration
with the lowest natural frequency. The argument supporting this claim is similar
to that of Example 1. We use the fact that the velocity of a freely vibrating plate
does assume a maximum value at an isolated point in . (A superposition of two
uniformly distributed loads will have that effect.) Considering a Dirac delta
function applied to the point of maximum velocity during a sufficiently short
subinterval of [to, tl], we can show that the inequality (2.3) must be incorrect in
that subinterval. However, the boundary conditions stated in this example imply
the validity of (2.3) if our assumed control load was optimal. Hence it cannot be
optimal, as we intended to show.

In what follows F1 will denote the part of c3 obeying the fixed edge condition,
1"2 will be the simply supported part of , and 1"3 will denote the part of
obeying the free edge condition.

2.5.3. Proof of Pontryagin’s principle for the case when F2 and F3 consist of
straight line intervals.

THEOREM 2.3. Let us assume that p(x, y, t) is an optimal control for the fixed
time interval [0, T] for a thin homogeneous plate, whose flexural rigidity and density

FIG. 4
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are constant. Let the boundary consist of parts F1, F2, F3(F1 U F2 U F3 c3fl),
where on Fx the plate obeys the condition (B1) (i.e., clamped edge condition), on F2
it obeys the condition (B2), and on F3 the condition (B3). We assume that F2 and F3
are a union of a finite number of straight lines and that F is a union of a finite
number of piecewise smooth arcs (consequently that we have only a finite number
of corner points). We assume that all corners are internal corners, and all corner
points are endpoints of an arc of F Then the inequality (2.3) holds:

ff (x, y, t)c3w,(x,c3t y’ t)dx dy => ff f(x, y, t)wu(x’c3t y’ t)dx dy,

where wn(x, y, t) has the same meaning as in Theorems 2.1 and 2.2.
Proof We can prove this theorem under the assumption that all corner points

have been replaced by circular arcs of F1 of sufficiently small radius, that is, the
assumption that Of is smooth, and then deal with the corner points in exactly the
same manner as in Theorem 2.2. The rest of the proof is omitted since it repeats
the previous arguments and follows the standard technique of [14].

We emphasize the fact that the corner points were restricted to be either the
points which lie on F1, or the points which are the endpoints of an arc of F. The
limiting process which was used in the proof of Theorem 2.2 succeeded because
each contour integral vanished independently of the curvature . This would not
be true in the case of the free edge, or if the simple support conditions were present,
since in that case the value of each integral would depend on c, and as the sequence
of smooth boundaries approximated c3f, it would increase without bounds, and we
would have to consider in the limit a singular contour integral.

2.5.4. The case when c F2 and is composed of a finite number of smooth
arcs with no corner points. D const., p const. The absence of corner points
allows us to avoid singular contour integrals. However, the crucial relationship

d(wl, w) dt - (vq + vq)dxdy

is no longer true. Instead we must consider the formula (1.29c), modified by putting
/)1 /)2 0 on 3f:

(v2qa + v,q2) dx dy + D V2WI----[- V2w2

If w, w2 are solutions of the homogeneous equation (1.11) in some interval I,
then the sign of d (wl, w2)/dt is the same as the sign of

(2.9) D V2w1-- - V2w2 cn J
ds.

Since the plate is simply supported on f, we can effect some simplifications of the
formula (2.9). We have

Z M,,,, + M D(1 + v)V2w D(1 + v) (n2 -t- 772 ].
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However on Ofl we have

(W (2W
W

(S (S2
0 and M,, 0,

because of the simple support condition (B2). We use the relationship c32w/cz 2

(2W/$2 + l(,(W/gYl), where as before c is the curvature of the boundary.

X M -D(1 + v) -ffn2 + s2 +
cn]

-D(1 + v) -ffn-n2 + n
2w w [2w w) w

(2.10) c3n2
v c3,r----T vl-s2 q- /--- v/

Or/

Hence on t3fl we obtain

2W (2W (2W
(2.11) VZw

on cfl.

(2.12)

The equation (2.10) can be rewritten

d
(wl, w2> D(1 v)c L c3n c3n + c3n t3n

ds
dt

D(1

We are now ready to repeat the arguments of [14]. Let W k be the optimal
displacement corresponding to the optimal control q(x, y, t). Let wn be the
solution of the homogeneous equation (1.14) with the property

w.n(x, y, T) (x, y, T),

and as before we denote w’(x, y, t) by the function w’(x, y, t) + ew where wa
is a function whose support is the time interval Io, with the properties identical to
the function w described in Theorem 3 of [7]. We have the equality

g(w’) d() + 2e<, w> + f(82), 181 < 8o.

Hence if wn is a solution of the homogeneous equation (1.14) satisfying

wn(T) (T), vn(T) (T),

then

<w., w),= r >= O.

But
r d<w., w)_-. <w/, w),__,o+ + <w., w)
0+6

<wn, wa>t=to+a + D(1 v) ]ds dt
+
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+1/2D(1 v) tc-n cn ds dt

Hence we must have

By an argument analogous to [14], we finally obtain for an arbitrary control
+ 4 the result

vu) dxdy dtN’+ v)dxdy dt
Oto-

t+

Since was arbitrary, and since limo- (v,) 0 uniformly, for any
t--

admissible control 4, we have for any e [0, T],

(2.13)

which is a form of the maximum principle of Pontryagin. It reduces to the formula
(2.3) if we either change the boundary conditions, or if we put t _= 0 on 82, or if
we demand that for some reason

(2.14)
a -n n ds const.

for all [0, T), and for any admissible displacement ff,(x, y, t).
In its present form the inequality (2.13) appears to be quite useless. Analogous

formulas can be easily developed for a boundary consisting of the arcs F, F, F
obeying the boundary conditions (B1), (B2), and (B3) respectively. These formulas
will not be reproduced here, since their usefulness is also questionable.

2.5.5. The case when c3f Fa U 12 and F2 is composed of straight-line
segments, c3f may contain internal corners which are situated on . (As before
we assume that 8f is a union of a finite number of smooth arcs.) A special case
when the corner points occur either on F or at a point where an arc of F joins
an arc ofF has already been covered. We need only to consider the behavior of the
line integral along some subset 7 of F, which contains an interior corner. As
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FIG. 5

in Theorem 2.2 we can approximate each corner by a sequence of circular arcs

7i of radius ei 1/2, => N, where N is chosen so that the circular arc eN lies
entirely in f.

The contour integral (from Pl to P2 along 7)

cannot be evaluated directly since neither nor c3w/c3n is defined at the corner
point q. However along each circular arc 7 we have

(2W (2WH
n2 c3n2

ds

because of formula (2.10); or using the formula (2.11), we have

c3w M
tci On D(1 v2)

and therefore

D2(1 122)2

1

Since limi_ 1/tci O, and by assumption f [M**I ds and f [M**,I ds are bounded,
we obtain the desired result

-oo Kn cn ds O"

The following result is an easy consequence: In Theorem 2.3 the last sentence,
namely: "all corner points are the endpoints of an arc of F1 ," can be omitted.
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3. instantly optimal controls of thin vibrating plates. The definition of an
instantly optimal control was given by the author in [7].

We can prove (see [7]) that if the initial fixed interval [0, T] optimal control
q(x, y, t) satisfies the maximum principle of Theorems 2.1, 2.2, 2.3, i.e., if

ct
dx dy > f(x, y t) CWH(X,_[ y, t)

dxdy

for any admissible control f(x, y, t), then the instantly optimal control q will
satisfy the maximum principle

t
dx dy >- -f(x y, t)

cw(f; x, y,
ct dxdy

for any admissible controlf
The usefulness of this maximum principle greatly depends on the following

lemma.
LEMMA 3.1. The instantly optimal control p is unique (that is, independent of

either the manner in which we subdivided the energy, or of our choice of the inter-
mediate optimal controls dpi,j(x, y, t)).

4. Some comments on the optimum excitation problem. We consider the
following problem. (a) Let the boundary conditions of the types (B1), (B2), (B3)
and the initial conditions (C1), (C2) be given for the MBVP. Find an admissible
control (x, y, t) for the fixed interval [0, T] such that the total energy of the plate
(T) g((x, y, t), T)at the time T attains the maximum possible value, i.e.,
g((x, y, t), T) => g(f(x, y, t), T) for any admissible control f(x, y, t).

This problem is closely related to the resonance problem, and the cor-
responding maximum principle reveals a physical interpretation of one possible
kind of resonance. In fact any control b(x, y, t) such that limt_. g((x, y, t), t)
can be designated as a control of the resonance type.

A different optimal excitation is obtained by requiring a control of the MBVP
to obey one of the following two conditions"

(b) The rate of increase of total energy is maximized, i.e., d((x, y, t), t)/dt
>= dg(f(x, y, t), t)/dt for any admissible control f(x, y, t), > O.

(c) Given any > g(t 0) find a control (x, y, t) such that the plate attains
the total energy level g in the shortest possible time.

A control satisfying (a) will be called an optimal excitation for a fixed time
interval. Condition (b) will be called an excitation with the steepest rate of energy
increase. Condition (c) will be called the time optimal excitation. Other definitions
of optimality can be readily proposed.

To see the basic relationship between controls of the types (a) and (c) we need
the following lemma.

LEMMA 4.1. Let the boundary conditions and the initial conditions (at O) be
given. Let us assume no energy transfer at the boundary c3. Then given > O, there
exists a control )(x, y ,t) such that oz(d(x, y, t), t) > g(t 0).

Proof If the initial conditions are w(x, y, 0)--0 in f, then any control
function b(x, y, t), such that 4(x, y, t) > 0 in f and in a sufficiently small sub-
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interval of[0, ] and b(x, y, t) --- 0 in the remainder of[0, x], will serve our purpose.
If the initial conditions are different from w(x, y, 0) 0 in t, then there must be
some subinterval [, z2] of [0, ] such that in some open neighborhood Nt,) of a
point (x , y n) fl the velocity dw(x, y, t)/dt retains a constant sign. Then we
apply the control

0 if q [’11, T2]
dp(x, y, t) dw(, l, t)

if e Is i, z2]b(x ,y r/)-sgn
dt

b is easily shown to increase the energy of the plate.
LEMMA 4.2. Every optimal excitation for a fixed time interval is also a time

optimal excitation.

Proof. We assume that there can be found (x, y, t) which is an optimal
excitation for the fixed time interval [0, T], but fails to be a time optimal excitation,
and we shall show that this assumption leads to a contradiction. Since (x, y, t) was
not a time optimal excitation, there must exist a control b(x, y, t) such that the
energy level ((x, y, t), T)can be reached in time t < T, i.e., g(b(x, y, t), tx)
((x, y, t), T). By Lemma 4.1 there exists some admissible control 2(x, y, t)

on the time interval It, T] such that

g(2(x, y, t), T) > .
The control

dp(x,y,t), O< <__ t,,

dp2(x,y,t), t < <= T,
is an admissible control, and we have

((x, y, t), T) > (t(x, y, t), T)

which contradicts the fact that (x, y, t) was optimal for the fixed time interval
Eo, 73.

4.1. Pontryagin’s principle for the optimal excitation of a plate for a fixed

time interval.
Let the boundary conditions be those of either Theorem 2.1, or 2.2, or 2.3. Let

f(x, y, t) be an optimal excitation of the plate for a fixed time interval [0, T]. Let

f(x, y, t) be any admissible control. Then the inequality- dx dy > f(x, y, t)
c3wn(x, y, t)- dxdy

holds (wn has the same meaning as before).
The proof repeats the one given for the optimum control with all inequalities

reversed.
Some remarks concerning (4.1). Despite the fact that this formula is identical,

except for the reversal of the inequality sign, with the optimal control formula,
it is less useful because of the shortcomings discussed in 2.4. In particular, the
absence ofa convexity lemma is a critical defect, preventing a parallel development.



OPTIMAL CONTROL 303

5;. Anisotropic plates and reinforced plates. Assuming a generalized Hooke’s
law of the form

(5.1) ei--- CijkIT, kl

and assuming in addition the hypothesis (E1)-(E4) we can derive the equation of
equilibrium

t32Mxx 2Mxr t32Mrx c32Mrr (2W

X2 xy xy t3y2
qo P t2

by substituting the appropriate form of Mxx, Mrr (see for example [25, pp. 53-54]).
While the resulting equations look complex, it can be seen that there is no

essential change in the argument regarding the optimal control, and consequently
the basic form of Pontryagin’s principle (inequality (2.3)) will be applicable with
analogous boundary conditions.

Concluding remarks. Some comment should be made regarding the specific
choice of admissible controls, which was made in this paper in 1.8 in particular,
we should explain why only the Dirac delta function and its first derivative were
considered as the admissible loads b(x, y) which were not bounded measurable
functions in f. It can be shown in fact that among all distributions which are not
regular functions, these two are the only admissible distributions in the following
sense. The corresponding solutions of the basic plate equations satisfy all hy-
potheses of linear plate theory and the "elastica" hypothesis (E1)-(E4) of this
article. The proof of this statement follows directly from the theorem of Lidskii,
which states that every distribution over the space K is a derivative (of some order)
of a completely continuous function, and from the well-known lemma of Sobolev.
This proof will be published elsewhere. Of course, this statement may be regarded
as trivial by structural engineers who for centuries have admitted point loads and
point moments in their analysis, but excluded as possible loads the more compli-
cated distributions which do occur in the problems of theoretical physics.
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AN EXAMPLE OF A MAX-MIN PROBLEM IN PARTIAL
DIFFERENTIAL EQUATIONS*

JEAN CEA" AND KAZIMIERZ MALANOWSKI:I:

Introduction. We study in this paper a "max-min" problem. By solving
explicitly the "min problem," the original problem can be stated as a control
problem. The state equation is a partial differential equation, and the control
appears only in the coefficients of the state equation. We prove existence and
uniqueness (in a suitable sense) of"an optimal problem" and we give a convergent
iterative method to compute the solution.

For variational problems and Sobolev spaces, we refer to J. L. Lions and
E. Magenes [6].

Some problems of the same nature can be found in J. L. Lions [5, pp. 92-96]
and R. J. Duffin and D. K. McLain [2].

1. The problem. We denote by an open bounded regular set of R" and by
F its boundary. Recall that y 6 H(f2) means

Y L2(n), Diy xiy L2(n)

y=0 onF.

or

for 1, ..., n,

It is known that Hol(f) is a Hilbert space, with the inner product

((y,z)) (Diy,
i-1

((y, z)) fn grad y(x). grad z(x) dx,

where grad y is the vector of components Dy, 1,..., n.
We introduce now a bounded, closed, convex subset U of L(f)’u U if

u e L(f) and if

(.) <= u(x) <=
u(x) dx(1.2) 7,

a.e. in f,

Received by the editors April 10, 1969, and in revised form October 20, 1969. This research
was supported in part by the Office of Naval Research under Contract NONR 233(76).
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where the numbers , fl, 7 satisfy

0<=<fl< +,
(.3)

meas (f) < <//meas (f).

We denote by f a given element of L2(). Our aim is to study the following
problem" Find

(1.4) max min I1 f.,v v
ugrad dx- fydx

where V Ho(f).
We can transform this problem in the following way. If we fix u U, we know

that there exists a unique y V such that

lfou grad2y dx fy dx _< - u grad2z dx fz dx for all z V;

furthermore, this y is the unique solution of

(1.5) fnu grad y grad q dx fnfq dx for all o V.

If we put q9 y in (1.5) we obtain

fou grad2y dx fy dx -- fy dx.

Hence the problem (1.4) can be written in the following form" Find

(1.6) min ffy dx,

where u and y satisfy the "state equation"

fu grad y. grad qdx ff dx for alle V

and ue U.
In what follows we shall study problem (1.6).
DErNWONS. Problem (1.6) will be called Problem P. u is admissible means

u e U. u, y are admissible means u e U, y e V and u, y are related by the state
equation (1.5). y is admissible means there exists u such that u, y are admissible.

The cost function is

J(u) f.f(x)y(x) dx fo u(x) grad2y(x) dx.

We shall say u, y is a solution ofProblem P if u, y are admissible and

f.fy dx <__ f.fz dx

for any admissible pair v, z.
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2. Existence of a solution.
THEOREM 2.1. Problem P has at least one solution.
Proof. First let us note that J(u) is lower semicontinuous in L(f) with the

weak* topology.
Indeed let

(2.1) v, v,

and Yn (respectively y) correspond to v, (respectively v) in (1.5). Then we have

J(v)= fafy dx= fnvgrad2y dx= fnv, grady,.grady dx

=2fav, grady,’gradydx-favgrad2ydx,
fn Vn grad2 Yn dx,.J(v,)

Combining these two equations and adding and subtracting the term

grad2 dx we obtainY

J<v.) J<v) fn v, grad2y, dx 2 fn v, grad y,. grad y dx

+fnvgrad2ydx+fnv. grad2ydx-fav, grad’Y dx

fa v, gradZ(y,- y)dx-fn (v,-v)grad2y dx.

By (1.1) and (2.1) we have

(2.2) lim inf J(v,) J(v) >= O.

Hence J(u) is weakly* lower semicontinuous. Now let us come back to the proof
of Theorem 2.1.

Let us denote

(2.3) j infJ(u), u + U,

and let {u,} = U be a sequence minimizing J(u), i.e.,

lira J(u,) j.

Since the set U is bounded and closed in L+(f), it is compact in the weak*
topology of this space.

Therefore from {u,} we can extract a subsequence {u,,} convergent in the
weak* topology to, say, u U:

b/n, --.
It was pointed out to us by the referee that the theorem follows directly from a general abstract

minimax theorem (el. [4], [7]).
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By (2.1) we have

J(u) <= lim inf J(u,,) lim J(u,) j.

Hence by (2.3), u is a solution of Problem P.

3. The maximum principle.
THEOREM 3.1. If the pair u, y is a solution of Problem P, then u, y satisfy the

following maximum principle:

(3.1) fay grad2y dx <= ftau grad2y dx for alive U.

Proof. We use here a classical method.. Let v U; denote by y + Ay the
function related to u + p(v u) by the state equation. We have

J(u + p(v u)) f, f(y + Ay)dx f, u grad y. grad (y + Ay)dx,

(3.2) J(u + p(v u)) J(u) + fa u grad y. grad Ay dx.

But since

a(u
+ p(v u)) grad (y + Ay). grad dx Ja fq dx

we have

for all q9 e V,

p [ (v u)grad y. grad o dx + p| (v u)grad Ay. grad q dx

(3.3)

jn u grad Ay. grad q dx 0;+

and if we put 99 y, it follows that

fn u grad y. grad Ay dx + p f, (v u)grad (y + Ay). grad y dx 0.

Taking into consideration (3.2) we obtain

(3.4) J(u + p(v u)) J(u) p fn (v u) grad (y + Ay). grad y dx.

But the pair u, y is a solution of Problem P, i.e.,

J(u + p(v u)) >= J(u) for all p 0, 1];

hence

v u) grad (y + Ay). grad y dx <= O.

Now, if p tends to zero, Ay tends to 0 and we get (3.1).
Now we shall study the local consequences of the maximum principle (3.1).
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THEOREM 3.2. If the maximum of .In v grad2y dx in U (y is fixed) is attained

at v u, then there exist a Lagrange multiplier such that

,3.5) fugraaZ,a-2fudx>_ fvgrad2ydx 2fvdx
for all v L(f) such that <= v(x) <= ft.

Proof. Let us consider the linear continuous mapping b(u) from L(f)
into 92 given by

(3.6) ck(v)=(fnvgrad2ydx,fnvdx)-- (1, 2)"

Let G 2 denote the image of the set {v L(f)] =< v(x) =< fl} under the
mapping (3.6). It is obvious that G is closed, convex and bounded in 9t 2.

To u corresponds the point (o, 2o) G such that o is maximal in G for
o .

Hence (1, ) belongs to the boundary of G and there is a hyperplane
supporting G at (1, 2).

Let this hyperplane be defined by the vector (1, -2) then we have

220 1 22 for all (1, 2) G.

Using the definition (3.6) of the mapping b(v), we obtain (3.5). Relation (3.5)
can be written in the form

u (grad2y 2) dx >- fn v (grad2y 2) dx

for all v L(f) such that =< v(x) <= . This shows that

(3.7)
gradZy(x) < 2 implies u(x) z,

gradZy(x) > 2 implies u(x) .
When grad2y(x) 2, we cannot say anything about u.

Remark 3.1. We have proved that (3.1) implies (3.7); however, it is not true
in general that (3.7) implies (3.1). In practice, at least when n 1, the set
A {x[gradZy(x)= 2, x} has nonvoid interior. We can prove, however,
Theorem 3.3.

LOCAL MAXIMUM PRINCIPLE. There exists 2 e 1 such that

(3.8)
grad2y(x) < 2 implies u(x) ,
grad2y(x) > 2 implies u(x) ft.

THEOREM 3.3. If the admissible pair u, y satisfies the local maximum principle,
then u, y satisfies the maximum principle (3.1).

Proof. By virtue of (3.8) we have

u (gradZy 2) dx >= fn v (gradZy 2) dx

for all v e L(f) such that e __< v(x) <__ fl a.e. in f.
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but u is admissible; thus

fnugrad2ydx 27 >= fnvgrad2ydx 2 fav(x)dx
for all v L(f) such that e _< v(x) <= fl a.e. in f. And finally,

fau grad2y dx >= fnv grad2y dx

for all v e U; that is, the pair u, y satisfies the maximum principle.

4. Uniqueness of the solution y.
THEOREM 4.1. IfU, y is a solution ofProblem P and if v, z is an admissible pair

which satisfies the maximum principle, then

(4.1) z y.

Proof. By hypothesis we have

fnugrady.gradodx=fafq)dx for all o V,

(4.2)

favgradz.gradqdx=fafq)dx for all q0 e V;

and the maximum principle (applied to the pair v, z) implies in particular that

(4.3) fnvgrad2zdx>=fnugrad2zdx.
Now, we have

fa u grad2(y z) dx

=fnugrad2ydx-2fnugrady’gradzdx+fnugradzdx.
Using (4.2) and (4.3) we obtain

fnugrad2(y-z)dx<= fnfydx-2 fnfzdx+ fnvgrad2zdx,
fnugrad2(y-z)dx<= fnfY dx- fnfzdx.

But u, y is a solution of the Problem P; hence

fnugrad2(y-z)dxN fnfy dx- fnfz dx<__O

and finally

y Z,
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COROLLARY 4.1. If U, y and v, z are two pairs of solutions of Problem P, then

COROLLARY 4.2. Any admissible pair which satisfies the maximum principle
(local or not) is a solution of Problem P.

Proof. Use Theorems 3.1 and 4.1

5. Approximation of the solution.
5.1. The algorithm. We shall build a sequence u, y using a gradient method.

The choice of the descent is similar to the choice ofFrank and Wolfe [3] (cf. Cea [1])
in the case of irifinite-dimensional spaces; the choice of the point in the descent
is particular to this problem.

Let Uo, Yo be an admissible pair. Suppose u, y are computed and we propose
to compute u + 1, y+ as follows:

From (3.4) we have

AJ J(u) J(u + p(v u))

(5.1) fn fap (v ur) grad2yr dx + p (v ur) grad Yr" grad Ayr dx,

the largest part of AJr being

fn (v ur) grad2yr dx.P

Then it is natural to select an element vr e U such that

(5.2) n vr grad2yr dx >= fnv grad2yr dx for all ve U.

In particular, this implies

(5.3) fnvrgrad2yrdx>=urgrad2yrdx.
If vr u, the pair ur, y is admissible and, by (5.2), satisfies the maximum principle
hence ur, Yr is a solution. If vr(x) ur(x) for all x such that gradZyr(x) > 0, we
obtain the same conclusion as before.

Thus we have only to study the case

n(vr-

ur) gradZyrdx > 0;

that is, the case where there exists a descent direction ur + p(vr- ur), p > O.
If we choose q Ayr in (3.3) we obtain

(5.4)

hence

p fa(vr ur) grad Yr" grad Ayr dx + fn (ur + p(vr ur)) grad2Ayr dx 0;
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and

Using (5.1) and (5.4), we obtain

but

Hence

(5.6)

Let

AJr p fn (vr u) grad2y dx fn (u + p(v u.)) grad2Ayr dx;

fn (ur + p(v ur)) grad2Ay dx </311my,ll 2

2 2 2< P -IIY,. v-uH(n) L

AJ > p fa (v u.)grad2y dx p2_/ ilyll 2
/,a)" Ilv ullea).2

1 2
(5.7) 3 fl y12 2

We choose now p as follows"

(5.8)

and we put

fn (v u) grad2yr dx.

p min (3, 1);

(5.9) u+ Ur -1-" Pr(Vr bit)"

Yr+ is related to u+ by the state equation.
ALGORITHM.

(i) Select an element v e U, which verifies (5.2).
(ii) Compute t3 with (5.7) and p with (5.8).
(iii) Define ur+ by (5.9) and compute y,+ using the state equation.
Remark 5.1. We can seek v using a Lagrange multiplier 2, (see Theorem 3.2).
Remark 5.2. We could choose pr+ 5,+ where the latter is defined in the

following way" tT + satisfies

lr+ bit + fir+ l(Vr Ur) U,

J((lr+ 1) J(ur + p(1)r Ur))

for all p such that u + p(v- Ur)e U. The difficulty lies in finding this
the cost of the search would be very high.
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5.2. Convergence. We have the following inequalities.
Case 1. p 1. Then

Case 2. Pr Pr. Then

(5.10’) J(u) J(u,+ a) >-
e2 [.fa (v, .-u)grad2yr dx] 2

4fllly112 2

We know that the sequence J(u) is decreasing. Since J(u,) >= 0 for all r, it follows
that

lim [J(u.) J(ur+ )] 0;
r.--

and then, using (5.10) and (5.10’), we have the next case.
Case 3. p 1. In this case,

(5.11) lim v u, ll.o(n) 0.

Case 4. p, 3r. Then

(5.11’) lim f (v u) gradZy dx 0

(we disregard the trivial case where lim y 0). But we know that

hence

vr grad2y, dx >= fn v grad2y dx for all v U;

fn u" grad2y dx + fn (vr u) grad2y, dx >__ fn v grad2y dx

or

(5.12, fnfydx+fn(vr-u,)grad2ydx>-fnvgradydx forallveU.

Since the sequences u and y are bounded, we can extract some subsequences
u,,. y, such that

u,, u in L(f) with the weak* topology, u e U,
(5.13)

y,--, y in H()with the weak topology.
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From (5.11), (5.12) and (5.13) it follows that

(5.14) fafy dx >__ fa v grad2y dx

But

ftaur, grad2(yr,-y)dx= fnur, grad2y,dx

for all v U.

+ ;n u, grad2y dx 2 fnu, grad y, grad y dx

fnfyr, dx-2 fnfydx+ u,grad2ydx.
When r’ + oe we have

lim fnu,grad2(yr,-y)dx= -fafyax+ fnugrad2ydx;
this together with (5.14) implies

lim fa u, grad2(y, y)dx O.

However u,(x) >= a.e. in f; therefore

(5.15) lim ]]y, y In6(a) 0.

Let us prove that u, y is admissible. We have

fau,grady,’gradqdx=fnfq)dx
or

for all q e H(f)

fn u, grad (yr,- y). grad q) dx + fa u, grad y. grad q dx fa fq) dx.

Using (5.15), (5.13) and the inequality u,(x) <_ [3, we have

(5.16) fau grad y. grad q) dx fn fq) dx for all q) eHo(f).

Thus u, y is admissible. But u, y satisfies the maximum principle. By Corollary 4.2
we know that u, y is a solution of the Problem P. Because we have proved the
uniqueness of y, by a classical argument it follows that the entire sequence Yr
converges to y. Thus we have proved the following theorem.

THEOREM 5.1. The iterative method of 5.1 is convergent: that is,
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Remark 5.3. We could simplify the computation of 3 introducing bounds
independent of r.

6. An example. We give here an example for the case n 1.
Let V H(f)and f ]0, a[, where

21 + x/
a

10

We define the functions y,fand u as follows"
for0_<_ x <_ 1,

y(x) x, f(x) O,

for 1 < x =< 31/10,

1y(x)=x2-2x- 2’ f(x)= -1,

for 31/10 < x =< 32/10,

x
200’ f(x) 220

for 32/10 < x =< a,

u{x)

u(x) 1;

3;o)x- u(x) 100

1X2 21 163
y(x) i-d X + 20--’ f(x) 2, u(x) 2.

We could verify that

(6.1) f/ f/uy’q)’ dx fq) dx for all (p e V

and
1 <_u(x)<=2,

(6.2) Y’: --i-6 v dx <_ y’ -- u dx

for all v such that 1 _<< v(x) =< 2. We define /by

(6.) 7 (x) dx.

Using (6.1), (6.2), (6.3), we can prove that u, y is a solution of the problem

max min Ilf],v I(n - vy’ dx fy dx

where

v e U if and only if v 1 < v(x) < 2 r(x) dx 7.
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Note that in the interval (31/10, 32/10), we have

In this example the value of the Lagrange multiplier is (11/10)2.
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DECOUPLING AND POLE ASSIGNMENT
BY DYNAMIC COMPENSATION*

A. S. MORSE" AND W. M. WONHAM{

Introduction. In a previous article Ill the authors defined in geometric
terms the decoupling problem for a constant linear multivariable s)’stem namel)’,
the problem of achieving independent control of specified outputs by means of
suitabl)’ combined inputs and of suitable linear state variable feedback. Necessary
and sufficient conditions for decoupling to be possible were found in two important
cases; but the general problem is unsolved. However, if in addition to state feed-
back, dynamic (integrator) compensation may be utilized, it becomes possible to
state general necessary and sufficient conditions for decoupling in a simple and
constructive way. Geometrically the decoupling synthesis amounts to extending
the state space of the original system to a larger space, the increase in dimension
being the number of integrators used in dynamic compensation. In addition,
state space extension can be used to achieve a desired pole distribution for the
closed loop system transfer matrix.

The possibilit)’ of exploiting dynamic compensation in the decoupling
problem was illustrated by an example in

In the present article we state and solve the extended decoupling problem
( 1). Under certain restrictions, the problem of minimizing the order of dynamic
compensation (i.e., the dimension of the extended state space) is solved in 2.
This solution is actually the best possible if the number of scalar inputs is equal
to the number of output blocks to be decoupled ( 3). In 4 the role of state space
extension in pole assignment is determined. It is shown that, with dynamic
compensation of high enough order, an), pole distribution can be s),nthesized for
the decoupled s),stem, whenever decoupling is possible at all. An example is given
in 5. In conclusion ( 6) a more general view of decoupling is taken, with the
restriction to linear compensation relaxed. The resulting open loop decoupling
problem is shown to be equivalent, however, to the extended decoupling problem
ofl.

In the sequel, the material in [1 is assumed to be known.

Notation. Script letters , ’, , .f, denote vector spaces over the real
numbers, with elements x, y, d() is the dimension of
are isomorphic, i.e., d(’) d(//). A, B, C,... are linear maps AI is the restric-
tion of A to ; g or {B} is the range of B. Spectrum means complex spectrum. A
symmetric set of complex numbers is one of the form

;...},
where the i are real and/i is the complex conjugate of i. /(H) is the kernel
(null space) of H.
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With A, B, E’ fixed, C(/) is the set of maps C such that (A + BC)U
C’(U) the set of C such that (A + (B + E’)C)U c . (respectively J’) is the
class )f such that C() # (respectively C’(U) ). If d(g) n, A
and M c g, then

{A]} A- 1.j=l

g is a controllability subspace (c.s.) for the pair (A, B), written , if
C() # and if, for some C C(),

{A + BCI };
is determined uniquely, as written, by any C e C(). Similarly is a c.s. for

(A, B + E’), written e ’, if C’() and

{A + (B + + C +

The maximal (i.e., largest) element of (respectively ) contained in a sub-
space is denoted by max (,) (respectively max (, )), and similarly for
’, ’. It is known from [1] that these maximal elements exist and are unique for
each fixed and that, if max (, ), then

max (,)= {A + BCId }, C C(U).

J is the set of integers 1,..., k. Unless otherwise noted, all summations and
intersections are over J. If, J, is a family of subspaces,

Certain auxiliary results needed are collected in the Appendix.

1. Extended decoupling problem. As in [1] the control system is specified by
the differential equation

(1.1) (t) Ax(t)+ Bu(t)

and output relations

(1.2) yi(t) H,x(t), i+ J.

The state vector x , d(g) n; the control vector u @’, d(@’) m; the output
vectory, d(O’3 q. The maps A, B, H are independent of t; in fact, (1.1) qua
differential equation plays no role until 6, as our problem is purely algebraic.

Write i--(Hi), eJ;as in [1] we assume - g, eJ. In [1] we
discussed the restricted decoupling problem (RDP) Find ec, e J, such that

(.3) 0 C() #

(1.4) , (’) 42j, i+ J,
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(1.5) + N, i J.

A family of c.s. i e eft, e J, which satisfies (1.4) (but not necessarily (1.3) or (1.5))
is admissible. LetM be the maximal admissible c.s. (M was denoted byi in [1]).
It is clear that RDP is solvable only if

(1.6) + g, ied.

In general, (1.6) is not sucient for solvability of RDP because (1.3) may fail for
the i.e., there may not exist any C such that (A + BC) c , e J. To
surmount this diculty we introduce an extended decoupling problem as follows.

Adjoin to (1.1) the equation of a new dynamic element"

(1.7) 2’(t) I’u’(t),

where x’ e g’, u’ e ’, d(g’) d(’) n’ and I’ "’ g’; the input u’(. can be
freely chosen. For the system (1.1) extended by (1.7) define the state space

and the extended input space

e =,.
Define extensions Ae, Be, E’ of A, B, I’ as follows"

Ae.e e Ae(x + x’) Ax (x e g, x’ e g’),

(1.8) B " g B(u + u’) Bu (u e , u’ e ’)

E, .e e E’(U + u’) I’u’ (U e , u’ e ’).

Below we write A, B for Ae, Be; x for vectors in ge; and P for the projection
g @ g’ g. Observe that PA AP A, PB B, P’ 0. The combined system
(1.1), (1.7) is now specified by the pair (A, B + E’).

The extended decoupling problem (EDP) is the following" Given the original
maps A’ g, B’ g, and subspaces , e J, tiM" (i) g’ (that is, n’),
(ii) extensions A, B, E’, as in (1.8), (iii) ’, e J, with the properties

(1.9) ( C’(i) 6 j,

(1.10) Pi (’(j ( of’), i J,
j

It is clear that the choice of isomorphism I’, and so of E’ in (1.8), can be arbitrary
after n’ is fixed: for instance, I’= n’ x n’ identity matrix, in the coordinates
selected.

EDP has the same structure in oxe as RDP has in g, but flexibility is gained
from the special form of the extended system map A and constraint spaces

’. Justification ofEDP as the correct description of decoupling by dynamic
compensation is clear: the output relations (1.2) are preserved on replacing
by ’ (equivalently by defining extensions H of H to be zero on g’); no
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additional control inputs (B) to the original system (1.1) are postulated subject to
the latter constraint, full linear coupling is allowed between (1.1) and (1.7).

Our main result (Theorem 1.1) states that decoupling by dynamic compensa-
tion is possible if and only if the maximal admissible c.s. ff ofRDP are sufficiently
large.

THEOREM 1.1. For the RDP of(1.3)-(1.5), lett be the maximal admissible c.s.
in. The corresponding EDP of(1.9)-(1.11) is solvable ifand only if
(1.6) + d(/-- , i J.

Proof (i) (Only if) We show first that N c, implies PN c. Since
C’69) # Z, AN c N + + ’, and A PAN c + , so that C() -: .
Also, by Theorem 4.1 of [1], N lim N", p 0, 1, 2, ..., where N 0, N" /

N f3 (AN" + + ’). Write N?" PN". Since f(P) ’, Proposition A.5
implies

.+1 p/.+ N? 1--1 (AN?" + );

again by [1, Theorem 4.1], lim N" e . Thus Ne ’, i.e J, implies PNe c,
i J;and (1.10), (1.11) yield

(1.12) P9i (’ t/], e J,

(1.13) PN + g, J.

By (1.12) and maximality of the N,P t" this and (1.13) imply (1.6).
(ii) (If) Assuming (1.6) holds, define n’= i d(t) With n’ so large, there

clearly exist maps Mi’g g’ with the properties"

i f-’l U(M) O, {Mi} M, e J,

and the ranges {M}, e J, independent. Define (P + M)u, e J. Then

and since the are clearly independent, there exists c’ge--* ql with
C e (’-)j C’(Nj). It will be shown that N ec’. Dropping the subscript i, suppose
e, so that the relations

N? f-I (AN?" + M), p O, 1,...,0 0, N?" +

imply N?, T N’. Let {M} c o’ and

N--(P+M)N?, 6_=0,

Then

N"+1 N ["] (AN" + N’ + g’).

N (P + M)N?; and if N" (P + M)N?",

p.+l = [(p + M)N?] f"l [A(P + M)N?" + + Y’]

[(P + M)] ["1 [AN?" + + ’]

(P + M)[ (A" + + ’)]

(P + M)"+.
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By induction, 5 5u (p + M)U T (P + M) i.e., 5# T 5; so 5a ’.
Application of this argument to the and yields the desired result.

The relation P implies

(1.10)

By (1.6),
oQ "+ (P + M)Cf (P + M)g

and addition of ’ to both sides yields (1.11).
Remark 1. The proof reveals the symmetry between a c.s. and its extension:

if N and (P + M)N with {M} c g’, then 5e rg,. Conversely, if 5e c,,
then N P5e .

Remark 2. In part 2 of the proof the 5ei were constructed to be independent.
By [1, Theorem 4.2], C e( iC’() can be chosen such that, for each i, the spectrum
of (A + (B + E’)C)lSei is any symmetric set of d(i) complex numbers.

Remark 3. Condition (1.6) is not implied by controllability of (A, B), i.e.., by
the condition {Alga} g. For example, let

0 1 0 0 0

A= 0 0 1 B= 1 0

10 0 0 0

H (1,0,0), H2 (0, 1,0).

By the methods of [1], one finds

(1.14)

0

ef o
1

and (1.6) fails for i= 1, 2.
The following description of the structure of a decoupled system will be

applied later to solutions of EDP. The result is stated for RDP for simplicity of
notation. Let N, e J, be any solution of RDP, write , and write

At =- A + BC for C e C (" C(3. Let be the coset of x in f/*. Noting that

AtN* c N*, we define the induced map At "g/N* g/N* by At Atx.
THEOREM 1.2. There exist , J, independent ofC C such that

(1.15) ? * ( 1 ( @ k
and

(1.16)
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The i satisfy

(1.17) i + g, e J,

(1.18) Aci i @ *, J, C e C.

The spectrum ofAcli, J, can be assigned as any symmetric set ofd(i) complex
numbers by suitable choice of C C.

Proof Let i be any subspace such that i @ i *. Independence
of*, i, J, follows by Proposition A.1 hence (1.15) is true, and (1.16) is clear.
Since

jiaj

(1.17) follows from (1.4) and (1.5). Since AcNi i, (1.18) is clear.
Let Co e C be fixed; write Ao Aco, o co and let Q be the projection"

g g/.*; thus oQ QAo. Let B’// g be any map with range N’ f) ,
and write B QB, Q(M f-’l ). It will be shown that g is a c.s. for the pair
(Ao, Bi). In fact,

,i Q,.i Q{AoI f)

{ ol

and the assertion follows. By Proposition A.1, the i are independent. Hence [1,
{}{}4, 6] there exist O’g/* , iJ, such that Di O, i,jJ, j i,
(lo + BiDi)i c oi, J, and (o + BiDi)li, J, has any preassigned spectrum.
Define Di .OiQ, J. Then Di(tj + *) O, i,j J; j :/: i, and BiDiti c 3i
c i. Let D’g --+ q/be any map such that BD BD; D exists since {Bi} c M,
e J. Then the map C" g -+ q/defined by C Co + D has the properties required.

2. Minimal state space extension. Theorem 1.1 shows that if (1.6) holds,
EDP can always be solved by dynamic compensation of order n’ =< i d(t)
There is then a least integer no >- 0 for which EDP is solvable with n’= no; in
case no 0, the corresponding EDP reduces to RDP. From a practical viewpoint
it is of interest to find no" we call this the problem of minimal state space extension,
or of minimal solution of EDP.

The general problem of minimal extension includes the general solvability
problem for RDP, and is unsolved. However, suppose the additional constraint
is imposed, that

(2.1) PS t, i J,

where the are the maximal admissible c.s. in cg. In this case it will be shown how
to compute the minimal n’, say riM. In general, nM> no, because (2.1) rules out
extension of any e cg which is properly contained in, but which still may be
large enough to satisfy (1.5). However, if d(M) k, it will be shown in 3 that (2.1)
holds for any solution of EDP, hence nv no, and so this case will be solved
completely.
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It is convenient for later purposes to adjoin to (2.1) the additional constraint

(2.2) P2* c //,

where /7 is a subspace such that

(2.3) e , c (v),.
In (2.3), (t), is the * space (see Notation) of the family /, e J. Relations of
form (2.2) arise in the synthesis of pole distributions ( 4). With arbitrary, define

(2.4) t() (, f’l U).
j:/:i

In the remainder of this section we write i t, i {0} U J.
THEOREM 2.1. For the RDP of(1.3)-(1.5) let l, J, be the maximal admissible

c.s. in , and assume (1.6) is true. If t7 satisfies (2.3) and if
(2.5) d(g’) __> riM(U)--= A[(, + o(/7))/o(7), J],

then a solution , J, ofEDP exists such that P , J, and 5* = o(t7).
Conversely, if EDP has a solution 5i, J, such that P5i , J, then

(2.6) psi* , P* c *.

Iffor some 7, P* , then P5* o(/) and (2.5) is true. If equality holds in
(2.5), then PSIa* #1o(t/") and (5 + 5a*) f-] g’ O, i6 J.

COROLLARY. For the RDP of (1.3)-(1.5), suppose (1.6) is true and let t7M

max (J, *). Under the constraint (2.1) there exists a solution {’, , J}
ofEDP if and only if d(g’) >= nM(U).

Existence of will be proved by a refinement of the construction used in the
proof of Theorem 1.1. For this we need Lemmas 2.1-2.3. Of these the first two
assert general properties of extensions.

LEMMA 2.1. Let [i C , J. If d(g’) >= 6 =- A[]li, J], there exist maps
Mi"g --+ o’, J, such that the subspaces YTi =- (P Mi)lli, J, are independent.

Proof Write 0, q/i [’) 5_’ q/j, 2, ..., k. Then

d() d(U,) + d % d
i=1 i=2 j--1

hence there exist M, such that V’(M,) ["1 /= 0, {M,} M,/ and the {Mi},
e J, are independent. Suppose the are not independent, and let >__ 2 be the

greatest integer such that N I’) ’ 4 0. There is x 4 0 such that
i-1

x =(P +Mi)ui (P+Ma)uj,
j=l

where uj e qg, 1 =< j __< i, so that
i-1 i-1

Pui=ui= Puj= u;
j=l

and u e //. By independence of the {Mj}, Miu 0, hence ui 0 and x 0, a
contradiction.
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LEMMA 2.2. Let //’, i , it J, and define

n
ji

a + J].

If d(o’) >= 6, there exist maps Mi :oe -- 0’, J, such that, if i =- (P + Mi)i,
J, then * lo.
Proof Write e (e + o)/o, it J, and let P be the projection" o o’

-, (o/o) 03 g’. By Lemma 2.1, there exist Me "(f/o) 03 g’-, o’ such that
f[i =-(P + Me)e, i6J, are independent subspaces of (g/o)03 o’. Let Me
MeP; then is well-defined. Since ( + o)/o, it follows by inde-

pendence of the /,. it J, and Proposition A.1 that o = U*. For the reverse
inclusion observe that, by (A.1) and (A.2),

jg:i

and that Memo 0, it J. Then x 6 o implies x e xe, with

x= xu; xtf)o; xuflo
jg:i

and

xi (P + Me)xe i

Thus xe

xij (P + Mj)xij j.

LEMMA 2.3. Let ’i, it J, satisfy the hypotheses of Theorem 2.1 and let
satisfy (2.3). Ifo is defined by (2.4), then o J.

Proof Since * O.ii Vj.i, J, there follows U //7/, 6 J, where
/_= max(,("ji). Hence for each iJ there exists Ci: in C(U/)
f-) C(//). Since i max (c, /), there follows i {A / BCiI f"l /}, so that
CiC(i) f) C(U) c C(e f) Y/).Thatis,e f"l Y/6J, i6 J, hencejCe( f3 //), iJ. Now apply the same argument to the pair of subspaces i,

jCe(j (q //) to get that e i’) J, it J. Finally, use (A.1), (A.2) to
obtain o ii (q 6 .

Proof of Theorem 2.1 (direct statement). Lemmas 2.2 and 2.3 provide f’ and
/ ’, it J, with the properties d(’) nM(U), and

(2.7a) P/= i, J,

(2.7b) //* o,
(2.7c) //* 6 J.

Since J = J’, ’* J’. Also, by (2.7a),

hence i ,’, and

(2.8) i + 7/* ’, J.
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Because the factor spaces (fi + U*)/* are independent, there exists
C e (’i C’( + U*). Define

(2.9) {A + (B + E’)CI(M + g’) CI (// + U*)}, e J.

It will be shown that P N and * o. By Remark 1 after Theorem 1.1,
P also

PP(+ U*)=,+o ,+*.
Since is maximal, P . For the reverse inclusion, by Proposition A.5,

P = P( + ’) ( + *) ( + *) =
Since P i, there exists Ci C(P) C(i). Thus

P {A + BC,I P.} {A + BC,I ,}
and so P i, e J. Finally, by ((ii), Appendix),

* = Z ( + *)= * o.
j#i

The idea of this proof was to use (2.9) to manufacture "compatible" c.s. con-
tained in the % + *. The method works because the + * satisfy (2.8).
For this one needs (2.7c), which is guaranteed (Lemma 2.3) by maximality of the, and also ’, which follows by . Maximality ensures also that
Ri P.

Proof of Theorem 2.1 (converse statement). Since , i J, is a solution of
EDP, * J’, hence P*6 . Since P , i J, clearly P* *, so
(2.6) is true. Let P*= . Then *= j,i *, i6J, implies P*,(j ), i J, and so P* o(). By Proposition A.2 (where is

defined),

A[P( + o)/P, J]

A[( + o)/o, J].

Finally, if d(’) 61, Proposition A.3 implies 5e* + ’ , hence P* o;
and also ( + *) fl ’ 0.

Proof of Corollary. Any solution of EDP subject to (2.1) satisfies (2.6), hence
PSi* c //-M, and by (2.5), d(f’) => nM(//M). Thus nMU/"M) is the least integer for
which EDP is solvable subject to (2.1).

3. Minimal extension when d(3) k. Assume d(3) k and let , e J,
be any solution of EDP. It will be shown that

(3.1) Ni--- P t, e J.

By Remark 1 after Theorem 1.1, i and clearly the ?i satisfy (1.4), (1.5). It
is enough to show that

(3.2) d( CI M)= 1, i J.
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In fact, since - g, (1.5) implies i 0, hence (3.2) implies M n .
Since g ithere exists Ci C() N C(). Thus

i, {A + BC,I3 N ,} {A + BC,I3 N t}
To verify (3.2) start from

j+l

(3.3) d n __<d n ?
i=1 i=1

If (3.3) holds with equality for j l, then
/+1

(3.4) n Z n Z
i=1 i=1

Write li_ . Then (3.4)implies

N ( + + 1) n ,_ L N

so that (Proposition A.4)

N ( + ,) N + N +.
Then

A(N+,)(+)N(+K,) 7+n+,.

By Lemma 7.1 of [1], there exists

C C(P) n C(g ,)

so that

in contradiction to (1.5). Therefore (3.3) holds with inequality at each j. Since

l<=j<=k-1.

k)d fl <=d()=k
i=1

and d( M)>__ l, e J, the result (3.2) follows. Combining (3.1) with the
corollary to Theorem 2.1, we obtain the following theorem.

THEOREM 3.1. Let d() k. For the RDP of (1.3)-(1.5) suppose (1.6) is true,
and let el.M= max (,, (M),). There exists a solution {o’, , e J} of EDP if
and only if d(’) >= riM(el’M), where nM is given by (2.5).

4. State space extension and pole assignment. With the minimal extension
of 2 or 3 it may happen that some poles of the closed loop transfer matrix are
necessarily fixed at unstable, or otherwise "bad," locations. It is possible to shift
the bad poles by additional dynamic compensation. This aim is achieved by
choosing the extension such that all the fixed eigenvalues of A + (B + E’)C
are "good."

To identify the fixed eigenvalues we need the following lemmas.
LEMMA 4.1. Let ,, write C C(Y) and let --max(C, /). Write

A A + BC, C C, and define i "// / as follows" if is the coset of x
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in ///, Ac2 Acx. Then and A are constant with respect to C cg. In particular,
the characteristic polynomial (ch. p.) of Aclf has the form c(2)rcc(2), where zt is the
ch. p. of Ac and is fixed for all C C; rtc is the ch. p. of A[, and the roots of
Ztc can be assigned arbitrarily by suitable choice of C C.

Proof. By [1, Theorem 4.3],- {A + BCI }, CC,

and C c C(). If C1, C2 ff C, and x e //, then A,x e f; 1, 2, and

(A A2)x B(C1 C2)x f’l ,
hence J-c, 3c2. Assignability of the roots of ztc follows by [1, Theorem 4.2].

LEMMA 4.2. Under the conditions oj’Lemma 4.1, let e(2) be the minimal poly-
nomial of Ac, and factor (2) Zg(2)eb(2), where the polynomials g,b are coprime.
Then

(4.1)

where

(4.2)

and similarly for t @ b" The subspaces @ g, @ b are fixed with respect
toCC.

Proof. Since g, are coprime, U/ g , where

{.x e //, (2)x },
{e //, (c)x }.

Since and fi. are constant with respect to C e C, the result follows.
LFMMA 4.3. Let //U ’ and let 5f max (’, ##). Write =_ Peg# and

=- P Then

(i) Ve , and N? max (qff, V’).
(ii) f/N

(iii) The fixed eigenvalues of (A + (B + E’)C)[/, C 6 C’(/U), coincide with
thefixed eigenvalues of (A + BCo)[f; Co 6 C(f).

Proof.
(i) If AU tU + + o’, A PAU + , so . Let
max (, f) and define

(4.3) o 0, "+ f- ["1 (A" + N’), # 0, 1,....

It will be shown that 3- lim N" t. Since N" U and A

A" (+ ) f) (A" + )= "+1 + ,
so that A3- 3- + . Since " = 3. /; p 0, 1,... (4.3) implies

,+l 3. f (AN" + ), p 0, 1,....
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By [1, Theorem 4.1], -e and - c , hence c NM. On the other hand,
M lim N", where o 0 and

#+ M n (Att + ), --0, 1,’’".
Since M c , by induction on p we have u ?u, hence M . Thus the
rule (4.3) computes max (, U).

Applying this result to the pair we have 5 lim u, where 5 0
and

p/+l n (ASU + M + g’), p 0, 1,....

Thus (Proposition A.5) pqu+l -- n (AP + M), and comparison with (4.3)
yields

M= lim lim P5 P.

(ii) In general,

/ + ’)/( + ’)(R) (r ’)/(, ’).

But

(4.4)
+ ’’ (F + g’)/g’

+e’ (+eye’

Also, for C

so that //# n ’ hence

(/N ’)/(Se N ’) 0.

(iii) Let C e C’(0. It will be shown that there exist

(4.5a) C1 e C(5 + g’) N C(U),

(4.5b) Co C(U)

such that the diagram commutes (see Diag. 1). By the isomorphisms shown,
the result will then follow from Lemma 4.1. In the diagram a bar denotes the

A + BC

DIAG.



DECOUPLING AND POLE ASSIGNMENT 329

induced map in the indicated factor space. Turning to the proof, since

(A + (B + E’)C)

the top square commutes (by definition of bar). Recall that g’ N c and
write

(4.6)

Since Ao’= 0 and 5fJ’, there follows 5f + g’J, and there exists
C C(Sf + #’) such that (C C)e 0. Then A + BC is defined, and

A + B + E’ C -(A + BC1)]/4/" c <f -t- ’,

SO the middle square commutes. Clearly (A +
since / + f’, (A + BCI)/ P(A + BC)/ c P(/# + 5’) , i.e.,
C1 C(f) and (4.5a) is true. By (4.4) and (4.6), P , i.e., f 0)P,
and Co exists such that

(4.7) (Co C1) 0, (CoP Cx) O.

Then

(4.8) [(A + BCo)P P(A + BC1)Jf --O.

Also, if x e 5f, then Px and

(A + BCo)Px (A + BC1)Px

(A + BC1)(x + e’)

(A + BC1)x + e"

so that

(for some e’ e 5’)

(for some e" e 5f + g’)

(4.9)
(A + BCo)Px P(A + BCo)Px

P(A / BC)x / Pe"

and Pe" . Then (4.6), (4.8) and (4.9) imply

[(A + BCo)P P(A + BCI)]I/ ,
so that the bottom square of the diagram commutes. Finally it is clear from (4.5a)
and (4.7) that (4.5b) is true.

We now state a procedure for minimal extension of c.s. M to achieve both
decoupling and an assigned distribution of eigenvalues of A + (B + E’)C. We
write i t and assume the hypotheses of Theorem 2.1.

Extension procedure (EXT). Here A will denote the original map in f, not
its extension, and similarly for B, C. Under the conditions of Theorem 2.1, let
uM max(,*), 9M --= max(,Ut). For CC =- C(t), write Ac =- A + BC,
and let a(2) be the minimal polynomial (modM) ofAc]/M. Factor a(2) ag(2)a(2),
where the roots of ag(a) are good (bad). For arbitrary C C determine

(4.10) YtM ( g {x x /,M, ag(Ac)X M}
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In (2.4) substitute M @ g, compute0 o(f), and construct a minimal
solution of EDP as in the proof (direct half) of Theorem 2.1.

With EXT completed, a solution of EDP is now in hand: symbols A etc.
will again denote the extended maps, defined by (1.8). Write C’--("i C’(),
Ac =- A + (B + E’)C.

THZORZM 4.1. Any solution 6O’, 5, 6 J, of EDP determined by EXT has the
following properties:

(ii)/f C e C’, the ch. p. rc*(2) of Acid* can be factored as

(4.1.1) rCc*(2) g(2)rc(2).
Here the roots of rtg are fixed for C C’ and each root is a root of %;
the roots of =c can be assigned as any symmetric set of d(M) complex
numbers by suitable choice ofC]M, C C’.

(iii) Write 5 . + + . The ch. p. rcc(2) of Acl5 can befactored as

(4.12)

where

(4.13)
di deg rcic d((i + o)/o), e J,

deg rCc* d(o).

The roots of ti, e J, can be assigned as any symmetric set of d complex
numbers by suitable choice of C C’, independent ofCIM.

Proof.
(i) By Theorem 2.1, EXT determines the such that

ji

Since M * c (’ 4, maximality of the j implies j M, j e j, so that
Mc 5* and ((i), Theorem 4.1) follows.

(ii) If C e C’, A5* c 5* c wM c 6O, SO that AclS* (A + BC)]5* and
CI* has an extension C :6 q/ such that C e C and Ac,15*= AclS*. By
((i), Theorem 4.1) and Lemma 4.1 (with u; Wu), the ch. p. of Ac]5*
factors as in (4.11), and the roots of rcu, are freely assignable by suitable choice
of CI u, C e C, hence by suitable choice of CI5*, C e C’.

(iii) The expression (4.12) and assignability of the roots of r follow by
Theorem 1.2 applied to the ; (4.13) follows by the fact (Theorem 2.1) that
( + 5*) N 6O’ 0 and 5* fo, hence

( + o)/o.

Now suppose {6O’, , i J} is any solution of EDP, not necessarily deter-
mined by EXT. Then 5* J’ and P* r. By Lemma 4.3, the fixed eigenvalues of

A* (A + (B + E’)C)IS*, C z C’(5*),
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coincide with the fixed eigenvalues of

(A + BCo)]PhZ*, Co e C(PhZ*).

As shown in the proof of Theorem 1.1, P = (--/t), hence phz* = *,
and by maximality of M, PhZ* = uM. Therefore, Co]P* has an extension
C e C(#’M). By Lemma 4.2,

with M g given by (4.10). Since the fixed eigenvalues of A coincide with
those of (A + BC)P*, it follows, if the fixed eigenvalues of A are all good,
that

(4.14) p, " M g.
Since the extension constructed by EXT is minimal with respect to the properties
(2.1) and (4.14), we have proved the following.

THEOREM 4.2. The construction EXT yields a minimal solution ofEDP, subject
to (2.1) and the requirement that thefixed eigenvalues of

(A + (B + ’)C)l c
all be good.

Remark. Assuming as in Ill that {AIM} g, we have that {AI
g g’. By the technique used in proving Theorem 1.2, it is straightforward

to show that (g g’)/ can be regarded as a c.s. (mod ) for (A, B + E’), hence
that the only fixed eigenvalues of A are those of A.

5. Example. Let n d(g) 5 and let ei, 5, be the ith unit column
vector, with 1 in the ith row and 0 elsewhere. Let

A [e,, e, e3, e3, e,], B [e2, e + es],

Ha row e, H2 row es. Writing {. } for the span of the vectors bracketed,
we have

e,,

It is easily checked that

By Theorem 7.1 of [1], decoupling by state feedback is not possible. However,
since (1.5) is satisfied, namely

+=+=e,
Theorem 1.1 asserts that decoupling is possible by use of dynamic compensation.

In this example, d() 2 k, and according to 3 any solution , l, 2,
of EDP must satisfy

(5.1) P , i= 1,2.

By Theorem 3.1, a minimal extension has d(’) M(fM) given by (2.5), where

M max ( (M).).
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In this example,

(.)* N {e2, e3,

and one easily computes /t {e3, e4}. By (2.4),

o() N N=.
Then (2.5) gives n(U) 1, so that just one integrator is needed to achieve
decoupling by dynamic compensation.

To determine the spectrum of A + (B + E’)C we follow the procedure
EXT of 4, and start by finding = max (, ). Since n= 0, we
have 0. SinceA = Uwe can take AI AI; in our coordinate
system

so that e(2)= 2(2 1). If unstable eigenvalues are considered bad," we have
g 0 and b . Both the bad eigenvalues are fixed in the minimalex-
tension determined first. To find the minimal extension subject to the constraint
that all fixed eigenvalues be good, we set f 0. By (2.4), o(f) 0,
and (2.5) gives

Exactly three compensating integrators are needed to achieve decoupling together
with stability of the (extended) closed loop system matrix.

The reader may wish to investigate the possibilities with two compensating
integrators.

6. Deelg e 1 etrl. In previous sections and in [1], the
apparently stringent restriction was imposed that feedback and dynamic com-
pensation be linear. In particular, the definition of controllability subspace [1]
was tied to a specific linear feedback structure. We now show that, with regard to
decoupling, nothing is gained by considering more general types of control.
To this end we show that maximal c.s. can be defined in an open loop sense without
any assumptions on controller structure. Consider

(t) x(t) + u(t), e T,
(6"

x(0 0

on the time interval T [0, 1, and let c N. Let U denote the class of m-vector-
valued functions u(.), defined and continuous on T. Denote by :T x U
the solution of (6.1), i.e.,

4(t, u) e"-Bu(s) ds, T, u U.

ToN 6.1. Let be the set of states x such that,for some u U,

4(t, u T; ( u x.

Then N max (, ).
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Thus N?M is characterized as the largest set of states in Y which can be
reached from the zero state, by any control whatever, without leaving .

Proof. Let

NM= {A + BCI{BK}},

and write =_ A + BC, BK. We claim that

(6.2) N?M= {R},
where

R e(1-t)A// e(1-t)A’ dt

(here and below, maps are represented by matrices, and a prime denote transpose).
In fact, z V(R) implies z’ e(* -,)2/] 0, T, i.e., z’/]- 1/ 0, j 1, ---, n, so
z (M)+/-. Thus V(R) c (M)+/-, SO that M c {R}, and the reverse inclusion is
obvious.

To show ?M c , let x ? and note from (6.2) that x Rw for some
we#. Set

Then the equation

V(t) ’ e(1-t)A’W, e T.

(t) x(O +
x(O) o

t6T,

implies x(T) c M V" and x(1) x, where x(T) =- {x(t)’t T}. Put

u(t) Kv(t) Cx(t), e T.

Then u U; 4)(t, u) eV, e r 4)(1, u) x; and so x e 2Y.
To show f c M, let U max(J,U). By [1, Theorem 3.1], /#",

where Uo and

,///’0+1 //’ ["] A-l(f, + ), kt 0,1, ..., A-’// =- {x’Ax6t/}.

If x f, then for some u U, (6.1) yields

x(T) x(1)-- x.

Thus x(T) f-o. If x(T) //", then 2(T) //", so
c " + ; hence

x T c U" A (//"u -k )= ,f"tt+l

Ax(T) (2 Bu) T)

and by induction x(T) . Let C e C(). Then

2(0 (A + BC)x(t) + By(t),

where v(t) u(t) Cx(t). Thus

By(T) (2 (A + BC)x) T) /

t6T,
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so that {By(t)} f’l , e T. Hence, for e T,

x(t) exp [(t- s)(A + BC)]Bv(s) ds {A + BCI#3 /} M.

We now pose an open loop decoupling problem (ODP) as follows. Given
(6.1), and (1.2) defined for T, together with arbitrary vectors Yi e i, e J, find
controls ui U, J, such that

(6.3) Hi,b(1, u) y, i J,

(6.4) Hjdp(T, u) O, i, j 6 J j =/= i.

Under these conditions each u affects only the output yi(.), and y(1) y.
THFORFM 6.2. Write =- dV’(Hi), J. ODP is solvable for arbitrary

J, ifand only if
(6.5) t + g, i J,

where

(6.6) y max eft, ("/V e J.
j:

Proof If (6.5) is true, then HiNt Y{, and there is xe Nt with Hxi y.
By Theorem 6.1, there is u e U such that

b(1, u,) xi c(T, ui) c (") dV,
jg:i

H,dp(1, u,) y Hjdp(T, u,) O, j =/=

Conversely, if (6.5) fails, then for some e J there is y e such that y HiN.
Therefore any control u U, such .that Hi,b(1, u) y, has the property (1, u) y.
By Theorem 6.1,

b(t, u)q (’ Uj
j:

for some e T; i.e., for this t, Hjdp(t, u) 0 for some j e J, j i, and (6.4) fails.
Comparing Theorem 6.2 with Theorem 1.1 we have the following.
COROLLARY. ODP is solvable if and only if EDP is solvable, namely, if and

only if (6.5) is true.
In the definition of ODP the choice U for the class of admissible controls,

and the choice in (6.3) of common endpoint 1, are obviously not crucial. In
fact, we have shown implicitly that a wide class of dynamic decoupling problems
is equivalent to the EDP of 1.

Concluding remark. Taken with its predecessor [13, the present article pro-
vides effective machinery for the formulation and solution of the decoupling
problem. The results prescribe the synthesis of dynamic compensation by which
decoupling can be realized, and clarify the conditions under which such com-
pensation exists. Nevertheless, further aspects of the problem remain for



DECOUPLING AND POLE ASSIGNMENT 335

investigation. These include computer implementation, sensitivity analysis,
and perhaps most important, a deeper account of algebraic structure.

Appendix. We collect here some auxiliary results; verifications, when straight-
forward, are omitted.

(i) Let //, i J, be arbitrary subspaces. Let

Then

j:i

(A.1) /* n /* n /’ n /’, j J.

(ii) If #i -=- + *, i J, then //* *.
(iii) If 32 =_ (’i 2j*ij n o- for some , then

(A.2) =n Z
ji

(iv) By definition, the /, e J, are mutually independent if and only if* O,
i.e., / U’ O, e J. More generally"

PROPOSITION A.1. U* is the smallest subspace o such that the factor spaces
(i + o)/o are independent subspaces of /o.

Proof. Independence of the factor spaces is equivalent to

(A.3) o [( + o)n (’ + o)].

From (A.3), * lim", # 0, 1,..., where

(A.4) Uo 0, f"+ [( + ") n (’ + ")].

By (ii), * satisfies (A.3), and (A.4) implies that any solution o of (A.3) contains
*.

(v) By Proposition A.1,

so that

d(/( N f*))= d(( + *)/U*),

d(F( + f*)/*),

d((Y g)/f*)

(A.5)

(A.6)

A[, J] d() d() d( N *) d(*).

(vi) If , U, are arbitrary spaces,
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PROPOSITION A.2. Let 5, J, 1/’, ’ be such that U N d 0, 5* c U @ d’.
Define i and

Then

(A.7)

where

o =- n , ( + e’) n ( (R)
j4:i

d(W’) 61 4- .6 2 "nt- P,

(A.8) 1 A[(/ q- o -+- ox’)/(o + ’),

(A.9) 62 A[(( + g’) ( + g’) + *)/(* + g’), J],

p [(( + *) N ’)/( N ’ + * N ’)]

(a.lO)
+ , [( N ’)/( N * N ’)3

+ (* n ’) + (’/( n ’)).

Proof The proof is a direct computation, starting from the easy identity

(’) () (( + ’)/’) + (’/( n ’))

and using (ii) and (A.1)-(A.6) from (A.2) note especially

(a.) N Z [(N + ’) n ( + ’)].
ji

PROPOSITION A.3. Ifin (A.7), d(g’) 6 then * + g’ ,( + *) N g’

O, i6J, and ’ .
Proof p 0 implies N g’= g’, i.e., g’ .; also * n g’= 0, hence
N g’ 0, e J; so that, from the first summation in (A.10), ( + *) N g’

0, E J. Also, 62 0 implies that the bracketed factor spaces in (A.9) are inde-
pendent; by Proposition A.1 and (A.11),

(A.12) * + g’ = (( + g’) n ( + g’))= .
ji

By (A.2) and the definitions of *,,
=NZ N n * *,

hence the reverse inclusion holds in (A.12), so * + g’ .
PROPOSITION A.4. For arbitrary , , , if

N( + ) N f +N,
then

N(’ + /) ’ N + N //.

PROPOSITION A.5. For arbitrary ql, U and a map T,

T(ql N w) c (Tql) N (Tt/)
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with equality ifand only if
(ql + U) dV(T)= ql f’l dV(T) + dV(T).
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OBSERVABILITY OF NONLINEAR SYSTEMS*

YE. YA. ROiTENBERG-

Consider a system described by the differential equation

(1) 2j-- i Ajk(t)Xk + qj(Xl,’’’,X,) + q(t), j= 1,...,n,
k=l

where x1,’.’, x, are the phase coordinates of the system, and Ark(t),
j, k 1,..., n, are variable coefficients. The qj(xl, ..., x,), j 1, .-., n, are
nonlinear functions, Lipschitz continuous in all arguments ili a certain closed
region. The q(t) are external forces.

Let us assume that the phase coordinates xl, "", x, are inaccessible to direct
observation; only the linear combination

(2) y CkXk
k=l

(3)

is accessible. The initial condition of the system (1) is assumed unknown. From
observations of y(t) over some finite time interval we wish to find the initial condi-
tion of the system; that is, we wish to find the values xl(0),. , x,(0), or, alterna-
tively, the state of the system at some subsequent time t*, that is, the values
x(t*),..., x,(t*). This is the observability problem [1] for system (1).

Introducing
A 11(t) A 1.(0 X1 (501(X1, Xn)

A x (p(x)=

A,l(t) A,,(t) x, q)n(X1, Xn)

q(t)

ql(t)

qn(t)

c Iic1,"", c.I,

the scalar system (1) can be replaced by the matrix equation

(4) A(t)x + q)(x)+ q(t).

Expression (2) becomes

Together with the system (1), we shall consider an auxiliary controlled system

(5) (j Ajk(t)(k + q)j((1 ,’’’, (n) "- qj(t) + btj, j 1,..., n.
k=l

* Originally published in Vestnik Moskovskogo Universiteta, Matematika, Mekhanika, 1969,
no. 2, pp. 22-29. Submitted October 11, 1968. This translation into English has been prepared by
R. N. and N. B. McDonough.

Translated and printed for this Journal under a grant-in-aid by the National Science Founda-
tion.

" Department of Differential Equations, Moscow University, Moscow, U.S.S.R.
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Here 1,’", , are phase coordinates and uj,j 1,..-, n are applied con-
trols. We will also introduce the linear combination of phase coordinates of (5)
analogous to (2)"

(6) r/= Ckk.
k=l

Introducing vectors

(7) u

we can replace the scalar system (5) by the matrix equation

(8) A(t) + q() + q(t) + u.

Using (3) and (7), (6) becomes
rt c’.

The initial state (0) of (5) will be arbitrary. The controls uj uj(t), j 1, ..., n,
are to be chosen such that for a certain time t* we have

(9) p(t) [(t)- x(t)] < * fort t*,
j=l

where g* is an arbitrarily small assigned number. All phase coordinates , ...,
ofthe system (5) are accessible to observation. Thus ifwe succeed in finding controls
u(t),j 1,..., n, which assure condition (9), the observability problem for
system (1) will have been solved with the assigned precision.

Let us now turn to a solution of this problem. From (8) and (4) it follows that
the vector

(10) z x

satisfies the differential equation

( ) A(t)z + () (x) + u.

The scalar system

(12) j= Aj(t)z + (,..., ,)- j(x,...,x,) + uj, j= 1,... ,n,
k=l

corresponds to the matrix equation (11). From (10),

=x+z, k= 1,...,n.

On expanding (1, "’", ,) into a Taylor series about x,..., x,, the system
(12) can be written

3) e At)z + t),..., ,t))z + &t,z,... z,) + ,
k=l k=l

j=l,...,n,
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where

(14)
(t),...,. x.(t)

In equations (13), Ri(t, Zl,..., z,) denote terms of second and higher orders in
Zl, ..., z,. Corresponding to the original system (12), we have the first approxima-
tion

(15) j Ajk(t)Zk + fk(x,(t), x,(t))zk + Uj, j 1,’’’, n.
k=l k=l

Controls uj will be assumed to be of the form

(16) uj=bjv, j= 1, n

where v is a scalar time function, accessible to observation,

(17) v r/ y,

and bj,j 1,..., n, are certain constants to be found. From (6), (2) and (10),

l) CkZk
k=l

(18) uj bj CkZk.
k=l

Equations (15) take the form

(19, 2j-- Ajk(t’zk + Lk(Xl(t), "’", Xn(t"zk -bj CkZk, j---1,’’’, n.
k=l k=l k=l

Here x l(t), ..., x,(t) are certain functions determined by the differential equations
(1). Since the initial state x(0) of the system (1) is unknown, the functions xk(t), k

1,..., n, are unknown. Nevertheless, having assigned a region of possible
initial states of system (1), we can find the region of possible values of the functions
xk(t), k l, ..., n. Then we can find upper and lower bounds of the functions

(20) ,jk(t) fk(X (t) "’", x,(t)) j, k 1,"’, n,

on the set of possible motions of system (1)"

(21) jk fljk(t) fljk"

With (20), the differential equations (19) become

() (t)z + (t)z + b cz, j 1,..., n.
k=l k=l k=l

We have here a system of linear differential equations with variable coecients
(t),j, k 1,..., n, the lower and upper bounds of which are known. The
functions (t) themselves are unknown.

and expressions (16) become
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Let us now consider how to assure a sufficiently rapid decrease of the dif-
ference between the solutions of systems (5) and (1). If we introduce

(23) [i(t)

[ill(t) [iln(t)

[inl(t)""" [Inn(t)

the scalar system (22) can be replaced by the matrix equation

(24) [A(t) + [I(t) + bc]z.

Let us now introduce new variables 7j, J 1, ..., n, related to zj by

(25) zj e-’Tj,

On introducing

equation (25) becomes

(26)

Since from (26),

a>0.

71

Z e-eft7.

equation (24)can be written

(27)

: _eye-at7 + e-ate,

[A(t) + aE + [i(t) + bc]7,

where E is the identity matrix. We have the following theorem.
THEOgEM 1. For the observability ofsystem (1) it is sufficient to select the vector

b, whose elements are the coefficients of the controls (18), such that it is possible to
construct for the system (27) a Lyapunov system V, that is, a sign definite function
whose derivative dV/dt, constructed using (27), is a sign definite function of sign
opposite to that of V, for any point of the region of the nZ-dimensional space
([ill, [iln, [i21, [I2n, [In1, [Inn) determined by the inequalities (21).

Proof According to (25), (18) and (20) the nonlinear system (13) transforms
into

(28)
k=l

where Qj(t, 71,..., 7,) are terms of second and higher orders in 71,’", 7,.
According to a theorem of Malkin [2, p. 375], if over the region

(29) > o, IjI H,
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the Q(t, 71,"’, 7.)satisfy

(30) IQ(t, ,..., ,)1 < a[17l + + 1,13,

then, under the hypothesis of the theorem, the solution 7 0, j 1,..., n, of
(28) will be asymptotically stable if the constant a is sufficiently small. Then from
Lyapunov’s theorem on asymptotic stability, we can conclude that, for any e > 0,
there exists a number T(e) such that

(31) [7(t) + + 72(t)] 1/ < for __> T().

Since from (25),

Zj e-rt7, a>0, j=l, ,n,

from (31) it follows that, for a suitable choice of a, we can assure fulfillment of
condition (9)"

p(t) [z2(t) + + z2(t)] 1/2 </* for >= t*

for given/* and t*.
The observability conditions for system (1), with the above estimates for the

functions Qj(t, 71, "’", 7,) in (28), are given in the following theorem.
THEOREM 2. If the nonlinear functions Qj(t, 7,"", 7,),J 1,..., n, in (28)

satisfy

(1- q)v3(7 q-...-+-7n2)1/2

(32) ]Qj(t, 71, 72, 7,)] < 0 < q < 1,

thenfor the observability ofsystem (1) it suffices to select a vector b, whose elements
are the coefficients of the controls (18), such that, for the linear system (27), it is

possible to construct a Lyapunovfunction W satisfying

V 1(712 ._ t_ 7n2)
_
W v2(712 -- --(33)

dW
< -qv3(7 + + 7)

dt

-7--.WI <-v4(7+"" +72)1/2

(v l, "", v4 are positive constants, and 0 < q < 1) at any point of the region of the
n2-dimensional space (#1,’",#1,,#e,’",/2,,’",/,1,’",#,,) determined
by the inequalities (21).

Proof According to a theorem ofN. N. Krasovskii [3, p. 102], it follows from
conditions (32) and (33) that the solution of the system (28), for any initial condi-
tion 7(to), to satisfies

[71(t) + + 7,2(t)]/ _-< B[7(to) + + 7n(to)]/e -"-t) for >__ to,(34)

where

V2 qv3B o
V1 V2
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Since from (25),

Zj e-rt7j, r>O, j=l, ,n,

by taking to 0 in (34) we find that for > 0,

;(t) [l(t)+ + n2(t)]

will decrease at least as fast as e-’. With an appropriate selection of r this assures
p(t) < p* for => t* for the assigned values of p* and t*.

As an example, let us examine the system

(35)
2 -x ex2 sin x.

Let us assume that the phase coordinate

(36) y X

is available. In this case, matrices (3) are

A= x= q(x)=
--1 --e x2 q?2(X1, X2) -sin X1

c-Ila oil,

The auxiliary system (5) here has the form

= + u,
(37)

2 --1 g2 sin 1 -’{- U2"

The linear combination of phase coordinates of system (37) analogous to (36) is

The vector

has the form

(38)

According to (17) and (23),

V 1 X1 Z1, b

From (16), the controls u, j 1, 2, will be

(39)
ul blzl,

U2 b2z 1.

bl
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According to (14) and (20), the functions &k(t), j, k 1, 2, here are

#ll(t) 0, 12(t) 0, 1./22(t) 0,

-cos x(t),

and thus estimates (21) will be

(40) -1 kt21(t) l.

Equations (19) become

"1 22 nt- blZl,
(41)

2 --Z1 eZ2 -[- P21(/)Z1 -+- b2Zl.
Let us now change to the new variables , j 1, 2, related to z. by (25).

According to (41), equations (27) become

(42)
91 (a + b l)1 + Yz,

)2 [--1 nt- f121(/) nt- b2]]) nt- (- %-

As the Lyapunov function for the system (42) we shall use

v +
Its derivative

dV
])191 ])292

dt

becomes

(43)
dV
dt

a11]) + 2a12])1])2 + a22])22,

after substitution of P and 2 from (42), and where

(44) all= -(bl + a), a12 -1/2[b2 + f121(t)], a22 g 0".

The discriminant of the quadratic form (43) is

(45) D
all a12

a12 a22

That the trivial solution of the system (42) be asymptotically stable requires that,
for any time t, the principal minors of the discriminant (45) be greater than some
arbitrarily small positive number l"

(46) all > l, a12a22- a212 > 1.

Using (44), conditions (46) become

(47) -(b + a) > l, -(b + a)(e a) 1/4[b2 + ]/21(/)] 2 > l.



OBSERVABILITY OF NONLINEAR SYSTEMS 345

Taking into account the estimate (40), bl and b2 should be chosen so as to satisfy
conditions (47).

As an example, let us consider the case e 5, a 4. The values bl -8,
b2 1.5 satisfy conditions (47) for any function /tzl(t with bounds (40). The
difference between the phase trajectories of systems (35) and (37) (with controls
(39) and initial conditions x(0) 0.5, x2(0) 0.3, 1(0) -0.3, z(0) -0.1),
at t*= 1.5 sec. is zl(t*)= -5.19 x 10 -5, z2(t*)= -1.33 x 10 -4", and at t**

3 sec. the difference is z(t**) -2 x 10 -8, Zz(t** -6 x 10 -8.
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FILTERING FOR LINEAR DISTRIBUTED PARAMETER SYSTEMS*

HAROLD J. KUSHNER"

1. Introduction. In this paper, we develop a filtering theory for linear
parabolic systems which are driven by white noise, and where white noise cor-
rupted observations are taken.

Consider the purely formal equation

() O(X, t) U(x, t) + tr(x, t)t,

where is a parabolic operator and t is Gaussian "white noise." An interpreta-
tion of (1), which is an extension of the Ito interpretation of stochastic ordinary
differential equations, is stated in Lemma 3.

Lemma 3 requires some results concerning criteria guaranteeing smoothness
of random surfaces and these, based on [1], [2], are reviewed in 2. The first
filtering problem treated ( 3) deals with a first boundary problem for (1) with
internal observations of the form (9), or, formally, the data, for s =< t,

observation p f H(x, s)U(x, s) dx + d/

is available at .time t, where is "white Gaussian noise."
In order to give physical meaning to (1), Lemma 3 (based on 2, [1], [2])

gives conditions under which continuous "paths" U(x, t) exist, which also have
sufficiently many spacial derivatives for U(x, t) to be continuous. If the surface
U(x, t) is smooth, it would be nice to know that the conditional mean M(x, t) is
also. Lemma 4 shows that there is a version of M(x, t) which is continuous and
has as many spacial derivatives as does U(x, t) and also that the conditional co-
variance is smooth. Theorem 1 shows that M(x, t) satisfies (15), an equation of
the form (1), where t is replaced by a term due to the observation, exactly as is
the ordinary differential equation case. Also, the covariance satisfies (16), the
relevant "Ricatti" equation.

Section 4 treats a second boundary value problem, where noisy observations
are taken on the boundary, and a boundary disturbance drives the system.

2. Smoothness results on random surfaces. Let zt be a normalized Wiener
process, D a bounded open domain in E" with closure D and a continuous and piece-
wise uniformly differentiable boundary and write R D [0, T]. Let D c3/c3t,
Di /63xi, DI (I/tX. Let f(x, t) be a stochastic process on O [0, T] i.
The parenthesis in (Dif(x t)) denotes the "mean square" derivative of f(x, t)
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with respect to xi, if it exists. Define the norm

(2) g(x)llWl,p(D)
k=0 ll + ""+In=k

where e Lv(D means that I(x)l dx =- Illv> < . References [1] and

from which Lemmas 1 and 2 are taken, give conditions on the expectations of
integrals of powers of the mean square derivatives, which guarantee that f(x, t)
has a (with probability 1) continuous version on K, and perhaps several con-
tinuous derivatives with respect to components of x. The proof of Lemma 1 is
contained in [2].

LEMMA 1. Let the boundary c3D ofD have the property that any line intersects
it only finitely often. Let the functions

(3)
z(x, t, s), {Dis(x, t, s)}, {DiDfz(x, t, s)},
{DiDjDk(x, t, s)}, {DiD2DkDI(X, t, s)}

be defined on [0, T] [0, T] =/ 0, T], continuous in (x, t)for each s, and
bounded (in absolute value) by a square integrable function of s. Let f be any func-
tion in the set (3), and let z(t) be a Wiener process. Then f(x, t, s)ds <= M < c

for some real number M, and f(x, , s)dz can be defined to be a separable and

measurable process with parameter (x, t). There is a null set N and a separable

and measurable version of e(x, t, s)dz O(x, t) which, for co d N, is continuous

in (x, t) and has three continuous (in (x, t)) derivatives with respect to the components
ofx. These derivatives are equal to continuous (for co d N), separable and measurable

foersions of Dis(x, t, s) dz, DiD(x, t, s) dz, DDD(x, t, s) dz, respectively.

Let in addition, for some real numbers K < , fl > O,

(4)

E f(x, + A, s) dz f(x, t, s) dzs

If(x, + A, s) f(x, t, s)] 2 ds + f2(x, + A, s) ds <= KA,
wheref is any member of(3). Let g be any member of the first three sets of (3). Then

the continuous version (for co N) of g(x, t, s)dz d(x, t) is HSlder continuous

on R, i.e., there is some K(co) < w.p.1 and a real > 0 so that

Ick(x + 6,t + A)- ck(x,t)[ <= K(og)[IAI +
where {. refers to the Euclidean norm.
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LEMMA 2. Let f(x, t) be a process on which is continuous in probability
together with its mean square derivatives up to order on . Let pl > n, p > l, and
suppose that for 0 <= s <- <= T,

EIIf(’,t)- f(’,s)ll,,,) Kit- sl +

for some real K < and <= q < and > O. Then there is a w.p.1 continuous
version off(.,. on/ x [0, T], and the version is H61der continuous in t, uniformly
in x, w.p.1.

If 0 < m < n/p, then the mean square derivatives of order <= m have con-
tinuous versions on w.p.1, and f(x, t) has w.p.1 a continuous version whose first
m x-derivatives coincide with the mean square square derivatives.

For proof, see Theorem 4 in [1].

3. Filtering for a stochastic first boundary value problem.
3.1. System model. The first system with which we will deal has the repre-

sentation2

(6)

where

(7) a,(x, t)D,D + b,(x,

and (A1)-(A7) hold.
(A1) OD (the boundary of D) has a local representation with H61der con-

tinuous 4th derivatives.
(A2) The coefficients of 5 and their first two derivatives are H61der con-

tinuous in R.
(A3) aijij _>- K for some real > K > 0.
(A4) a and its first four x-derivatives are H61der continuous on R.
(A5) a and Sea go to zero as x cD.
(A6) k(y, x, t) is bounded, measurable and H61der continuous in x, t, uni-

formly in y, and k(y, x, t) 0 as x c3D.
(A7) U(x, 0) is Gaussian for each x, has a bounded variance, has H61der

continuous second derivatives, and U(x, 0) and U(x, 0) 0 as x cD. U(x, O)
is independent of zt and of wt (to be introduced below).

In [2], Lemmas 1 and 2 are applied to (6) to give it a precise definition which
is summarized in the following lemma.

Recall that (5) is equivalent to

E I(D’ D"{f(x,t)-f(x,s)})Pdx <= Kit- sl 1+

for allll + + l, __< k __< l, for0__<s<__t <__ T.

For notational simplicity, we let the "driving term" be (x, t)dz. It could be i(x, t)dz, where
the z are independent. See [2, Lemma 2.2].
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LEMMA 3 3 (see [2, Lemma 3.2] for proof). Assume (A1)-(A7). Then there is a
randomfunction U(x, t) on (0, T] so that a version (for 02 q N, a null set) of the
uniformly (in (0, T] D) mean square continuous functions

(8) U(x, t), (DiU(x, t)), (DiDIDU(x, t))

are continuous on (0, T] w.p.1; these versions of the mean square derivatives
are true derivatives. U(x,t) and U(x, t) 0 as x cD (for 02 N)., U(x,t)

U(x, O) (for 02 dd N, and uniformly in x) as O. The first three sets of (8) are
H61der continuous in for 02 (d N. U(x, t) is a Markov process (with values in a state

space offunctions with H61der continuous second derivatives). For any finite set of
arguments {x,6, 1,..., s}, the random variables in (8) {U(x,6),...,
(DiDjDkU(X, t)), 1,..., s} are jointly Gaussian. The random variables in (8)
have uniformly (over (x, t)) bounded variances. The variances ofU(x, t) and ofq V(x, t)
tend to zero as x D. U(x, t) is nonanticipative with respect to the zt process, and
the ItO differential of U(x, t) satisfies (6). U(x, t) satisfies the condition (5) ofLemma
2 for m 3, 4, and all large p, and some finite q and > O. (DiDjDkDIU(X, t))
is also uniformly mean square continuous in (0, T) R.

3.2. The filtering problem. Let vt be a normalized Wiener process independent
of the zt process, and suppose that"

(A8) H(x, t) is a vector-valued function which is defined and continuous on R.
(A9) B(t) is continuous on [0, T] and B(t)B’(t) 2;t is strictly positive definite

on [0, T-].

Define w B(z)d .,1/2 d#. Suppose that the data

(9) y(s) H(x, r)U(x, r) dx dr + B(r)d h dr + w, s <= t,

is available at time t. All introduced r-algebras are assumed to be complete with
respect to whatever measures are imposed on them; let4 t be the minimal r-
algebra determined by y(s), s <= t. Let #1 be the measure determined by the
processes U(x, s), s <_ t, and dy(s) hs ds + dws, s <= t, and Po the measure
determined by the processes U(x, t) and dy(s) dw, s <= t. Let E denote the
expectation with respect to Pi, and conditioned on

The smoothness in (A1), (A2), (A4) gives a U(x, t) with continuous third x-derivatives, hence
H61der continuous second derivatives. In the control problem in [2, we wanted U(x, t) to have H61der
continuous second derivatives. If only continuous second derivatives are required, then the dif-

ferentiability requirements in (A1), (A2), (A4) can be reduced by one.
4 To be more precise, let f be a function space with generic element co (co’, co"), where co’ is

a member of the space of bounded functions on , and co" is a member of the space of bounded func-
tions on [0, T], with values in the Euclidean m-dimensional space Em, where m is the dimension of w,
and y. The terminology is used later. See Part of the proof of Theorem 1.
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Define
M(x, t) U1 U(x, t),

P(x, y, t) Et (U(x, t) M(x, t))(U(y, t) M(y, t))

gl(U(x t) M(x, t))(U(y, t) M(y, t)).

The equality of the two expressions for P(x, y, t) follows from the Gaussianess of
(U(x, t), U(y, t)).

Let 50xP(x, y, t) denote 5 operating on P(x, y, t) as a function of x. Lemma 4
proves that there is a version of the estimate M(x, t) which is, w.p.1, as smooth as
the signal U(x, t).

LEMMA 4. Assume (A1)-(A9). Then (excluding a null set independent of (x, t))
there are on (0, T] D continuous versions of the first four sets of the continuous
in quadratic mean functions
(10) M(x, t), (DiM(x, t)), (DiDjM(x, t)), (DiD2DkM(x, t))(DiDjDkDIM(X, t));

also M(x, t) M(x, O) as - 0 (and also in quadratic mean) and the first three sets

of mean square derivatives are true derivatives and Et50U(x, t)= CfM(x, t) also
M(x, t) and 50M(x, t) 0 as x c3D, and the first three sets of (9) have H61der
continuous versions. P(x, y, t) has continuous third derivatives in the components of
x and y on (0, T] D, and P(x, y, t) and 50xP(x, y, t) and 50rP(x, y, t)
or y c3D. P(x, y, t) P(x, y, O) as O.

Proof. M(x, t) and the (DiM(x, t)), (DiDjDDIM(x, t)) exist and are mean
square continuous in x, uniformly in (x,t) in (0, T] D. Also Eta (DiU(x, t))

(DiM(x, t)) w.p.1 (as well as for the next three derivatives) for each x, in (0, T]
D. These assertions easily follow from estimates of the following type" let ei be

the ith coordinate direction in E", where n is the dimension of x. Then

E1
M(x + eiA, t) M(x, t)

E(D,U(x, t))

(11) E1 E{ U(x + eiA) U(x, t)
(D,U(x, t))t

U(x + eiA, t) U(x, t)<= E1 (D,U(x, t))A
as A 0, uniformly for x, in D (0, T].

Furthermore, M(x, t) also satisfies the estimates (12) and (13)"

2

(12)

and

EllM(x, t)l" EllE U(x, t)l" EllU(x, t)l",

EII(D,DDDIM(X, t))[" <_ EII(DiD2DDIU(X, t))["

EIIM(x, t) M(x, s)l" EIIE U(x, t) E U(x,

< KEIIEI(U(x, t) U(x, s))l" + KEIIEtlU(X, t) EI U(x, t)l
(13)

<= KEll U(x, t) U(x, s)l" + e.(x, t, s),
where

e.(x, t, s) KEIIE U(x, t) E U(x,
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In deriving the last inequality IEt fl" <- Elfl" was used.
We will next show that e2(x, t, s) <= K lit sl. From this, and the Gaussian

property, it follows that e2m(X, t, s)<= Kmit- s[ for some real sequence Kin.
Define A (t s)/n, N, [n/(t s) 1] (nearest integer),

1 /(i+ 1)A+s

Yni=X A+s

1 (i+ 1)A+s

Wni--X

hs ds + W,i H,i + IV,i,

Define E] U(x, t) EI[U(x, t)ly, z <__ s; Y.o, "’", Y.N.] Then E] U(x, t) U1 U(x, t)
in probability. Since, for some subsequence,

(El U(x, t) EI U(x, 0)2 -, (Etl U(x, t) ES U(x, t))2 w.p.1,

Fatous’ lemma gives

(14) EIIEt U(x, t) EI U(x, 012 _<_ lim inf EllEn1U(x, t) EI U(x, 012.

We only need show that the expectation on the right side of (14) satisfies
the asserted inequality for ez(X, t, s). Next, we may write E] U(x, t) in the form

Nn
eq U(x, t) U(x, t) + Q..(

for some sequence {Q,}. The variance of the sum is

e, E,y(n)ELl(n)z’y(n),
where

Y’. [(Y.o- E] Y.o), "’", (Y.un- E] You.)-I,

Xuv(n) EiV(x, t)Y’.,

X,,(n) E1 Yn Y’n

Since the { W,} are mutually independent in e and have a covariance bounded
below (in sense of positive definite matrices) by cI/A, for some c > 0, and the
terms of Y, have uniformly, bounded (in all indices n, e) covariances, El(n)
>= cllA + O(A2) where O(A2) is a matrix with entries of the order of A2, uniformly
in all indices. Thus

e, __< const.. A. number of diagonal entries in Z
+ const.. A2. total number of entries in 2

< const.[A. (t- s) A2 (t- S)2-]
a--F-+ S2-j

which yields the desired bound, since the constant can be made independent of n.
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Estimates (11), (12), (13) imply that the M(x,t), ..., (DiDjDkDiM(x,t)) are
uniformly mean square continuous in (0, T] x D.

The statements concerning the continuity of M(x, t) and its derivatives then
follow from Lemmas 2 and 3, since by the estimates (12), (13) (and obvious similar
estimates for (DiM(x, t)),..., (DiDjDt,DIM(X, t)), if U(x, t) satisfies Lemma 2 for
m 3, so does M(x, t). Since (13) is valid for s o, M(x, t) --. M(x, 0).

M(x, t) and M(x, t) --, 0 as x --, OD since both U(x, t) and U(x, t) and their
variances ---,0 as x --, 3D.

The asserted smoothness ofP(x, y, t) and its boundary properties follows from
the continuity in quadratic mean of the elements of (10), 2’M(x, t), U(x, t)
and (10’)

(10’) U(x, t), (DiDjDkDIU(X, t))

(see, for example, Loeve [6, 34.2] for the type of calculations which are required).
THEOREM 1. Assume (A1)-(A9). Then there is a version of M(x, t) which has

the ItO differential w.p.l

(15)
dM(x, t) IM(x, t) + f k(, x, t)M( t) dJ dt

+ dy H(,t)M(,t)d Z2 H(,t)P(, x, t)

and, for this version, w.p.1, M(x, t) and M(x, t) 0 as x c3D. Furthermore,
P(x, y, t) satisfies

(16)

P(x, y, t) [x + y]P(x, y, t)

+ f k(y, , t)P(x, , t)de + f k(, x, t)n(, y, t) d

+ a(x, t)a(y, t) H(, t)P(x, , t) d

"Y.;-’IfH(,t)P(, Y,t) d1
P(x, y, t), P(x, y, t) and cP(x, y, t) 0 as x - c3D.

Proof. For the sake of keeping a framework which will allow a generaliza-
tion (not proved here) to nonlinear systems, we take a slightly more general
approach than necessary. The nonlinear problem for ordinary stochastic Ito
equations was treated in [3] however, here we follow a slightly different approach,
due to Zakai [4], which gives the result under weaker conditions than those
required in [3.

Part 1. /2o and p are absolutely continuous with respect to one another and

d#l/d#o exp Rt, where

1 h,Z_hds +
_

Rt -- hZ dye.
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This statement can be verified in the following way. Define Vo, vl, vu as the
measures determined by dys hs ds + dw, s <= t, dy dws, s <= t, and U(x, s),
x D, s =< t, respectively. Let ’, be the a-algebra determined by U(x, s), (x, s) D

[0, T]. U(x, s) is continuous in quadratic mean and separable [2]; hence , is
countably generated. Suppose that hs, s =< t, is a known function. Then, for any
Borel set A of suitable dimension,

PI ((Yt, "’", Yr.) e Alho deterministic) Ja’
where A’ is the inverse image of A and

dvo =- exp R.

It then follows that

dvolh
dr’

This implies that (dv l/dvo)h d#l/d#o.
Next, following Zakai [4], note that if Elf(og, t)l < , then (see Loeve [5,

24.4])

(17) E] f(co, t)
Etof(co t) (d#,/d#o) Uof(og, t) exp R,

E’o(d# l/d#o) Eto exp Rt
Part 2. Write

F, [U(x, t) + f k(y, x, t)U(y, t) dy1.
Then, w.p.1, by virtue of Lemma 4,

ExF, M(x, t) + f k(y, x, t)M(y, t) dy.

In (17), let f(co, t) U(x, t). Both U(x, t) and exp R, are stochastic integrals
and

d[exp R] (exp R) h’Z- dys.

Then It6’s lemma, applied to (17), yields

E] U(x, t) M(x, t)
E’o U(x, O) + d[U(x, s) exp R,]

A,

E 1 + (exp )hE dys
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where we use

dig(x, t) exp R] Eo U(x, s)(exp R)h;2- dy

+ (exp R)(Fs ds + a(x, s) dz)1 + Uo U(x O)

and where dy dz 0 is used to eliminate the (dU(x, s))(d exp R) term from A.
As in Kushner [3] or Zakai [4, it can be shown below that, w.p.1,

E (exp Rs) [F ds + a(x, s) dz] [E (exp R)Fs] ds,

(18) E g(x, s) [(exp R)h;E2 ] dys [EU(x, s)(expRs)h;22 ] dye,

E (exp R)h;E2 dys [E (exp Rs)h;E2 ] dye,

where the second integrals are well-defined w.p.1. Assuming (18) now, we proceed
exactly as in [3] and get

dA, At dB, At(dB,)2 (dA,) (dB,)
(19) dM(x,t)

St U S U
where

(dBt)2 E[(exp Rt)htt].,[ ’[E(exp Rt)ht] dt,

(dAt) (dBt) [Uo U(x t)(exp Rt)h;]Z;- ’[ED(exp Rt)ht] dt

dAt (Uo U(x, t). exp Rt h’t52; 1) dy, + (EFt exp Rt) dt,

dBt (Uo exp Rt hY 1) dyt.

Equation (15) is obtained by substituting in (19) and using the fact (see (17)) that
Et f [Efexp Rt]/Uo exp Rt.

Part 3. Similarly, dP is calculated from the expression

dP(x, y, t) dE] U(x, t)U(y, t) dM(x, t)M(y, t).

To get dE] U(x, t)U(y, t), repeat the procedure starting with (17), where we now
let f(o), t) U(x, t)U(y, t), and use the w.p.1 equalities

E*a U(x, t)yU(y, t) M(x, t)2#yM(y, t)

+ Et (U(x, t) M(x, t))(U(y, t) M(y, t))

M(x, t)M(y, t) + cp(x, y, t).

The details are straightforward and are omitted.

The demonstration of (14) by the method of [3] requires more stringent conditions on Rs and
U, than by the method of [4]. The method of [4] is applicable under the conditions of the hypothesis
of Theorem 1. The method of [3] may also be applied, by applying it to a suitable sequence of bounded
F, h which converges to Fs and hs in probability.
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4. The second boundary value problem. Now, we consider the equations

(’20a) dU(x, t) [U(x, t) f(x, t)] dt a(x, t)dz,

(20b) Uv(x, t) + fl(x, t)U(x, t) g(x, t) + v(x, t)r(t),

a,r(x, t)D,D + b,(x, t)O,,

where Uv(x, t) is the conormal derivative6 U/cV limy_x,y, cU(y, t)/t?V(x) at x
on c3D, and (B1)-(B8) are assumed.

(B1) air(x, t)ir > K .2, for some real K > 0.
(B2) air(x, t) and bi(x, t) are H61der continuous in R.
(B3) f(x, t) is continuous, and H61der continuous in x, uniformly in t.

(B4) t?D has a local representation with H61der continuous derivatives.
(B5) Real-valued g(x, t) and row-vector-valued v(x, t) are continuous on R

and r is the Gaussian random process satisfying dr A(t)r dt + G(t)d, where t
is independent of the z, and w, processes introduced earlier, and of U(x, 0). A(t) and
G(t) are bounded continuous functions.

The observations dy If H(, t)U(, t) dS] dt + dw are taken, where(B6)
D

H(, t) is continuous on c3D x [0, T], and wt is independent of U(x, 0), and dS is
the differential surface measure on cD. Also Zt satisfies (Ag), where dw Eli/:z d,,
and #t is a normalized Wiener process.

(B7) Denote e(x, t, s) fo F(x, ;t, s)a(, s) d, where F is the fundamental

solution of DtU U. Let a(, s) be uniformly continuous. Let 7(x, t, s) represent
either e(x, t, s), Die(x, t, s) or DiDre(x, t, s). Let, uniformly in R,

(21) 72(x, t’, r‘) dr, + [7(x, t’, r‘) 7(x, t, r‘)]2 dr‘ Kit’ tl e

for some real K and fl > 0. Let DiDjDkT(X, t, s) satisfy (21) uniformly for x, t, t’ in
any compact subset of D 0, T] 2.

(B8) Let U(x, 0) be differentiable w.p.1, and let air(x, 0) be continuously
differentiable in some neighborhood of OD.

LEMMA 5. Assume (B1)-(BS). Then there is a random function U(x, t) which
has a version with the following properties w.p.1 (where the null set does not depend
011 X, t)"

(a) U(x, t) is continuous7 on I (also in quadratic mean); (DiU(x, t)) is con-
tinuous on compact subsets ofD x (0, T] (also in quadratic mean).

(b) The (DiDrU(x t)) are continuous on compact subsets ofD x (0, T].
(c) U(x, t) has an ItO differential which satisfies (20a), for > O.
(d) U(x, t) satisfies the boundary condition (20b), and U(x, t)- U(x, O) as

V(x) is the conormal direction at the point x on c3D.

DiU(x, t) on OD is defined as limr_,o DiU(y, t).
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(e) The variances of U(x, t), (DiU(x, t)) (in compact subsets ofD x (0, T]) and
(DiD.iU(x, t)) (in compact subsets of D x (0, T]) are uniformly bounded.

(f) U(x, t) is nonanticipative with respect to the zt and Y-t processes.
Proof The treatment in Friedman [6, Theorem 2, p. 144 and Corollary 2,

p. 147] will be followed, with the few modifications required by the stochastic
nature of the problem taken into account. Define

7(x, t) dzsa(x, t, s),

7ij(x, t) dzsDiDja(x, t, s),

Let k(x, t) dzp(x, t, s). Then,

Eka(x, t) dtpa(x, t, s),

7i(x, t) dzDia(x, t, s),

’ik(x, t) dzDiDDka(x, t, s).

(22) EkZ"(x, t) K,[Ek2(x, t)]" for some real K,,

Elk(x, t’) k(x, t)] 2 dsp2(x, t’, s) + ds[p(x, t’, s) p(x, t, s)] 2

Note also that ?,(x, t) is the mean square derivative of 7o(X, t) with respect to
the ith coordinate of x in D x (0, T], and ;Ok(X, t) is the mean square derivative of
7jk(X, t) with respect to the ith coordinate of x in D x (0, T].

Then, by the estimates (22), (B7) and Lemma 2, there is a version of 7o(X, t)
which (w.p.1) is continuous on ; it has continuous derivatives DiTo(X,t)

(DiTo(X, t)) 7i(x, t) on R and continuous second derivatives DiDj7o(X, t)
7i(x, t)= (DiDo(X, t)) in compact subsets of D x [0, T]. Furthermore, for

(x, t)e cD x (0, T c3/c3V(x) q)i(x)Di, where the (piare H61der continuous. Hence,
the function

c3 V(x)
dza(x, t, s) =-- 7v(X, t)

also has a continuous w.p.1 version on t?D x (0, T] and, in fact, can be identified

with dzs[c3a(x, t, s)/? V(x)]. Next Dta(x, t, s) a(x, t, s), s < t, x ?D, and, by

(B7), (Da(x, t, s))2 ds __< K < oe on K. Also a(x, t, s) is continuous on and

tends to a(x, t) as s T t. Hence

d a(x, t, s) dz a(x, t) dzt + at(x, t, s) dz dt

a(x, t) dzt + a(x, t, s) dz dr.
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From what has been said, the function F(x, t) defined by

F(x, ;t, O)
F(x t) |

o V(x) fo f cF(x, (;t, z)

+/(x, t) f. r(x, ;t, 0)u( ;0) de

f(, z)d

fl(x, t) dr F(x, ;t, r)f(, r’) dr fl(x, t)yo(X, t)

g(x, t) v(x, t)r(t)

is continuous and uniformly bounded w.p.1 on OD (0, T] (see Friedman [6,
p. 145], where continuity is shown for a similar deterministic problem). Then,
there is a continuous (and uniformly bounded w.p.1) solution on OD [0, T] to
the equation (see Friedman [6, (3.6), p. 145])

qg(x, t) 2 dr, + fl(x 0F(x,;t z)
oto,r] [_ V(x)

99(, r’) dS + 2F(x, t),

where dS is the differential surface measure on dD. Finally (see [6, Theorem 2,
p. 144 and Corollary 2, p. 147]), it is evident that the function

U(x, t) dr" F(x, ;t, r’)qg(, r’) dS + F(x, ;t, 0)U(, 0) d
D

7o(X, t) dr, r(x, ;t, z)f(, r’) d

has the properties required. In particular, F(x, t) is a nonanticipative functional of
the zt and 2t processes, which implies that o(x, t) and, in turn, U(x, t), are also
nonanticipative. This completes the proof.

Now, redefine #1 to be the measure determined by U(x, s), s <= t, and dys
given by (B6) for s _< t, and dr(s), s <= t, given by (B5). Let /o be the measure
determined by U(x, s), r(s), s <= t, and w(s), s <= t.

Let R(t) denote the vector Etr(t), PR(t) denote the covariance matrix E (r(t)
-Er(t))(r(t)-Er(t))’ and PuR(X,t) denote the covariance E(g(x,t)
E U(x, t))(r(t) Et r(t)).
THEOREM 2. Assume (B1)-(B8). Then there is a version of M(x, t) such .that

w.p.l" M(x, t) and its first mean square (or true) derivative are continuous w.p.1 on
R and D x (0, T], respectively. The second mean square (or true) derivatives of
M(x, t) are continuous in D x (0, r] and M(x, t) has an ItO differential which satisfies

dM(x, t) [M(x, t) f(x, t)]dt

+ dy H(, t)M(,t)dS E;-1 H(,t)n(,x,t)dS
D D
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Also

(23b)
M(x,t)
V(x)

+ fi(x, t)M(x, t) g(x, t) + R(x, t),

(24)
dR(t) AR(t) dt

+ dy H(, t)M(, t) dS y-I H(, t)PMR(, t) dS
D D

(25)

PR(t) A’PR(t) + PR(t)A + G(t)G’(t)

H(, t)PMR(, t).dS Zt-1 H(, t)PMR(, t) dS
D D

PMR(X, t) PMR(X, t) + APMR(X, t)

H(, t)P(x, , t)dS .,-1 H(, t)PMR(, t) dS
D D

P(x, y, t) satisfies the boundary conditions for (x, t) on D x (0, T],

P(x, y, t)
eV(x)

+ fi(x, t)P(x, y, t) v(x, t)PMR(X, t),

and PMR(X, t) satisfies the (vector) boundary conditions

P,.(x, t)
eV(x) + fi(x, t)PMR(X, t) V(X, t)PR(t).

Proof The details are very similar to those of Theorem 1 and Lemma 4 and
are omitted. Only the boundary conditions will be discussed. By Lemma 5, and
a result similar to that of Lemma 4, it is easy to show that there is a version of
m(x, t) so that (w.p.1) m(x, t) is continuous on R (and in quadratic mean) (DiM(x, t))

DiM(x, t) is continuous on D x (0, T] (and in quadratic mean). Similarly, for
x e cD, it can be shown that cM(y, t)/V(x) and U(y, t)/cV(x) are continuous in
quadratic mean on x O x (0, T] (as functions of(x, y, t)). Then E’(cU(y, t)/#V(x))

cM(y, t)/c V(x), where the last term is defined on D by limy_x,DM(y, t)/ V(x)
=- M(x, t)/cV(x). Also lim_+x,DU(y, t)/OV(x) satisfies (w.p.1)

L + t) t)r(t) g(x, t)

cM(x, t)
V(x) + fi(x, t)M(x, t) v(x, t)R(t) g(x, t).



LINEAR DISTRIBUTED PARAMETER SYSTEMS 359

The equation

Etx[U(y, t) M(y, t)]
k aV(x)

+ fl(x, t)U(x, t) v(x, Or(t) g(x, t) 0

implies

cgP(x, y, t) + fl(x, t)P(x, y, t) v(x, t)Pgt(y, t) O.

Also

Et [r(t) R(t)] F-c U(x, t)
V(x)

+/(x, t)U(x, t) v(x, Or(t) g(x, t) 0

implies

8P(x, t)
V(x)

+ fi(x, t)PMR(X, t) v(x, t)PR(t) O.

This completes the details of the proof.
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CONTROL PROBLEMS WITH FUNCTIONAL RESTRICTIONS*

J. WARGA-

1. Introduction. We shall study a class of control problems in which restric-
tions are imposed on functions of controls with values in real topological vector
spaces. This class includes, among others, unilateral [1], [2], [3], [4] and minimax
[5] problems of the calculus of variations, the more general unilateral and mini-
max versions of control problems defined by integral [6] or functional-differential
[7] equations, and certain pursuit and evasion games. We shall discuss some of
these applications elsewhere.

Certain abstract models of control problems with restrictions in real topo-
logical vector spaces have been considered by L. W. Neustadt [8], [4] and R. V.
Gamrelidze and G. L. Kharatishvili [9] who have derived necessary conditions
for minimum. Neustadt has applied his results to several problems, mostly defined
by ordinary differential equations [3], [4]. These authors’ respective assumptions
and necessary conditions (see, e.g., [4, Condition 3.1, p. 63 and Theorem 3.1,
p. 64] and [9, 4 and 5, p. 244]) are expressed in terms of certain mappings that
must be appropriately defined for particular problems. Our approach is to study
both existence and necessary conditions for our model in terms of certain con-
tinuity and differentiability properties of the functions of controls that define the
problem. To do so, we imbed, as in [11], the set of "measurable original con-
trois" in a larger set 5 of "measurable relaxed controls." The reason for this is
twofold:first, because, as it is well known (especially in the control theory of
ordinary differential equations), the existence of an "original minimizing point"
can be rarely guaranteed whereas "relaxed minimizing points" do exist in rather
general situations and can be suitably "approximated" by measurable original
controls 11 ]; secondly, because we shall derive necessary conditions for minimum
that apply both to "original" and to "relaxed" minimizing points and that can be
formulated in a natural manner in 5 but would be rather artificial in alone.

Relaxed controls [11] represent an extension of the concept of generalized
curves introduced in 1937 by L. C. Young [12] (and which established the basis
for the existence theory in variational problems) and of the related concept of
relaxed controls on an interval (Warga [13], McShane [14], Ghouila-Houri
[15], Nishiura [16]). Lemma 3.1 below is an application of the basic separation
theorem for convex sets which was used in a similar context by Neustadt [4], [8].
Lemma 3.2 supplies, for all problems defined by functions of controls with the
required continuity and differentiability properties, a canonical mapping of the
kind postulated by Neustadt in [4, Condition 3.1, p. 63]. The fixed-point argument
of Lemma 3.3 is analogous to prior arguments of this kind (as by Pontryagin et al.
in [103), and the convex set {Dx(/; q )lq Q} is patterned after McShane’s [17]
"convex set of variations" which has been a basic variational tool for thirty years.

* Received by the editors May 12, 1969, and in revised form October 21, 1969.
? Department of Mathematics, Northeastern University, Boston, Massachusetts 02115. This

research was supported by the National Aeronautics and Space Administration under Grant NGR
22-011-020.
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2. Existence and necessary conditions. Before discussing our problem in
complete generality, we shall briefly illustrate by an example how our model
applies to a particular control problem. Let us consider the differential equation

Cpl(t), .P"(t)) .P(t) g(t, y(t), p(t), p) a.e. in T [to, l],

where p belongs to some given metric set P with a regular probability measure
defined on P, p can be chosen from the class of measurable functions from T to
some subset R of the Euclidean k-space Ek, g’T E, Ek P E,, and the
initial value y(to) is restricted to some given set B. Assume that, for every p
b B and p P, there exists a unique absolutely continuous solution y(p, b, p)(t)
of the differential equation such that y(p, b, p) (to) b and the function
p y(p, b, p)(tl)" P E, is continuous. Let A be a given subset ofE, ho "E,
hl"E, E,,, h2"E, --. E, and let, henceforth, the origin of any vector space that
we consider be represented by 0 if the nature of the space is clear from the context.
We wish to determine a control (function) 5 e N and a control (parameter) b e B

that minimize [ ho(y(p, b, p) (t l))p(dp) on the set
3P

(p, b) t x B hl(y(p, b, p)(tl))#(dp) O, h2(y(p, b, P)(tl))

(Such a problem would arise if we wished to minimize the expected value (with
respect to #) of a cost functional with restrictions placed on variances or higher
moments and with the range of a controlled function restricted to A.)

We shall now reformulate this particular problem in more abstract terms.
Let V denote the Banach space of continuous functions from P to Eg, with the
usual norm, and let C {v(. ) VIv(P) A}. For (p, b) B, we set

and

xo(p, b) f, ho(y(p, b, p)(tl))l(dp)6

xl(p, b) f, hl(y(p, b, p)(tl))#(dp)6

x2(p, b)(. h2(y(p, b, )(tl)) V.

We are thus given a function x.= (Xo,Xl ,X2)’ B E1 x E,, V and a
subset C of V, and we wish to minimize x0 on the set {(p, b) e N B[xl(p,b) O,
x :(p, b) e C}. (The functions Xo, x and x 2 are the "functions of controls" referred
to in 1.)

In other control problems that we have in mind, the set T may be multi-
dimensional, the function x may be determined by other functional relations (say
by integral or partial differential equations), the set P may consist of "adverse"
controls, or coincide with T, etc.

We now turn to the general problem. Let T and R be compact metric spaces,
with a positive, finite, regular, complete, and nonatomic measure dt defined on
T,/ a dense subset of R, m a nonnegative integer, m’ max (2, m + 1), V a real
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topological vector space, C a subset of V, and B a subset of some vector space with
a topology whose relativization to all m’- or lower-dimensional subsets is Euclidean.
We denote by N the class of measurable functions p from T to/, and assume
given a function x (Xo, x l, x2)" x B --* E1 x E,, x V. We wish to study certain
properties of an "original minimizing point" (fi, b) e N? x B that minimizes Xo on
the set {(p,b)6 x Blx(p,b)= O, xz(p,b)6C}.

For reasons that were mentioned in the Introduction, we imbed N? in a set 5
of "measurable relaxed controls." We denote by S the set of regular Borel proba-
bility measures on R, and let 5 be the class of functions a" T --, S with the property

that t c(r)(dr; t) is measurable for every continuous c’R --, E. We define

as a subset of 5 by identifying p’T with ao’T S such that ap(t) is a
measure concentrated at p(t) with probability 1 for almost all T. (Observe that
if p is measurable, then ao 5, and conversely.)

Next we define a topology in 5. To do so, we consider the Banach space 3
of functions (t, r) b(t, r)" T x R E, measurable in for each r, continuous in

for each t, and with the norm ]b] Q supper ]C/)(t, r)l dt < o. (It follows easily

from known theorems that N’ is isomorphic to the Banach space L(T, C(R)) of
L functions from T to the space of continuous scalar functions on R [18, Theorem
11, p. 149 and Theorem 22, p. 117]). We identify every a e 5 with the element
I, 6 * (the topological dual of )defined by

fT dt t c(t, r)a(dr; t) (dp)./(b) (a,

We then choose for * the weak star topology in N’* (the N’ topology of *)
and for its subset , the corresponding relative topology. We have shown [11,
Theorem 2.4, p. 631 .and Theorem 2.5, p. 632] that 5 is closed and is dense in
5, and it follows from known theorems [18, Theorem 2, p. 424 and Theorem 1,
p. 426] that 5 is metric and compact.

We shall assume henceforth that the definition of x has been extended from
x B to 5 x B, and we choose the product topology for 5 x B. The extension

of x to 5 x B is fairly simply accomplished for control problems defined by
functional equations; e.g., in the illustrative problem described at the beginning
of this section, y(a, b, p)(. is the solution of the equation

y(t) b + d g(, y(), r, p)a(dr; ) (to <= <= t).

We say that (ff, b)e 5 x B is a relaxed minimizing point if it minimizes
Xo on the set {(a, b) 5 x B[x(a, b) O, x2(a, b) C}. The following existence
and approximation theorem is an immediate consequence of the fact that 5 is
closed and sequentially compact and is dense in 5.

THEOREM 2.1. Let B be closed and sequentially compact and C closed, and
assume that there exists a point (a’,b’) 5x B such that x(a’,b’)= 0 and

The proof, in [11], that is dense in 5 presupposes that/ R but it remains valid if/ is
dense in R. Furthermore, the statement that N is dense in O also follows from Lemma 3.2 below.
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X2(O" b’) C and that x is continuous in some neighborhood of the set

{(a, b) e x B x(a, b) O, x(a, b) e C, Xo(a, b) <= Xo(a’, b’)}.
Then there exists a relaxed minimizing point (if, ) and a sequence {pi}= in such
that limi. pi and limi_,o x(pi, b)= x(, b).

Remark. We observe that a relaxed minimizing point, as an element of
x B, may, but need not, belong to N? x B. If it does, then it is also an original

minimizing point. On the other hand, examples can be given [13, p. 118] of prob-
lems that admit different original and relaxed minimizing points.

We shall now state certain necessary conditions for minimum that are satis-
fied by both original and relaxed minimizing points and that we shall prove in 4.
These conditions generalize the Weierstrass E-condition (the maximum principle)
and the transversality conditions.

We set

n--- {0-- (01 On)’oJ>o 0J< 1} cE, (n= 1 2,...)
j=l

and
Q 5 x B, q= (a,b)

!
Dx(F1; q /)= lim 2(x(7:1 + z(q )) x(O)).

+0 0

We denote by]. the norm in a normed linear space, and say that the function

x gl 4- O(qj- 0) " Ea x g x0 V
j=l

(where qj e Q) has a derivative at 0 if

]0l
x O+ OJ(q2- O) x() OJDx(O qj- O)

j=l j=l

exists and converges to 0 in E x Em x V as 101 0, 0 e , We similarly define
the existence of a derivative of x, x or x,2 (x, x2).

THEOREM 2.2. Let B be a convex set and C a convex body. Let, furthermore,
0 (if, b) be either a relaxed or an original minimizing point and assume that for
every subset {b, bin,} of B, the function

is continuous and,for every subset {qa, qm’} of Q, thefunction

has a derivative at O. Then there exists a nonvanishing continuous linearfunctional
on E x E x V such that

l((vo, Va, vz)) 2oVo +2v +/2(v) for vo e E v e E and v2 e V, 2o0,

l(Dx(O q O)) O for all qeQ,
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and

/2(v2) _-</2(x2(g/)) for all v2 C.

Remark. For purposes of exposition and to emphasize the main ideas, we
have stated the above theorem, and its proof, in a somewhat simplified form. We
can, however, strengthen this theorem in several ways, and we shall list a few of
these. First of all, if s is the class of simple measurable functions from T to R
(having only a finite number of values) and the point g/- (tY, b), while not neces-
sarily an original or relaxed minimizing point, minimizes Xo on the set {(p, b) s

B[xl(p,b) 0, xz(p,b) C}, then the conclusion of Theorem 2.2, and its proof,
remain valid. Secondly, a modification ofLemma 3.2 along the lines of [11, Lemma
4.4, p. 634] permits one to prove a generalization of Theorem 2.2 in which and

are replaced, respectively, by

* {p lp(t) R # (t) (t T)}
and

S # {aSla(#(t);t)= 1 (tT)},
where R#(. is a given mapping from T to the class of nonempty subsets of R
that satisfies certain conditions (see [11, Assumption 2.3, p. 631]) and #(t) is the
closure of R # (t). Finally, a simple reinterpretation of Theorem 2.2 permits one to
conclude that this theorem remains valid in the case where /is a relaxed minimiz-
ing point if the assumption that x is continuous in some neighborhood of /in Q
is replaced by the weaker assumption that, for every subset {ql,..., q,,} of Q,
the function 0.-, x(g/+ jm=’ 10J(qj 1))" ’--’ E x E,, V is continuous in
some neighborhood of 0 in ,. These, and similar, remarks are also applicable
to Theorem 2.3 below.

The following theorem is essentially a refinement of Theorem 2.2. It applies
to certain "unorthodox" problems such as the one considered by Neustadt [4,
pp. 87-91] who has shown, in [8], [3] and [4], that in certain classes of problems
linear approximations can be usefully replaced by convex approximations.

For (Vo, v, v2)e E x E,, x V, we write Vo,a (Vo, v) and /)1,2 (Vl, U2)"
THEOREM 2.3. Let the assumptions be the same as in Theorem 2.2 except that

the condition

(2.3.1) Ox(O+ j=l
OJ(qJ--t)) "m’-EIxEmxV

]as a derivative at Ofor every subset {q q,} of Q
is replaced by

(2.3.1’) 0"--"Yl’2 OAr-j=l OJ(qJ--gl)) "-m’-EmxV
has aderivative atOfor every subset {qx, q,,,} ofQ and xo(q) g(xl,2(q))(q Q),
where g is a continuous covexfunctionfrom E,, x V to E.

Let ,(vl,2) g(xl,2(g/) + v 1,2) g(x ,2(?l))for v, E,, x V. Then there exists
a nonvanishing continuous linear functional on El x E,, x V such that

l((vo /)1,2)) 20/)0 -+- 21/)1 -[- /2(V2)= 20V0 -F /1,2(Vl,2)
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for Vo E, v E,. and v2 V, 20 >= O,

2o,(Dx,2(g/; q ?/)) + l,2(DXl,2(?t"q ?7)) >-_ 0 for all q Q

and

12(v2) <- 12(x2(?l)) for all v2 C.

3. Auxiliary lemmas. We shall denote by [AI the measure of A c T and by
H, cH and H the interior, the boundary, and the closure, respectively, of a set H.
If A is a subset of some El, with 0 as a limit point, a topological vector space,
and h’A , then we say that h(a) o([a[) if limlal o h(a)/la[ O.

We observe that is a convex subset of M* and that, for defined as in
0Theorems 2.1 and 2.2 and aj (j 0, 1, n) the function 0 a0 + =(a- ao)’ is continuous. Furthermore, if a (i 0, 1,2,... and

limil{t Tlai(t) ao(t)}l 0, then limi ai ao (but not conversely).
Finally, we note that if 0 x( + O(q ))’, E1 x E x V

has a derivative at 0 for all {q,..., qm’} Q, then Dx(; q ) exists for all
qQ and Dx(;lq + 2q2 ) lDX(;q ) + 2Dx(;q2 ) for all
q,q2Qprovided 0,2 0, + 2 1. Then the set {Dx(;q )lq Q}
is convex whenever B is convex. Similar remarks apply when x is replaced by x,2.

LEMMA 3.1. Let W be a convex subset of E1 x E x V containing (0, O, O) and
(1, O, 0), C’ a nonempty, open and convex subset of and 0 C’. Then either there
exist 2o 0, 2 Em and 12 V*, not all O, and such that

,0 Wo - ,1 Wl "[- lz(w2) > 0 for all (Wo, W1, W2)e W

and

/2(c) <- 0 for all c e C’,

or there exist points (o, , 2) e W and numbers fli > 0 (i 0,..., m), such
that Lo fli 1, 2 e C’, the set {o,1, , ’,1 } where ,1 ( ), is linearly
independent, o < 0 and EL o o.

Proof. Let Wo,1 {o, e E x Eml (o, , 2)e l/V}. Then either
(i) Oe cWo,, or
(ii) O s W?), and there exists some (o, , 2)s W such that o < O,

=OandzsC’,or
(iii) Os W3,1 and every (o, , 2) with o < O, 0 and 2 C’ is

outside W.
If (i) holds, then the first alternative of the lemma is satisfied with lz O and

(,o, 2)an inward normal to Wo, at O (/o >= O because (1, O) Wo,).
If (ii) holds (hence, O s W,), then there exist r/ s W and fii > 0 (i O, ..., m),

such that 7’=o fl= 1, t/)< O, {/,1, ..., ’,} is linearly independent and

7’=o flr/] O. Since s W and 2 s C’, there exists some 0 (O, 1] such that
i__ o]i .21_ (1 0) W(i- 0,..., m),o < O, 7’=o/’ O, {(,1, ,1} is
independent, and z e C’.

Finally, we consider the case (iii). Let Wz {WzlW- (Wo,W,Wz)e W,
Wo < O, w O}. Then Wz is nonempty and convex in V and W f) C’ is empty.
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Since C’ is nonempty, open and convex, there exists a nonzero continuous linear
functional 1 and a real e such that

(3.1.1) l(w2) =< l’2(c) for all w2 Wz and c C’.

Since 0 C" --’W2, we have e 0.
Now let We {(/z(w2), Wo, w)lw (Wo, w, w2) W}, let 0 be the origin

in Era, and let H {(, o, 0,,)1 > 0, o < 0}. Then, by (3.1.1), H f’l W e is
empty and, since both H and W e are nonempty convex sets in E1 x E1 x E,,,
there exist real 2b and 2o and 21 e Em such that 121 + 12o[ + 1211 4:0 and

(3.1.2)
2;li(w) + 2oWo + 2.w > 0 >= 2;; + 2oo

for allw--(Wo,Wa,Wz)W, >0 and o < 0.

It follows that 2 __< 0 and 2o > 0. If we set 2)lz 12, then (3.1.1) and (3.1.2) imply
the first alternative of the lemma.

LEMMA 3.2. For every choice of n and aje 5 (j O, 1,..., n), and for all
O e -,, we can construct a sequence {pi(O)}=l in that converges to if(O)= ao
+ = 10J(aj ao) in 5 uniformly in 0 and such that 0 pi(O)’nn is

continuous for every i.

Proof For every fixed positive integer we can partition the compact and
metric set R into disjoint Borel subsets R (k 1, ..., ki) of diameters at most 1/i.
We can similarly partition T (leaving out, if necessary, a subset To of measure 0)
into Borel subsets TI (1 1, ..., li) of diameters at most 1/i and each of positive
measure. For each k, we choose a point r/ e R, fq/.

Since the measure of T is nonatomic, for each we can define subsets Tl(OO
(0 =< =< 1) of TI such that TI() Ti(fi) for < , TI()I ctl TII, TI(0)is empty

andTi(1)= Ti. Nowleti,,=(1/ITil) I" a(Rk;t)dt(l= 1,...,l,k= 1,...,,

0.Foreach0andeachj=0,-., n),and, foreach0 let0 1-j=l
l, we can partition the interval [0, 1] into disjoint intervals
n, k 1, ..., kl) of lengths OJi,j,k, arranged in the lexicographic order of (j, k).
Let al,j,k(O bl,,k(O) be the endpoints of Ii,,k(O). We now set, for all 0 e ’,,

r/ for e Ti,,k(O)
Tl(a for all 1, andpi(O)(t) Tt(bt,j,k(O) i,j,k(O)) j k

r for T0.
These relations define pi(O) on T for all 0

We shall show that (i) the sequence {pi(O)}=l in N converges to if(0)= ao
+ " OJ(aj- ao) in 5, uniformly in 0 e nn and (ii) for each i, the functionj=l

0 - p(O): --, --* is continuous.
Statement (ii) follows from the observation that I{t6 TIp(O’):/: pi(O")}l

b,j, areconverges to 0 with I0’ 0"1 because the a,j, and continuous (in fact,
linear) in O.

To prove the assertion (i), we observe that the statement

"lim ai-- a"
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is equivalent to the statement

"g-+oolim fr dt f qS(t, r)a(dr;t)= fr dt f q(t, r)(dr; t) for each q e ;"

furthermore, since finite sums of functions of the form (t, r) -, f(t)c(t), where f and
c are continuous, are dense in , it suffices to consider (t, r)= f(t)c(r). Thus,
for any continuous f’T-, E1 and c’R El, we must prove that

uniformly in 0 e -,.
For each TI, we choose a point tl e TI. The symbol O(e) will represent a

whose absolute value does not exceed e, If[1 _I- If(t)[ dt andquantity

suprR }c(r)]. Let e > 0, and let io io(e) be sufficiently large so that ]c(r) c(r’)]
_-< e/(31fll) and If(t)- f(t’)l <= e/(31cllYl) if distance (r,r’) <= 1/io and distance
(t, t’) <= 1/io. Then, for every 0 e and/>= io, and with summations taken for
j=0,...,n,l= 1,...,landk= 1, k, we have

f(tl)c(rik)OJ fT oj(R,; t) at + 0(2e/3)
l,j,k

Y’, f(tl)c(r,)l TS,,,,(0)I + O(2e/3)
l,j,k

f(tl) f c(pi(O)(t)) dt + O(2/3)
l,j,k ’,k,(O)

fT f(t)c(pi(O)(t)) dt + 0().

Since io was chosen independently of 0, statement (i) is thus verified.
LEMMA 3.3. Let C’, fii > 0 and {i E1 E,, V(i O, m) be as described

in Lemma 3.1, let U be a given neighborhood of O in V, and let fi (rio,...,
For ho > 0,’ {0 (0, 0")10 =< 0 =< h0 (i 0,..., m)} and k 1, 2,...,
let . (o, Yl,.2), yk (y, ykl, y), (0, 1, 2) and ek (eko, ekl, ek2)’

E1 E,, V be continuous and such that limk+ yk(O) (0) and limk-+ ek(O)
0 uniformly in 0 e -’, (0) o(]0]), and

(3.3.1) yk(O) ;(0) Oi{ (0) + ek(O) (k 1, 2,..., 0 eY-’).
i=0
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Then there exists 7’ > 0 such that, for every 7 6 (0, 7’], we can determine 0(7)6 -’
and an integer k(7) > 0 satisfying the following relations"

(0(7)) o(7), 0(7) 7fl o(7), -1 e2,)(0(7) 6 U,
7

y(o()) < yo(O), y(o())= y(o), y(o())- y(o) c’.

Proof Since e C’ (i 0,... m), it follows that

Z ’c’.
i=0

Thus there exists a neighborhood U1 of 0 in V such that =o fl + U1 = C’.
As in any topological vector space, we can determine a symmetric neighborhood
U2 of 0 in Vsuch that U + U2 c U1. We now set U’ U U2.

Let M be the matrix with columns , (i 0,-.., m) which is clearly non-
singular. Relation (3.3.1) implies, projecting both sides on E1 x E, that

(0) (k 1 2,(..2) y,(0) YO,l(0) MO + o,(0) + eo,1 .’,

We shall show that there exists > 0 such that, for every 7 e (0, ], we can
choose an integer k(7) > 0 and a point 0(7)e W’ satisfying the relations

(..) (0(7))- YO,l(0)= 7M,

e’(0()) e U’0..4)

and

(3.3.5) lim -1(0(7 7fl) 0.
),+0 7

Indeed, since o,1 o(lOI) we can determine h’, 0 < h’ __< ho, such that IM-
-minOmax/max if 0 __< 0 <_ h’ (i 0,... m, where flmin min t, max max fli

and Omax max 0 (i 0,..., m). We set 2h’/(3flmax) and choose, for every
7 e (0, p], an integer k(7) sufficiently large so that 7- et)(O) e U’ for all 0 -’ and

(3.3.6) IM-eor(O)l <= min (1/47flmin, 72)
Let "= {0 Em+ III Oi 7il < 1/27flmin( 0, 1, m)}. Then

and-" is homeomorphic to a closed ball in Era+ 1. The function

0- 7fl M-1(o,1(0 + eo,)(O))
is continuous and maps -" into itself" it admits, therefore, a fixed point 0(7)
which, in view of (3.3.2), satisfies relation (3.3.3). Relation (3.3.4) is satisfied because
of the choice of k(7) and (3.3.5) is implied by (0) o(101) and (3.3.6).

It follows that (0(7))= 0(7) and 0(7)- 7fl 0(7). Furthermore, relations
(3.3.1) and (3.3.4) imply that, for all 7 e (0, ],

Y2 (0(7)) Y2(O) 2 oi()i2 ( __11//2(0(])) -[- V’;
i=0
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hence

(3.3.7) y2)(0(7))- y(0)- 7 Y’, fl2 + a() U’,
i=0

where a(7) 0(7). Now let 7’ > 0 be small enough so that 7’ _<- min (?, 1) and
a(7)/7 U’ for all 7 =< 7’. Then relation (3.3.7) implies that

1
-(y,(o(,))- y:(o)) ,/’ + rj c’.

i=0

Since 0 e C’, it follows that

(3.3.8) y(’)(0(7)) y(0)e C’.

We recall that Mfl ’:o//o,, y’,"=ofl] 0 and o < 0 (i 0,... ,m).
Thus relations (3.3.3) and (3.3.8) yield the remaining conclusions of the lemma.

4. Proofs of Theorems 2.2 nl 2.3.
4.1. Proof of Theorem 2.2. Let W be the convex hull of {Dx(Y/; q- a/}lq

e Q} U {(1, 0, 0)} c E x E,, x Vand C’= CO x2(O). Since Dx(Y:l; q Yt)= 0
for q Y/, the assumptions of Lemma 3.1 are satisfied. The first alternative of
Lemma 3.1 yields directly the conclusion of Theorem 2.2. We shall assume,
therefore, that the second alternative is valid, and we shall show that it leads to
a contradiction.

Since ie W(i 0,..., m), there exist points qi (i, bi)e Q (i 0,..., m)
such that i is a convex combination of Dx(O;qi at) and (1, 0, 0). We can verify
that the q can be chosen so that the set {Dx(Yt;q Y/)li 0, ..., m} has all the
properties listed for {i[i 0, ..., m}, and we may assume, therefore, that

(4.1.1) = Dx(Yl q Yt) (i 0,..., m).

0For each 0 e+ 1, we set 6(0) ff + --o 0’(a,- if)and /(0) + --o
(bi b).

By Lemma 3.2, we can construct a sequence {pk(O)}=l in that converges
to rY(0) uniformly in 0 + and such that, for each k, 0 --, pk(O)’- + --* l is
continuous. By assumption, x is continuous when restricted to some neighbor-
hood of F/= (, h) in 5 x/(+ 1) and, as previously mentioned, 5e is metric and
compact; there exist, therefore, ho > 0 and ko > 0 such that, for d-’ {0 e E,, + 1[
0 =< 0 __< ho (i 0,..-, m)}, y(0) x(6(O), (0)), yk(O) X(Pk(O), /(0)) and ek(O)

yk(O)- X(6(0),/(0)) (k >= ko), we have limk-.oo ek(O)= 0 uniformly in 0 e -’
and the functions 0-, ek(O) and 0--* yk(O)" -’---* E1 x E,, x V are continuous
for each k. We may assume that ho was chosen sufficiently small so that the
function

0 (0) x(5(O), (0)) x(ff, ) OiDx((ff, ); (r,, b) (7, ))
i=0

is continuous in --’, and, by assumption, (0) o(]0l).
We set U V. Then, in view of (4.1.1) and the definition of yk, ek, y and ,

the assumptions of Lemma 3.3 are satisfied. The conclusion of Lemma 3.3 implies
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that there exist 0’ 0(7’), p’ Pkt,)(O’) Yt and b’ =/(0’) B such that

Xo(p’ b’) < Xo( b) x (p’ b’) O, xz(p’ b’) C

This shows that g/= (8, ) can be neither a relaxed nor an original minimizing
point, contrary to assumption.

4.2. Proof of Theorem 2.3. For 1,2 (1, 2) Em V, let (1.2)
g(x1,2(O) + 1,2) g(x1,2(O)), W {((Dx 1,2( q )) nt- a, Dx1,2(O q ))

Iq Q, a >__ 0} and C’= Co x2(g/). Then the assumptions of Lemma 3.1 are
satisfied and its first alternative yields the conclusion of Theorem 2.3. We shall
assume, therefore, that the second alternative holds. Then there exist qe Q
(i 0,..., m) such that

il,2 DX l,2(/ qi 2:t).

Furthermore, since i W, we have

(4.2.1) (],2) < < 0 (i 0,..., m) and ,
i=0

We define -’, #(0),/(0) and pk(O) as in {} 4.1. We then set y],2(0) x1,2(pk(O), (0))
and similarly define .1.2(0), e1,2(0) and 1,2(0). Next we set

and

Yo(O)=yo(O)= 0’, e(O)=O
i=0

,o(0)=0 (0e-’, k= 1,2,...).

Finally, in view of relation (4.2.1), we can determine e > 0 and neighborhoods U
and /..7 of 0 in V such that

(4.2.2) 2 fli, 2 -Jr- (/)1, /)2) < 0
i=0

and

for Ivll <- , v2 U,

U+UcU.

Then the assumptions of Lemma 3.3 are satisfied, and it follows that there exist
,’ > O, 0(,) --’, p(7) pt,(O(,)) e and b(?,) =/(0(7)) e B (0 < 7 _-< 79 such that
O(0(7)) O(), )’- e()(0(),)) U, x l(P(7), b(7)) 0 and x2(p(7), b(y)) e C. Further-
more, we have

ykl(Y)(O())) .I(0) X l(p()), b(y)) x1(8, ) 7 fli 0
i=0

and

yk2()’)(O(;))- Y2(O)-- x2(p()), b(y))- x2(8 )-- Z fiii nt- 0()) -- e()(O(7)).
i=0
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Since p, is continuous and convex and (0) 0, these relations and (4.2.2) imply
that for sufficiently small 7,

-71p’(XI’2(P()’ b(/))-Xl,2(ff, ))<-- P,((XI,z(P(7), b(7))-xl,z(ff, ))) <0.

Thus, for sufficiently small 7, x0(p(7), b(7)) g(xl,z(p(7), b(7))) < g(xl,2(Y, b)),
x 1(p(7), b(7)) 0 and xz(p(,), b(7)) e C, contradicting the assumption that (, b) is
either a relaxed or an original minimizing point. Thus the second alternative of
Lemma 3.1 is inadmissible and Theorem 2.3 is valid.

Acknowledgment. I wish to acknowledge with thanks several stimulating
conversations with L. W. Neustadt.
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UNILATERAL AND MINIMAX CONTROL PROBLEMS DEFINED
BY INTEGRAL EQUATIONS*

J. WARGA’

1. Introduction. We consider control problems defined by the Uryson-type
integral equation

j g(t, "c, y(z), p(), b) d (t T),(1.1) y(t)

where T is a compact metric space with an appropriate measure dt, y C(T, E,)
(the Banach space of continuous functions from T to the Euclidean n-space E,),
p is a control function and b a control parameter.-For given sets A Era, and
A Em, functions h :E, E, h :E, Era, and h2: T x E, - Em and a point

e T, we require that the admissible solutions (y, p, b) of (1.1) satisfy the restric-
tions

(1.2) hl(y(tl))A1

and

(1.3) h2(t, y(t)) A (t T).

Our purpose is to study points (y, p, b) that minimize h(y(ta)) in the class of
admissible solutions as well as to investigate the corresponding relaxed problem.

We have studied a similar problem in Ill without the unilateral restriction
(1.3) and with p replaced by a relaxed control (but with y in either C(T, E,) or
L(T, E,)). The unilateral problem (with y subject to restriction (1.3)) has been
studied in the special case where T is an interval of the real axis and (1.1) is equiva-
lent to an ordinary differential equation; we have obtained existence theorems
and necessary conditions for a relaxed minimum in [2] and [3] and L. W. Neustadt
has derived necessary conditions for an ordinary minimum in [4] and 5] (first
results in this area having been obtained by R. V. Gamkrelidze [6], [7]). Necessary
conditions for the unilateral problem have also been investigated by V. R.
Vinokurov [8 for the special case of Volterra-type integral equations but his
arguments are heuristic and some of the results inaccurate.

In the present paper we restate ( 2) with slight modifications certain results
of [1] that establish the existence of a relaxed minimizing control and show that
it can be approximated by original (ordinary) controls. We then apply ( 3 and
5) the results of [1] and 9] to our present problem and derive necessary condi-
tions that are satisfied by both relaxed and original minimizing solutions. We
also describe ( 4) certain minimax problems and problems with other functional
restrictions to which our methods are applicable and for which they yield analogous
results.

Received by the editors May 12, 1969, and in revised form October 21, 1969.

" Department of Mathematics, College of Engineering, Northeastern University, Boston,
Massachusetts 02115. This research was supported by the National Aeronautics and Space Administra-
tion under Grant 22-011-020, Supplement 2.
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2. Existence and approximation of relaxed minimizing solutions. Let T and R
be compact metric spaces, with a positive, finite, regular, complete and non-
atomic measure dt defined on T, the class of measurable mappings from T to
a dense subset/ of R, and B a convex subset of a Banach space. We assume that
the function (t, r, v, r, b) g(t,, v,r,b):T x T x E x R x B E is measur-
able in (t, r) (with respect to the product measure dtdr on T x T) for every (v, r, b)
and continuous in (v, r, b) for every (t, r). We also assume that h, h and he are
continuous.

Let S be the class of regular Borel probability measures on R, and the
class of mappings a:T--+ S (relaxed controls) such that the function

j c(r)a(dr; t)’T E1 is measurable for every continuous c" R--, E We

identify each "original control" pc N with the element ap s such that the
measure ap(t) is concentrated at the point p(t) with probability 1 for almost all
e T. We also identify all mappings a in 5 that coincide a.e. in T. We choose for

5e the smallest topology containing sets of the form

4,(t ,r)(o(dr; t) o’,(dr; t)) <},
where e > 0, rl 5 and (t, r) b(t, r) is real-valued, measurable in for every r

and continuous in r for every t, with .t sup,R Ib(t, r)l dt < o. (This choice of

topology for 5 is equivalent to that given in [10, pp. 630-631], [1, p. 74] and
[9, p. 372] .)

We set

f(t, , v, s, b) fR g(t V, r, b)s(dr)

for all Borel measures s on R and all (t, r, v, b), and consider the relation

(2.0.1) y(t) fr f(t, , y(), a(), b) d (t T)

for (y, a, b) C(T, E,) x 5 B. When a p e (in the sense just defined),
(2.0.1) and (1.1) coincide.

We say that the point (y, a, b) C(T, E,) x 9 x B is a relaxed admissible
solution if it satisfies (2.0.1), (1.2) and (1.3). If, furthermore, a e , then we say
that (y, a, b) is an original admissible solution. A relaxed (respectively original)
minimizing solution is one that yields the minimum of h(y(t)) among all relaxed
(respectively original) admissible solutions.

The following existence and approximation theorems follow essentially from
[1, Theorem 3.1, Theorem 3.2, p. 76].

THEOREM 2.1. Let A and A be closed and B compact. Then there exists a
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relaxed minimizing solution (y, if, b) if the following conditions are satisfied"
(i) There exists at least one relaxed admissible solution;

(ii) There exists a positivefunction o, integrable on T, and such that,for every
(a, b) 5 B and measurable y" T E, that satisfy (2.0.1) a.e. in T, we have

Ig(t, , y(r), r, b’)l _-< ,o(r) on T x T x R x B

and the function .f f(t, r, y(r), r(r), b)dr is continuous.

THZOREM 2.2. Let the assumptions of Theorem 2.1 be satisfied, and let (,
be a relaxed minimizing solution. Assume, furthermore, that is the unique solution
in C(T, E,) of (2.0.1)for r and b b and that (1.1) admits at least one solution
y in C(T, E,)for b b and every p in some neighborhood of 8 in . Then there
exists a sequence {P}?=I in and a sequence {y}?_ in C(T,E,) such that the
(Yi, Pi, b) satisfy (1.1) and lim_.o y(t) (t)for all e T.

3. Necessary conditions. Let (, 8, ) be either a relaxed or an original
minimizing solution. We shall show that (p, 8, b) satisfies certain conditions that
generalize the Weierstrass E-condition (Pontryagin’s maximum principle) and the
transversality conditions.

We denote by[. the norm in a Banach space. If 5f and are Banach spaces,
f c and H" --, , we say that a linear operator Ho,(N)’ --, is a derivative,
with respect to , of H at N e f if IH(co) H() H,o(N)(co N)I o(Ico NI)
as co N, co e f. If H is a function of several arguments col, co2, etc., we denote
partial derivatives by H, H,o2, etc.

Assumption 3.1.
(i) There exist derivatives gv(t, r, v, r, b) and gb(t, r, V, r, b) for all (t, r, v, r, b) T

x T x E, x R x B, and they are measurable in (t, r) (with respect to the product
measure dtdr on T x T) for every (v, r, b) and continuous in (v, r, b) for every (t,
furthermore, for each (r, r, b) T x R x B, the functions v g(t, r, v, r, b) (t T)
are equicontinuous on every compact subset of E,;

(ii) There exist a compact set D E, containing {(t)lt T} in its interior, a
measurable function 0 on T, a modulus of continuity , and a neighborhood N of

(& b) in 6e x B such that, for , g, g and g, we have suptT O0(r) dr <

(3.1.1)

(3.1.2) fr sup
DxRxB

I’(t, r, v, r, b)l =< ’o(r) onTxDxRxB,

[(tl, r,v,r,b) (t2, r,v,r,b)ldr <= (distance (tl, t2)

for all tl, 2 T, and (2.0.1) has a unique continuous solution 37(r, b) for all (a, b) e N,
with 37(a, b)(t) D (t T);

(iii) For k(t, r) f(t, r, y(r), (r), b) (t, r e T), the integral equation

w(t) fT k(t, r)w(r) dr (t6 T)

has only the trivial solution w(. O;
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(iv) The functions v h(v), v h(v) and (t, v) - h2(t, v) exist and are con-
tinuous for (t, v)

We shall state necessary conditions for minimum for the case where the set
A of the unilateral restriction (1.3) is a convex body and the set A1 of (1.2)contains
only the origin of Era,. The case where A and A are diffeomorphic, respectively, to
a convex body in Era2 and a convex subset of some E can be easily transformed to
the form just mentioned.

We observe that, as a consequence of Assumption 3.1 (iii), there exists a
resolvent kernel k* of k, that is, a measurable real matrix-valued function k*

(k*/’) (i, j 1, n) on r x r such that supteT .I ]k*(t, z)[ dr < o and, for

every z e C(T, E,), the relations

and

w(t) fr k(t, z)w(z) dz + z(t) (t eT)

Jr k*(t, r)z(r) dr + z(t) (t T)

are equivalent for w e C(T, E,) (see [1, Lemma 7.2, p. 90).
THEOREM 3.2. Let (f, i, b) be either a relaxed or an original minimizing solu-

tion, let Assumption 3.1 be satisfied, and let k* be a resolvent kernel ofk. We assume,
furthermore, that A is a convex body in Era2 and A1 contains only the origin of
Then there exist 2 >= O, 2 Era,, a nonnegative finite regular measure co on T and
an co-integrable function ’T E such that

(i) 2 + 121 + f. I(z)l(dz) # 0;

(ii) (Weierstrass E-condition) for z(dt) (t). h(t, (t))m(dt) (t # tx, T),

z(dt,) 2h@(t,)) + 2. h(y(tl)) + (tl)" h(t,, y(tx))o(dtl)

and

e(t, r, s) f(t, r, $(r), s, b) + k*(t, O)f(O, r, $(r), s, b) dO (se S),

we have

(3.2.1) J (t, r, s) )(dt) >= Jr (t, r, if(r)). )(dt)

for all s S and almost all r T;

(iii) (Support (transversality) conditions)

fT [fTfb(t’ ’ N()’ ()’)(b )d + fT xT k*(t, O)fb(O, r, (r), i(r),)

) dr dOl 7.(dt) >= 0 for all b B;
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and
(iv) b(t). h2(t, .P(t)) >_ c(t), a for all a e A and o-almost all e T.
Remark. In the special case wh6re T is an interval to, tx] of the real axis and

(1.1) is equivalent to an ordinary differential equation, the above results slightly
generalize those of 4], [5], 6] and 7]. Our results are also applicable to the
problem considered in [8].

4. Minimax problems and problems with other functional restrictions. Let P
be a compact metric space, and let a function be defined in the same manner as
the function g but depend, in addition, on a parameter p e P. We consider solu-
tions (y, , b) of the equation

(4.0.1) y(t, p) fr dz fR ,(t, Z, y(z, p), r, b, p)r(dr; z) (t e T, p e P),

which is a generalization of (2.0;!2). With suitable assumptions, analogous to those
of 2 and 3, for every such solution (y, r, b) the function p--. y(ta, p), where
tl e T is given, is continuous. We can now consider a variety of problems. In one
such problem, we wish to minimize SUpp,p ya(t p’) subject to the conditions

Y(tl Pl) e Aa and y(ta P) e A,

where P e P, Aa c E, and A c E, are given. This problem was previously con-
sidered in [11] in the special case where (4.0.1) is equivalent to an ordinary dif-
ferential equation and only relaxed minimizing solutions are considered.

Another problem can be defined by choosing continuous functions h, h
and h2 from E. x B x P into, respectively, Ea, Em and E,. and a Borel measure

p on P, and minimizing [ h(y(ta, p), b, p)p(dp) subject to the conditions
.p

(4.0.2) fha(y(ta,p),b,p)#(dp)eA1 and h2(y(ta,p),b,p)eA (peP).

This is a fairly natural setting for control problems in which p is a known prob-
ability measure on P, and it is desired to minimize an expected value with restric-
tions placed on variances or higher moments and with the range of the function
p--* y(ta, p)confined to a "permissible" region A.

We shall only present results concerning the latter problem since the mini-
max probleni can be easily transformed into a special case of the second. Theorems
4.1 and 4.2 below can be proved using arguments that slightly extend those in
[1], [9] and 5, and their proofs will therefore be omitted.

THEOgFM 4.1. Let A and A be closed, B compact, and be the set of all the
points (y, o, b)e C(T x P, E,) x 5 x B that satisfy (4.0.1) and (4.0.2). Assume that

(i) s’ is nonempty
(ii) There exists a positive integrable function o on T such that

[(t,z,y(z,p),r,b’,p)[ __< Oo(Z) on T x T x R x B x P
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for every (y, a, b) e ’
(iii) lim f sup I(t,r,v,r,b,P)-’(t,r,v,r,b,p)ldr=0

(t,p)--*(,) D R B

for all (, ) e T P and every compact subset D of E,
(iv) For every (a, b)e 5 x B, equation (4.0.1) has a unique solution y.

Then there exists a point (y, i, ) that minimizes ;o h(y(tl’ p)’ b, p)#(dp) among all

(y, a, b)e xd and a sequence {(Pi, Yi)} in x C(T x P,E,) such that the (yi, pi,

satisfy (4.0.1) and limi Yi uniformly on T x P.
THEORZM 4.2. Let s be as described in Theorem 4.1 and let (y, i, b) be either

an original or a relaxed minimizing solution (that is, (y, ff, b) minimizes

(y(t p), b, p)#(dp) all (y, b) e xd for which a is either restricted to1, among

or allowed to range over 5). Let , satisfy Assumption 3.1 for each p e P, with r
replaced by (r, p) in 3.1 (i), (3.1.1) and (3.1.2), D, d/o and independent ofp, and
continuous for i= O, 1, 2, and let (4.0.1) have a unique continuous solution (t,p)

y(t, p)for each (a, b)e b x B. Then there exist 20 >_- O, 21 e Era, a nonnegative
finite regular measure co on P and an co-integrable function ’P E,, such that

(i) Ro / I,1 / j Idp(p)lco(dp) 0;

(ii) For

z(dp) 2,h(y(tl, p), , p)#(dp) + h(y(tl, p), , p) dp(p)co(dp),
i=0

(0 p, s) f(t O, y(O p) s, b, p) + *(t x, r, p)f(r O, y(O p) s, b, p)dr

(OCT, peP,

and

seS)

fi(P) fr fb(tx, r,, y(r, p), i(r), , p) dr,

+ rr k*(t, r, p)f(r, O, y(O, p), if(O), p)dr dO,

we have"
Weierstrass E-condition)

fe z(dp) o(0, p, s) >= f, z(dp), e(0, p, i(0))

for all s e S and almost all 0 e T;
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(Support (transversality) conditions)

for all b B and

z(dp), fl(p)b >= z(dp), fl(p)b

dp(p), h2(tl, y(tl, p)) >= qb(p), a

for all a A and co-almost all p P.

5. Proofs of Theorems 2.1, 2.2 and 3.2. We denote by LI(T, E,) the Banach
space of integrable functions from T to E,.

5.1. Proof of Theorem 2.1. Assumptions (i) and (ii) of Theorem 2.1 and the
arguments of [1, 6.2, p. 853 show that any sequence {(yj, aj, bj))j=l in LX(T, E,)
5 B of solutions a.e. of (2.0.1) admits a subsequence, defined by j e J, con-

verging in LI(T, E,) B to some (, Y, ) that satisfies (2.0.1) a.e. in T and
such that

lim [f(t, , yj(), aj(z), bj) dr [f(t, , y(r), (), ) dz
jJ dr dr

for all e T.

It follows then from assumption (ii) of Theorem 2.1 that the yj and 37 can be
assumed continuous, (, 6, ) satisfies (2.0.1) for all T and

(5.1.1) lim yj(t) y(t) for all t T.
j6J

If we choose the (yj, aj, bj) among admissible relaxed solutions so that h(yj(t))
converges to inf h(y(t a)) (among admissible relaxed solutions), then (5.1.1)shows
that y satisfies (1.2) and (1.3) (because the sets A and A are closed and h and h2

are continuous), and is, therefore, a relaxed minimizing solution. This completes
the proof.

5.2. Proof of Theorem 2.2. As in [1, 6.3, p. 86], we choose a sequence
j}j=lp in converging to ff and such that (1 1) has a solution (yj fij, ) e C(T, E,)

B forj 1, 2, .... It follows then from the arguments of 5.1 and the unique-
ness assumption that limj_ yj(t) y(t) for all e T. This completes the proof.

5.3. Proof of Theorem 3.2. Let N be the neighborhood of (if, ) referred to
in Assumption 3.1 (ii), and let a sequence {(aj, bj)}j% in N converge to some
(a’, b’)e N. Then an argument similar to those in 5.1 and 5.2 shows that

lim (aj, bj)(t) (a’, b’)(t) for all e T.
joo

Since (3.1.1) and (3.1.2) imply that y(a’, b’)(. and the )7(aj, bj)(. form an equi-
continuous family, it follows that limj (aj, bj)= (a’.,b’) in C(T,E,). The
topology that we chose for can be easily seen to be metric (being a relativiza-
tion of the weak star topology in the topological dual of L(T, C(R,E)) [12,
Theorem 2, p. 424 and Theorem 1, p. 426]. We conclude, therefore, that (a, b)

37(a, b) is continuous in N.
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Let m’= max (ma + 1, 2) and-- {(0 0’’)E,.,[0>0 0< 1}
j=l

The arguments of [1, Lemma 7.1, p. 87] show that, for every fixed choice of
{aa,’", am,} = 0 and {ha,’.’, bm,} B, there exists a neighborhood F of
(/p, 0) in C(T, En) 3-- such that the function F’F ---, C(T, E,), defined by

F(y, O)(t) f t, z, y(r), if(r) + OJ(aj(r) if(z)), + O(bj dr
j=l j=

(t6 T),

exists and is continuous, the partial derivative r exists and is continuous on F,
and the (total) derivative/,0)(/P, 0) exists. Furthermore,

(Fr(2, 0)Ay)(t) fi(t, r, y(r), if(z), b)Ay(r)dr

f k(t, r)Ay(r)dr
3T

(Ay C(T, E.), 6 T)

and

FoJ(P, 0)(t) fit, z, f(r), aj(r) if(z), b) dr

(5.3.)

Jw fb(t, r, y(r), if(Z), )(bj ) dr (j 1,..., m’, e T).+

By 3.1 (iii) and [1, Lemma 7.2, p. 90], the mapping I- fir(Y, 0) is a linear
homeomorphism of C(Z E,) onto itself. It follows, by a slight modification of the
implicit function theorem [13, p. 265], that the equation

y(t) V(y, O)(t) (t T)

has a unique solution

(0)= + OJ(aj- ), + OJ(bj- )
j=l j=l

for all 0 in some neighborhood of 0 in , with values in some neighborhood
of in C(Z E,). Furthermore, 0 ?(0) is continuous andhas a derivative at 0
defined by

70(0) (I y(., 0))- Po(y 0),

The implicit function theorem is proven in [13, p. 265] for the equation f(x, y) 0, where f is
defined on an open set. In our case, P is defined for all y but with 0 restricted to .-(which is not
open). This is the main reason for our having introduced, at the beginning of 3, derivatives relative
to a set. With this definition of derivatives, the arguments in [13, p. 265] (and in the required lemmas and
theorems) can be used, with only slight modifications, to yield our assertion.
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yielding

(5.3.2) (t6 T,j 1, ..., m’).

Now let functions Xo’ x B El, Xl "I x B Em, and x2.5 x B
C(T, E,,2) be defined as follows"
for (a, b)e N, we set

Xo(a, b) h(fi(a, b)(t)),

and

x(a, b) h’(fi(a, b)(t,))

x2(a, b)(t) h2(t, i9(a, b)(t)) (t T);

for (a, b) N, we set Xo(a, b) h(37(tY, )(t)) + 1, Xl(a, b) O, x2(a, b)(t)
0(t T).
We have shown that the function (a, b) - 37(a, b)’N --, C(T, E,) is continuous

and the function

O rl(O) y + OS(as- O), + OS(bs b) -j=l j=l

has a derivative at 0 defined by (5.3.1) and (5.3.2). It follows now, by Assumption
3.1 (iv), that the function x (Xo,Xl,X2) is continuous in N and the function

O --- X O+ ., OJ(as- e), + O3(bj- )
j=l j=l

has a derivative at 0. Let

Dx(, ;(a, b) (tY, b)) lim l(x(0 + a(a ), + a(b )) x(, ))
+0 0

for (a, b) e 5 x B

and

C {w(. )6 C(T, E,2)lw(t A (t e T)}.

Then the assumptions of [9, Theorem 2.2, p. 373] are verified for V C(T,
and m ml, and we conclude that there exists a nonvanishing continuous linear
functional on E x E,,, x C(T, E,,2) such that

l((vo, v,, v2))- 2oVo + ,1 /)1 -’[- /2(V2)

for Vo e El, Vl E,,, and v2 e C(T, E,,2), 2o >- 0,

(5.3.3) l(Dx(, ;(o, b) (,/))) _>_ 0 for all (a, b) 5 x B,

and

(5.3.4) /2(V2) --< /2(h2( Y(" ))) for all v2 e C.
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We observe that if we choose (ax,bx) (a,b) and (aj, bj) (&b)
(j 2, ..., m’), then

(5.3.5) Dx,(8, b;(a, b) (if, b)) h((t 1)),70,(0) (i 0, 1)

and

(5.3.6) Ox(ff, ;(a, b) (if, ))(t) h(t, y(t))q0(0) (t e T).

Furthermore, since l is a continuous linear functional on C(Z Em), there exists
a finite regular Borel vector measure p (p, -.., pm) such that

le(w(. )) fr w(t). (dt) for all w e C(T,

If we set m() (variation of pJ on ) for all Borel sets Z then, by the
Radon-Nikodym theorem, there exists an m-integrable ’T Em such that

() ff (t)m(dt) for all Borel sets T.

Relation (i) of Theorem 3.2 follows from the conclusion that is nonvanishing.
Relations (5.3.i) (i 1, 2, 3, 5, 6) yield, for j 1 and b b,

fT Z(dt) [fT f(t * y(*) a(* (z) ) dz

+ k*(t, O) dO f(O, , (), () (), ) d 0 for all e .
We choose a denumerable dense subset R {r,r, ...} of R and set, for

1, 2,... and an arbitrary measurable subset E of (t) (t) for e T- E,
(t) (t) (a measure concentrated at r) for e E. By (3.1.1) and the properties
of k*, the integrand in (5.3.7) is absolutely integrable. Thus, interchanging the
order of integration, we obtain

d’c fw z(dt)" o(t, z, a,(z) 8(’c)) >= 0

for 1, 2,... and all measurable subsets E of T. We conclude that

Z(dt o(t, "c, a,(’c)) >= fr z(dt) o(t, "c, (’c))

for almost all T and 1, 2, ..., and it is now easy to deduce relation (3.2.1)
(the details of the derivation are exactly as in [1, 7.3, p. 91]).

We can similarly deduce relation (iii) of Theorem 3.2 from relations (5.3.i)
( 1, 2, 3, 5, 6), setting j 1 and a ft. Finally, relation (5.3.4) implies that

fw dP(t) h2(t, f(t))co(dt) >= fr C(t) w(t)oo(dt)

for every w(. )e C.
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Relation (iv) of Theorem 3.2 then follows in a straightforward manner. This
completes the proof of the theorem.
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ON FIXED TIME CONTROL PROBLEMS IN A BANACH SPACE*

GUNTER H. MEYER?

1. Introduction. It is the purpose of this paPer to present a rigorous deriva-
tion of the dynamic programming equation of Bellman for fixed time (i.e., free
endpoint) control problems in an arbitrary Banach space. It will be shown that
this dynamic programming equation is a generalization of the invariant imbedding
equation for two-point boundary value problems which, for a given control,
converts the underlying boundary value problem into an initial value problem.
Furthermore, the dynamic programming equations for controlled multipoint
boundary value problems will be derived.

The development of our theory for vector-valued functions produces only
technical but no conceptual difficulties as compared to the scalar case, and in
order to illustrate our approach we shall consider the following scalar problem:

J’(t) FI(J, y, u, t), J(T) ,
(.)

y’(t) Fz(J, y, u, t), y(O) fl,

where F1 and F2 are continuously differentiable, and where u belongs to a given
set K of piecewise differentiable functions on [0, T]. Our intention is to maximize
J(0) through the proper choice of u.

For fixed u K, problem (1.1) can be imbedded into the family of initial value
problems:

J’(t) F(J, y, u, t), J(T) ,
(1.2)

y’(t) F2(J, y, u, t), y(T) s.

If these equations are considered as characteristic equations, then it is well known
(see, e.g., Courant and Hilbert [3, pp. 62-69]) that for varying s the solutions of (1.2)
generate an integral surface J(t, x) for the so-called invariant imbedding equation
corresponding to (1.1),

(1.3) Jt(t, y) d- Jy(t, y)F2(J, y, u, t) FI(J, y, u, t), J(T, y) z.

We remark that Jr(t, y) is discontinuous at the singularities of u(t) because the
characteristics have corners at these points. It now follows that if the integral
surface J(t, y) exists for 0, T] and all y, then the characteristic through
(J(O, fi), fi) is a solution of (1.1). Moreover, if u K satisfies

(1.4)
J,(t, fi, fi) inf [Fx (J, fl, u, t) Jy(t, fl, u)F2(J, fl, u, t)],

ueK

J(T, fi,u) ,
Received by the editors June 18, 1968, and in revised form September 27, 1969.

" Mobil Research and Development Corporation, Field Research Laboratory, Dallas, Texas
75221.

383



384 GUNTER H. MEYER

then it is seen that for any other control v K,

0 >= [Jt(t, fl, t) Jt(t, fl, v)] dt J(O, fi, v) J(O, fl, ),

and hence that J(0, fl, v) =< J(0, fl, fi). Consequently, for fi to be optimal it is sufficient
that it satisfy (1.4). Equation (1.4) is exactly Bellman’s dynamic programming
equation (see [2, p. 264]).

Our results will be presented in two sections. The derivation of the dynamic
programming equation for controlled Banach-space-valued two- and multipoint
boundary value problems is discussed in 2. The next and main section deals with
linear controlled equations. In this case the partial differential dynamic pro-
gramming equation reduces to two ordinary differential equations with the effect
that the choice of optimal control and the solution of the resulting boundary value
problem can be separated. In order to illustrate our theory several maximum
principles derived by Friedman [4] for parabolic evolution equations will be
rederived and reinterpreted from our point of view. Finally, the equations for
linear controlled multipoint boundary value problems are established.

2. The dynamic programming equation. Our development will be based on
an extension of the abstract characteristic theory which was used in [8 for the
conversion of multipoint boundary value problems into initial value problems.
For ease of exposition we shall restrict ourselves to fixed time control problems
which for a given control function reduce to two-point boundary value problems.
The application of our theory to controlled N-point boundary value problems
is straightforward and will be outlined at the end of this section.

Let us introduce our notation. X, , and Z will always denote real Banach
spaces, D is an open convex subset of a product space to be defined from case to
case, and I is an open interval on the real line R. We shall consider differential
equations of the following general form:

(2.1) x’ G(t, x, y), y’ H(t x, y),

where G and H are (bounded or unbounded) functions on I D R X Y
with values in X and Y, respectively. A solution of (2.1) subject to given initial
conditions

(2.2) X(to) Xo, y(to) Yo,

with (Xo, yo)e D and to e i, is defined to be a pair {x(t), y(t)} of strongly con-
tinuous functions from i to D which satisfy (2.1) Lebesgue almost everywhere on I.

In analogy to the finite-dimensional setting we shall associate the following
partial differential equation with (2.1):

(2.3) w,(t, y) + wy(t, y)H(t, w, y) G(t, w, y),

where wv(t, y) denotes the Fr6chet derivative of w with respect to y at the point
(t, y). A solution of (2.3) through a given point (to,Xo, yo)e i x D is defined to
be a strongly continuous function w on i x D f) Y with values in D f’l X which
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satisfies (2.3) for all y e D 71 Y and almost all e I, as well as

(2.4) W(to, Yo) Xo.

If a solution {x(t), y(t)} of (2.1), (2.2) remains imbedded in the solution w(t, y)
of (2.3), (2.4), i.e., if {w(t, y(t)), y(t)} {x(t), y(t)}, then (2.1) and (2.3) are said to
be equivalent; carrying the analogy further, we shall call (2.1) the characteristic
equations of (2.3), while {x(t), y(t)} will be a characteristic of the integral surface
w(t, y). Equivalence can be assured under the following condition.

THEOREM 2.1. Let w be a solution of(2.3), (2.4). Suppose also that the equation
y’ H(t, w(t, y)y), y(to) Yo has a solution y(t) over I. Then x(t) w(t, y(t)) and y(t)
are solutions of(2.1), (2.2), i.e., {x(t), y(t)} is a characteristic of w(t, y).

For the proof we observe that the chain rule and (2.3) yield x’(t) wt + wyy’(t)
G(t, w, y) a.e. on 1. Let us now turn to the two-point boundary value problem

x’ G(t, x, y), g(x(to), y(to)) O,
(2.5)

y’ H(t, x, y), h(x(t l), y(t 1)) O,

with to, e i. For definiteness we shall assume that to < l. As described in [8]
the existence of a solution for (2.5) may be considered from the following point
of view.

THEOREM 2.2. Assume that the Cauchy problem

(2.6) w,(t, y) + wr(t, y)H(t, w, y) G(t, w, y), g(w(to, y), y) 0

has a solution over [to, l] x D f) Y. Suppose further that the set S D f-I Y
of solutions of h(w(t, y), y)= 0 is not empty. If for some S the problem
y’ n(t, w(t, y), y), y(tl) has a solution over [to, tl], then {x(t) w(t, y(t)), y(t)}
is a solution of (2.5).

For the proof we observe that {x(t), y(t)} is a characteristic of w. We remark
that in connection with boundary value problems, the partial differential equation
(2.6) is known as the invariant imbedding equation.

We are now ready to consider control problems. Subsequently, K will denote
a given set of functions defined on I with values in Z. Our object is to find a
function O K such that a functional J(tl, u) is minimized over K, i.e., J(tl,

inf,r J(tl, u), where {J(t, u), x(t, u)} is a solution of the two-point boundary
value problem

J’ F(t, J, x, u), f(J(to), X(to)) O,
(2.7)

x’ G(t, J, x, u), g(J(tl), x(tl)) O.

Here F and G are suitably defined real- and Banach-space-valued functions on
1 D Z, while f and g implicitly represent the boundary conditions. (D is
now taken to be a convex subset of R X.) Theorem 2.2 can be rephrased to
obtain a characterization of the functional to be minimized.

THEOREM 2.3. Suppose that for all u K"
(i) the Cauchy problem

Jt(t, x, u) + J,(t, x, u)G(t, J, x, u) F(t, J, x, u), f(J(to, x, u), x) 0

has a solution J(t, x, u) over [to, tl] x D f) X;
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(ii) the solution set S ofg(J(t X, U), X,) 0 is not empty
(iii) the characteristic through (J(t, , u), 2,) exists over [to, tl] for each S.
Then a necessary conditionfor u to be optimal is that

(2.8) d(t u) inf J(t u).
ueK

The proof follows because the characteristic through (J(tl,2,u),2) is a
solution of (2.7) so that condition (2.8) is certainly necessary for optimality. We
also remark that under appropriate smoothness conditions on F, G and the
boundary values, the integral surface J(t, x, u) can be generated with its character-
istic equations (for details we refer to [7]). In this case all solutions of (2.7) are
necessarily imbedded in the integral surface J(t, x, u) so that condition (2.8) is
both necessary and sufficient for optimality.

For given u e K, the function J(t, x, u) defines a real-valued surface over the
t, x-coordinate system. We now observe that if there exists a control fie K such
that Jr(t, x, t(t)) <= Jt(t, x, u(t)) for all u K, then fi is certainly optimal. In fact,
since we are only interested in J(t, 2, u) for some )2 e S it suffices to require that
J(t,x, u) decrease maximally along the sections x 2. Consequently, we can
write the following theorem.

THEOREM 2.4. Assume that Theorem 2.3 applies and that S contains only one
element 2. Then is optimal if it satisfies the dynamic programming equation

(2.9) Jt(t, x, fi) inf IF(t, J, x, u) Jx(t, x, u)G(t, J, x, u)].
uK

We remark that even when the solution J(t, x, u) of the invariant imbedding
equation can be generated over [to, tl] with the characteristics, the optimal control
need not satisfy (2.9). Equation (2.9) is only meaningful if, given two controls
ul(t), Uz(t), we can synthesize a third control Ua(t) such that

Jt(t, x, u3(t)) min {Jt(t, x, Ul(t)), Jt(t, x, u2(t))}.

The characterization of J(tl, x, u) remains valid if no such synthesis is possible.
Let us now briefly indicate how this development can be extended to con-

trolled multipoint boundary value problems. For ease of exposition we shall
restrict ourselves to the three-point problem:

(2.10)

J F(t,J,x,y,u),

x G(t, J, x, y, u),

y H(t,J,x,y,u),

f(J(to), X(to), y(to)) O,

g(J(t 1), X(tl), y(tl)) O,

h(J(t2), x(t2), y(t2)) O.

We shall suppose that to =< =< t2 i and that F, G, and H are suitably defined
functions on 1 x D x Z, where D is a convex subset of R x X x Y, while u
again belongs to a set K of functions from I to Z. As described in detail in [8],
the equations (2.10) can be associated with two Cauchy problems:
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Jt(t, x, y, u) + Jx(t, x, y, u)G(t, J, x, y, u) + Jy(t, x, y, u)H(t, J, x, y, u)

F(t,J,x,y,u),

f(J(to, x,y, u), x,y) O, [-to, l],

Jr(t, y, u) + dy(t, y, u)H(t, J, x, y, u) F(t, J, x, y, u),

(2.12)
xt(t, y, u) + Xy(t, y, u)H(t, J, x, y, u) G(t, J, x, y, u),

J(tl y, u) d(tl, x(t y, u), y, u), g(J(t y, u), x(t, y, u)) O,

tEt,,t2].

In fact, if J(t, x, y, u) exists over [to, l] x D fl (X x Y), and if J(t, y, u) and
x(t, y, u) exist over It1, t2] x D f’l Y, and if the solution set S of h(J(t2, y, u),
x(t2,y,u)) 0 is not empty, and furthermore, if the characteristic through
(J(t2, , u), x(t2,.9, u),.) D for e S exists over [to, t2, then this characteristic
is a solution of (2.10). Under these conditions (2.10) and (2.11), (2.12) are
equivalent, and the optimum control is characterized by

J(t2, ) inf d(t2, , u),

where J(t,u) and J(t,y,u) are the solutions of (2.10) and (2.12), respectively.
Moreover, if S consists of one element , we can again consider the decrease of J
along the section y .9 and obtain a sufficient condition for optimality.

THEOREM 2.5. Assume that for all u K, the solution of (2.10) is imbedded in
the integral surfaces J(t, x, y, u) of (2.11) and {J(t, y, u), x(t, y, u)} of (2.12). Then

is optimal if it satisfies the dynamic programming equations

Jr(t, x, , u) inf {F(t, J, x, , u) Jx(t, x, , u)G(t, J, x, f, u)
uK

Jy(t, x, , u)H(t, J, x, , u)}

for (t, x) [to, t] x D VI X, and

J,(t .9 u)= inf {F(t J x u)- Jy(t u)H(t J x(t 9 u)p u)}
As an illustration consider the scalar control problem:

J’ F(t, J, x, y, u), d(to) ,
x’ G(t J, x, y, u), X(tl) fi,

y’ H(t, J, x, y, u), y(t2) 7.

t[tl,t2.

We shall assume that F, G, and H are continuously differentiable in the real
variables J, x, and y, and that for fixed (J, x, y), the functions F, G, and H and their
derivatives with respect to J, x, and y are bounded and Lebesgue measurable
in on [to, t2] for all u e K. Using the concept of a Carath6odory solution one
can readily verify that the construction of the integral surface J(t, x, y, u) of (2.11)
through the initial manifold J(to, x, y, u)= e with a shooting method remains
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valid (see also [7]). Hence J exists near the initial manifold;it is continuously
differentiable with respect to x and y and absolutely continuous in t. Moreover, if
the derivatives with respect to J, x, and y are uniformly bounded, then a quanti-
tative estimate of the interval of existence for J(t, x, y, u) can be given. Let us
suppose that J(t, x, y, u) exists for all x, y and to, l]. We then have to solve
the invariant imbedding equations (2.12) subject to the initial values

J(tl, y, u) J(tl, fl,y, u), x(tl, y, u) ft.
If we also suppose that J(t, y, u) and x(t, y, u) exist over [tl, t2] for all y and all
u e K, then the optimal control u is found from the dynamic programming
equations

and

J,(t, x, 7, fi) inf{F(t, J, x, 7, u) Jx(t, x, 7, u)G(t, J, x, 7, u)

ay(t, x, 7, u)H(t, J, x, 7, u)}

Jr(t, 7, fi) inf {F(t, J, x(t, 7, u), 7, u) ay(t, 7, u)H(t, J, x(t, 7, u), 7, u)}.
ueK

It is apparent from the results of [7] that this discussion can be carried over
immediately to functions on arbitrary Banach spaces which are Fr6chet differ-
entiable in J, x, and y and Bochner integrable with respect to t. The main difficulty
in applying the theory of dynamic programming to unbounded functions lies in
verifying the equivalence between the integral surface and the corresponding
characteristic.

3. Linear problems. The dynamic programming equations assume a simple
form for linear controlled equations because the solution of the underlying
boundary value problem and the choice of the optimal control can be separated.
In order to describe this simplification let us consider the system

J’= A11(t)J + A12(t)x + F(t, u), J(to) fx(to) + ,
(3.1)

x’= A21(t)J + A22(t)x + G(t,u), g(J(tl),x(tl)) O,

where the Aj and f are suitably defined linear functions or operators on R or
D = X, and where F and G are a scalar- and a vector-valued function, respectively.
g is a (not necessarily linear) vector-valued function denoting the boundary
condition at a. It was shown in detail [7] that for fixed u K the invariant im-
bedding equation (2.6) corresponding to (3.1) has the solution

(3.2) J(t, x, u) T(t)x + w(t, u),

where T and w are solutions of the ordinary differential equations

(3.3) T’= A12(t)+ A11(t)T- TA22(t)- TA21(t)T, T(to) f,

(3.4) w’ [A1 l(t) T(t)ael(t)]w T(t)G(t, u) + F(t, u), W(to) .
A solution of the Riccati equation (3.3) is a function defined on [to, 1] with values
in X’, the dual of X, such that T(t)x is differentiable for almost all e (to, tl) and
all x e D. We note that only the solution w of the scalar equation (3.4) is affected
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by the choice of the control u e K; hence Theorem 2.4 can be restated for the linear
system (3.1) as follows.

THEOREM 3.1. Suppose that the Riccati operator equation (3.3) and the
scalar equation (3.4) have solutions T and w over [to, t] for all u eK.
Assume further that there exists a unique solution D of the equation
g(T(tl)x + w(tlu),x)=O and that the (backward) initial value problem
x’ [A21(t)r(t) + A22(t)]x + A21(t)w(t, u) + G(t, u), x(tl)= 2 has a solution
x(t) D for all u e K. Then is optimal if it satisfies

(3.5) q(fi) inf {- T(t)G(t, u) + F(t, u)}

for all e (to,
Proof. Under the hypotheses of the theorem, (3.1) and the corresponding

invariant imbedding equation are equivalent so that for fixed u e K the solution
of (3.1) is imbedded in T(t)x + w(t,u). The optimality condition follows by
observing that w(t, u) has the representation

w(t, u) q)(t, to) + q)(t, r)IF(r, u(r)) T(r)G(r, u(r))] dr,

where q)(t, r) exp [A1 (s) r(s)A2 l(s)] ds > 0. Relation (3.5) can also be

obtained by substituting the representation (3.2) into the dynamic programming
equation and neglecting all terms not depending on u.

Frequently, the so-called state equation for the vector x is subject to an
initial rather than a final condition, while J(0, u) is to be minimized. Interchanging
to and and the boundary conditions we see that in this case the Riccati and
the linear equation are subject to

(3.6) T(t.1) f, w(t l) a,

while J(t,x,u) will decrease maximally along the section x 2 (the
solution of g(T(O)x + w(0, u),x) 0) if Jt(t,x,O) sup,Jt(t, Pc, u) or

o(0) SUpuK [- T(t)G(t, u) + F(t, u)]. It follows from Theorem 3.1 that necessary
and sufficient conditions for the optimum control can be derived in two steps.
First we verify that the hypotheses of Theorem 3.1 obtain; then we show that
the dynamic programming equation has a solution. Existence of solutions for
"square" Riccati equations has been discussed in the literature (see [8] and the
references cited there). Since T(t) for fixed belongs to X’ rather than L(X, X),
the space of bounded linear operators from X to X, previous discussions do not
apply. Under certain conditions, however, a local result is obtainable. For this
development we need the following result due to Kato [6].

THEOREM 3.2. For each [0, ], A(t) is a densely defined closed linear operator
in X, and its spectrum is contained in a fixed sector So:larg z] =< 0 < re/2. The
resolvent of A(t) satisfies the inequality I[(z A(t))-111 <= Mo/lZ[ for z q So, where
Mo is a constant independent of t. Furthermore, z 0 also belongs to the resolvent
set of A(t) and

A(t)- 1[1

____
M1,
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M1 being independent of t. Furthermore, for some h 1/m, where m is a positive
integer, the domain D[A(t)h] =_ D is independent of t, and there exist constants
k, M2, M3 such that

[A(t)hA(s)-h M2, 0 tx,

A(t)hA(s) -h 1 Malt s[ k 0 < s < tl 1 h < k < 1

Then there exists a unique (parabolic) evolution operator U(t, s) L(X, X) defined
for 0 <= s <= <= T, with the following properties. U(t, s) is strongly continuous for
O<s<t< T and

U(t,r) U(t,s)U(s,r), r <_ s <= t, U(t,t)= I.

For s < the range of U(t, s) is a subset of D[A(t)] and

A(t)U(t, s) e L(X, X), ]]A(t)U(t, s)][ <= M]t sl-
where M is a constant depending only on O, h, k, T, Mo, M1, M2, and M3. Further-
more, U(t, s) is strongly continuously differentiable in for > s and

U
--(t, s) + A(t)U(t, x) O.

If u D, then U(t, s)u is strongly differentiable in s for s < and (cU/c?s)(t, x)u
u(t, x)A(s)u.
We remark that the special case of h 1 is discussed in detail in Yosida [9,

p. 431]. Theorem 3.2 and various estimates derived during its proof in [6] will be
used to give a local existence theorem for the Riccati equation (3.3). For ease of
comparison with published results we shall assume that the initial conditions (3.6)
hold.

THEOREM 3.3. Assume that
(i) -A22(t) is the generator of a parabolic evolution operator U(t,r) on

[to, tl with time-independent domain D X, and
(ii) AI, A12, and A2 are Lipschitz continuous in on [to,.t]

Then the Riccati equation (3.3) subject to T(t) f has a unique solution provided
tl to is sufficiently small.

Proof. If x e D, then it is readily verified that any strongly differentiable
solution T(t)s of (3.3) is also a solution of the integral equation on X’ for
to <t<t

(3.7)
T(t) exp A11(S) ds f U(t t)

tl

+ exp A11 (S) ds A 12(r) T(r)A21 (r)T(r U(r, t) dr,
tl

where the integral is interpreted as a Riemann integral.
Conversely, since U is uniformly bounded on [to, tl] [to, l] and X’ is com-

plete, we can find a strongly continuous solution Tof(3.7) by successive substitution
provided to is taken sufficiently small. To show that T(t)x is differentiable
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for t(to,tl) and xD we consider limat.o((T(t- At)- T(t))/t)x. From the
chain rule and the properties of U it follows that T(t)x is differentiable provided
the integral

exp A (s) ds [A (r) r(r)A(r) r(r)] U(r, t)A(t)x ds

is continuous. However, since x e D we can write x A-(s)A(s)x for arbitrary
s e [to, t. From IIA(s)xll IliA(s) A(to) + A(to)]A(to)-A(to)x
and IlA(t)x Z(s)xll II[/(t)- A(s)]A-(s)ll II/(s)x"ll MBlt sl I/(s)xll it
follows that A(t)x is continuous in t. Hence the integrand is a continuous function
on [to, t] for each x D. Since it also is continuous in r we see that the integral is
continuous in and that T(t) x is strongly differentiable for each x D.

Furthermore, standard existence theory for ordinary differential equations
yields the following result.

THEOREM 3.4. Assume that G(t, u(t)) and F(t, u(t)) are Lipschitz continuous on
[to, l] for all u K. Then the linear scalar equation (3.4) has a unique solution
w(t, u) on [to, t].

THEOREM 3.5. The characteristic equation

(3.8) x’= [A2(t)T(t)

has a strongly differentiable solution x(t) D for [to, 1].
Proof It can be shown that the equation z’

has the solution z(t)= V(t, to)X, where V(t, r) again is a parabolic evolution
operator. Indeed, for fixed (to, t), the operator P(t) A2x(t)Tq) is bounded
so that C(t) A22(t)+ P(t) is the generator of a holomorphic semigroup for
each on [to, ]. The condition C(t)- 1 M can always be satisfied by a change
of variable z e#ty. Finally, we observe that U(t,s)A22(r)- is Lipschitz con-
tinuous (see [6]) so that P(t)A(r)-1 is also Lipschitz continuous. Consequently,
[[I + n(s)A22(s)- ]-11l

1 + Ilnll llCll and l[C(t)C(s) -1 I1 ll{A22(t)- A22(s) + n(t)- n(s)}A22(s)-’
[I + P(s)A22(s)-1]-11l show that llC(t)C(s)- -I Mlt s] k for some con-

stant M. The existence of the evolution operator follows from Theorem 3.2.
The existence of a strong solution x(t) D follows from the variation of constants
representation

(3.9) x() V(t, to)2 + V(t, r) [A (r)w(r) + 6(r, u(r))] dr
to

and the Lipschitz continuity ofA (r)w(r) + G(r, u(r)) (see again [6).
Under the hypotheses of the preceding theorems the functions J(t) T(t)x

+ w(t, u) and x(t) are a solution of (3.1). However, the continuity conditions im-
posed on F and G are too stringent for controlled systems. They can be relaxed
by considering mild solutions of evolution equations. Such solutions are required
to be strongly continuous, but not necessarily differentiable, and to satisfy an
integral equation equivalent to the differential equation. For example, any
strongly continuous function T from [to, to X satisfying (3.7) is a mild solution
of the Riccati equation (3.3). Similarly, any strongly continuous solution x(t)
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of (3.9) is a mild solution of (3.8). The integrals of (3.7) and (3.9) may now be
interpreted as Bochner integrals.

THEOREM 3.6. Let A22(t) generate a parabolic evolution operator on [to,
Let {J(t, u), x(t, u)} be a mild solution of (3.1) and let T(t), w(t, u), and x(t) be mild
solutions of (3.3), (3.4), and (3.8). If there exists a sequence of piecewise Lipschitz

F" and G which converge to A ll A12 A21, F,continuous functions A" 1, A 2, A"21,
and G, uniformly in t, then J(t, u) T(t)x(t) + w(t, u).

Proof. Let {J"(t, u"), x"(t, u")} and T"(t), w"(t, u"), x"(t) be the solutions of
(3.1), (3.3), (3.4), and (3.8), where Aij is replaced by Ai’, F by F", and G by G". It
follows from Theorems 3.2-3.5 that these solutions are continuous and piece-
wise differentiable on [to, l] so that J"(t, u")= T"(t)x"(t)+ w"(t, u"). Moreover,
from the integral equations it is clear that J" ---, J, x" --, x, T" T, and w" --. w
uniformly in as n so that J(t, u)= lim,_ J"(t, u")= lim,_ T"(t)x"(t)
+ w"(t, u") T(t)x(t) + w(t, u).

Let us now turn to the existence of optimal controls. We have seen that
such controls have to minimize the expression

W(to, u) q(to, t) + qg(to, r)IF(r, u(r)) T(r)G(r, u(r))] dr,

where q(t, r) is a positive function. We observe that

99(to, r) T(r)G(r, u(r)) F(r, u(r))] dr

may be interpreted as a functional defined on K. The existence of a minimizing
control for such functionals is the subject of the following theorem due to
Balakrishnan 1].

THEOREM 3.7. Let the set K (of functions on [to, l]) be a closed, bounded
convex subset of a reflexive Banach space and assume that the functional is con-
tinuous and convex in u. Then there exists an element K such that

001) inf ,(u).
uK

We remark that in connection with controlled parabolic equations, the set K
is frequently chosen to be a subset of the space of square Bochner integrable
functions on [to, tl]. If X is reflexive, this function space is also reflexive. Once
K has been chosen, the hypotheses of Theorem 3.7 are generally easy to verify
from (3.5).

In order to illustrate the applicability of our linear theory let us consider the
following example discussed by Friedman [4].

J’ flfo(t)x, J(t 1) ofx(t 1),
(3.10)

x’= -A(t)x + u(t), x(O) Xo,

and fl constant,

where fo is a continuous function from [0, l] to X’, where A(t) is the generator
of a parabolic evolution operator, and where K, the set of admissible controls,
is the set of all Bochner integrable functions from [0, l] with values in a subset
U X. The equations (3.10) are seen to be a particular form of system (3.1).
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It is well known that under these conditions the state equation has the mild
solution

x(t) U(t, O)xo + U(t, r)u(r) dr

for every u K. Since the set of simple functions is dense in the space of Boclner
integrable functions (see [5, p. 86), it follows from Theorem 3.6 that J(t, u)

T(t)x(t) + w(t, u), where x(t) is the above mild solution, and where T and w
are mild solutions of

T’ fo(t) + TA(t), T(t 1) f,

w’ T(t)u, w(t l) O.

The dynamic programming equation (3.5) requires that u be chosen such that

(3.11) (p(tl) sup (- T(t)u(t)).
uK

Moreover, since the mild solutions T, x, and w exist for all Bochner integrable
functions u, the solution of the boundary value problem (3.10) is necessarily im-
bedded in J(t, x, u) T(t)x + w(t, u). Hence (3.11) is both necessary and sufficient
for optimality. We remark that (3.11) was derived in [4] as a necessary condition
for optimality.

If the existence of an optimal control can be postulated, then our formalism
can be used to derive necessary conditions for optimality. Suppose, for example,
that the state equation of (3.10) is used to minimize the expression

J(u) I[.x;(tl, u) yll,

where y is a given element in X. Assume that no trajectory exists such that x(t 1) y.
Let fi be the optimal control and the associated trajectory. Then there exists a
linear functional f such that Ilfl[ 1 and f((tl)- y)= Ilk(t1)- YII. If we set
fo =0 in (3.10), we obtain the control problem

J’= 0, J(tl) f(x y),

x’-- -A(t)x + u, x(O) Xo.

We see that in this case the Riccati equation (3.3) reduces to

T’ TA(t), T(tl) f,

while the dynamic programming equation leads to the following necessary
condition for optimality"

q(i) sup (- T(t)u(t)).
uK

This again is exactly the maximum principle derived by Friedman.

Similarly, we may minimize the expression J(u)= Ix(t)- y(t)l dr,
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where y is a given function from [0, l] to X. If again the optimal trajectory
(t, ) is assumed to exist, then we can define a functional fo(t) such that

fo(t)(x(t) y(t)) -IIx(t) y(t)ll for all

If we assume that X is a Hilbert space, then f is continuous in t. We now set
f 0 in (3.10) and solve the control problem

J’ fo(t)x fo(t)y(t), J(t 1) O,

x’= -A(t)x + u, x(O) Xo.

In this case the Riccati equation reduces to

T’ fo(t) + TA(t), T(tl) O,

and the dynamic programming equation becomes

cp() sup (- T(t)u(t)).

This maximum also was derived earlier by Friedman
To conclude our discussion, let us formally derive the dynamic programming

equations for linear multipoint control problems. Suppose the equations are as
follows:

J’-- AllJ -+- A12x -+- A13Y q- F(u),

x’-- AZlJ + A22x + Az3y -F G(u),

y’= A31J + A32x + A33Y + H(u),

J(to)-- ,
X(tl) fl,

y(t2) 7,

where J(t2, u) is to be minimized. As described in [8], the invariant imbedding
equation (2.11) has the solution

J(t x, y, u) T11(t)x + T12(t)Y + wl(t, u),

where (Tll T12) and W are solutions of

(Tll T12)’= (A12 A13) -+- All(T11 T12)

(Tll T12) A22 A23 (Tll T12) A211(Tll T12),

14; All (Tll

A32 A33
(Tx

)( A21 ]T12
A31

TI :)(0) (0 0),

(u)
w1 T11 T1 )

H(u)!
+ F(u), wl(tO)

Hence the maximal decrease of J(t, x, y, u) along the section y 7 is assured
if fi is chosen such that

q(fi) inf [- Tll(t)G(u) T12(t)H(u) + F(u)] for [to, l].
uK

J(t,
Over [tl,t] we have the representation

x(t, y,u))y,u)
T2 l(t)
T::(t)!

y+
w(t,
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where

T2

T22 (A13A23
All
A21 A22 T221

Z21
A33

T221 T22
(A31 A32)

T21
(tl)= (T12(tl))0

All
A2 A221

T21 (t)| H(u) +
T22(t)!

Minimization now requires that fi be chosen such that

q)(fi) inf{U,(t2, r)[F(u) T2,(r)H(u)] + U12(t2, r)G(U) Ta(r)H(u)},
ueK

F(u)]
G(u)]

where U(t, r) is the fundamental matrix generated by

T21
(A31 A32).

Similarly, we can derive maximum principles for controlled linear N-point
boundary value problems.
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A NEW ITERATIVE PROCEDURE FOR THE MINIMIZATION
OF A QUADRATIC FORM ON A CONVEX SET*

THOMAS PECSVARADI AND KUMPATI S. NARENDRA"

Introduction. An iterative procedure is developed in this paper for computing
the minimum of a quadratic form over a convex set R in Euclidean n-space. The
problem was originally posed and solved by Gilbert [1 who suggested minimizing
the quadratic form on a suitably chosen series of line segments in R. Barr [2]
extended Gilbert’s procedure so that the minimization is carried out on a sequence
of convex polyhedra. The iterative procedure presented in this paper was pro-
posed by the authors in [3] as an alternative to Barr’s procedure in [2].

After submitting this paper for publication, it was brought to the authors’
attention by the Editor that Barr had, in a subsequent work 4] in this Journal,
suggested two new selection rules for use in his iterative procedure. Since there is
considerable overlap between Barr’s procedure and that outlined here in general
approach as well as in some specific details, the main objective of this paper is to
indicate the essential differences between the two procedures and to provide
numerical data for comparison purposes. At the referee’s suggestion the proof of
the theorem has not been included and the reader is referred to [4].

1. Statement of the problem. The following notation will be used throughout
the paper" E" denotes the Euclidean n-space if x, y E", then their inner product
is denoted by (x, y) and the Euclidean norm of x, Ilxll, is given by x x//(x, x)
if Yl Y2, "’", Yp E", then their closed convex hull is denoted by A(yl Y2, Yp).

Let R be a compact convex set and a fixed point in E". Let y R and
h y. Using similar definitions as in [1], we let q(h) maXzR(h,z y) denote
a support function of R and

(1) P(h) {x; (h, x y) r/(h)},

the support hyperplane of R with outward normal h for any h 0 (see Fig. 1).
A contact point s(h)eR is defined by the relationship (h,s(h)- y)= rl(h),
h - O. Thus

(2) s(h) e P(h) R.

Clearly s(h) is unique if and only if R is strictly convex.
A basic requirement of all the algorithms developed is that there exist a

method for evaluating s(h) for any h : 0. If for some h : 0 s(h) is not unique,
then any value of s(h) may be used.

The problem. Given a compact convex set R and a fixed point a in E, deter-
mine a point z* R such that

(3) z* min z l.
zR

* Received by the editors June 24, 1969, and in final revised form December 26, 1969.

" Department of Engineering and Applied Science, Yale University, New Haven, Connecticut
06520.
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s(h)

FIG. 1. Support plane P(h) and contact point s(h)

A solution z* exists and is unique because R is compact and convex and e z]l
is a continuous, strictly convex function of z. Furthermore z* 0 if and only if
e e R if R, then z* OR. Finally, if e R, then z z* if and only if z e P(e z)
fqR.

2. The iterative procedure. The minimization of the quadratic form over the
given convex set R is accomplished using an iterative technique. At any stage k
the minimization is carried out over k R (k < n) or Sk R (k _>_ n), where
k and Sk are convex hulls of at most n + 1 points belonging to R. The k are of
dimension less than n, while the Sk are generally n-dimensional simplexes. The
principal objective of the procedure is to choose the k and Sk to achieve rapid
convergence.

(i) Qk (1 <_k<n)" Let Yo,Yl,’",Yk-1 be k known points in R and
denote their convex hull by k A(yo, Yl, Yk- 1). Let zk- k be the point
such that
(4) [[-zk-1 =minl[-z[[.

Define hk a zk-1 and let
(5) Yk S(hk),

where S(hk) is a contact point of R corresponding to hk. Then Qk+ is defined as
the convex hull

A(y, Q)(6) Qk +

(ii) Qk, Sk (k >_ n)" Let Yo,Yl,""
their convex hull by Qk A(yo, YI,

Yn-1 be n known points in R and denote
Y,- 1). Define Zk_ and hk as above and let
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(7) y, s(hk).

The convex hull Sk is defined as

(8) s - A(y., Q)

and is an n-simplex if yo, yl, "’", y, do not lie on a hyperplane. The point z e S
is determined by

(9) lie Zkll min 11 zll.
zeSk

Finally, define the hyperplane P+, as

(0) /’+, {x; < z, z x> 0}
and let di, 0, 1,..., n 1, be the Euclidean distance from yi to P+,, viz.

(11) di--a min Ilx-yll, i=0,1,...,n- 1.
xPk

Assume that maxo_<<, d occurs for m. Then the point Ym is replaced by y,,
and Qk+i is defined as

(12) Qk+ .A A(yo, yl ,’" Yn- 1)"

(If maxo <g<, di occurs for several i, then one of these y is chosen arbitrarily and is
replaced by y,.) It is clear that if Yo, yl, "’", y, do not lie on a hyperplane, then

z 4= z_ 1, and z e Q+I. To start the process choose any point Yo e R. Then
Zo Q1 yo. At every stage k of the iterative process the following bounds exist
for I1 z*ll:

(13) max{0,(hk’--YP>}<=ll--z* hk

wherep= kifk<n, andp=nifk>=n.
THEOREM. The sequence {zk} generated by the iterative procedure is such that"

(i) z R for k 1,2,...;
(ii) Ila- Zkll <= I1- Zk-Xll, where the equality sign holds if and only if

Z*"Zk Zk-1
(iii) z z*.

3. Comparison with Barr’s procedure. In the iterative procedure, IP, suggested
by Barr in [2] and [4] the norm I z 2 is minimized at the kth stage over the
convex polyhedron

(14) H A(y,(k), y:(k),..., yp(k), s(z z,), z,),

where p is an arbitrary positive integer chosen prior to implementing the proce-
dure. The points yl(k), yz(k), yp(k,) belong to the set R, and the three selection
rules A, B and C of [4] indicate how they are to be chosen.

The procedure described in this paper minimizes the norm 11- zl[ 2 for
k < n over a sequence of successively higher dimensional polyhedra

(15) Qk A(yo,Yl,’", Yk-
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where Yo is an arbitrary point in R and Yi s(- zi-1), i-- 1,2,..., k- 1.
For k _> n the minimization at each stage is performed on the convex hull of
n + 1 points

(16) Sk A(yo,yl,’", y,).

Once zk Sk is obtained, one of the points Yo, Y, "’", Y, is replaced by s( z).
The following brief comments indicate the essential similarities and dif-

ferences between the two procedures.
(a) Since the new procedure and Barr’s procedures yield different polyhedra,

except possibly at the initial stage, comparisons of the two methods are difficult.
(b) For k =< p, Barr’s procedure uses z to form the polyhedron H. The use

of the initial point Zo in the new procedure results in the largest possible poly-
hedron that can be formed at the kth stage. This point is illustrated in Fig. 2(a)
and (b) using two 2-dimensional examples. Let {z,} represent the sequence
generated by IP of [4]. In Fig. 2(a) z2 zz, while in Fig. 2(b) z2 -- zz and z2
< II zl I.

s(a-z

(a) z2 z

FIG. 2. The effect of Zo on Barr’s IP and the new procedure for an arbitrary convex set in E

(c) While the minimization using the iterative procedure of [4] is carried out
over the convex hull of p + 2 points as indicated above, it is pointed out by Barr
that computational results indicate good convergence for p n and little improve-
ment is obtained for p > n. Thus, for best results the procedure in I4] recommends
the use of n + 2 points (although Barr shows that by using selection rule C, and
in certain cases selection rule B, the minimization may be carried out on the
convex hull of at most n + 1 points). The procedure in this paper uses at most
n + 1 points. When only n + 1 points are used instead of n + 2, the minimiza-
tion is simpler to accomplish.
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Zo

Zo)

FIG 2. The effect of Zo on Barr’s IP and the new procedure for an arbitrary convex set in E

hk+ hk
P(hk)

Qk

Sk

k+l

Zk-

Pk+l

FIG. 3. The k-th iteration, k >= n, Zk V Zk-1



IP Selection Rule A (p n)

New Procedure

A NEW ITERATIVE PROCEDURE

TABLE

n 3, Zo (5, 4, 2), 22 1,000, 2 100

0.1 0.01 10

9 16 23 26

6 12 16 19

10-4. 10 10

29 33 36

22 26 29

401

TABLE 2

n 4, Zo (6, 1, 2, 2), 2 1,000, 2 500, 24 100

0.1 0.01 10 10-4. 10

IP Selection Rule A (p n) 12 18 25 29 37 48

New Procedure 8 15 22 30 35 44

53

52

TABLE 3

For n 3, Zo (6,2,2)’for n 4, Zo (6,2,2,1)’for n 5, Zo (5,3,1,1.8,2.6)"
for n 6, Zo (4, 3, 2.6, 2.6, 1.8, 1.8)

22 23

IP Selection IP Selection
New Procedure

Rule A (p n) Rule B (p n)

3 10 10
3 100 100
3 1,000 1,000
3 100 10
3 1,000
3 1,000 10
3 1,000 100
3 100 50
3 100
4 100
4 100
4 1,000
5 100
5 100
5 1,000
6 100
6 1,000

90
50 10
90 10
500 100
70 50
90 80

900 500
90 70
90 70

24. ,5 10 10

10
10

10
70
100
50
50

10 10 10 10

3 7 12 3 7 12
4 9 13 2 9 13
4 10 12 4 9 12
6 17 32 6 17 31
6 11 17 4 10 16
7 20 29 5 16 27
8 23 32 9 23 32 7 18 30
7 18 30 7 21 31 5 18 30
6 17 31 6 19 29 5 19 32
7 29 49 8 30 51 7 29 46
7 28 48 7 28 47 6 23 38
10 31 48 10 35 50 11 28 49
9 39 66 8 36 63 11 38 71
10 38 70 9 37 69 8 39 70
12 43 79 15 42 74 9 55 84
12 45 91 11 49 92 9 52 96
14 59 94 15 60 94 11 51 94
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(d) For k > n both procedures replace a point with a new contact point.
In [4] that point yi(k) is replaced which has the minimum value of #()

(, yi(k))/[ ,ll associated with it. The procedure in this paper discards the point
y whose Euclidean distance to the hyperplane Pk + is largest. The latter discard-
ing criterion has the desirable effect that the remaining n points of Sk form that
face of Sk which is nearest to z* (see Fig. 3).

4. Examples. For purposes of comparison the same problems have been
solved using the present iterative procedure that appear in [2] and [4]. In these
problems R is defined as

f 1 (z)2<zl < 10"2>0 =2 3 n1(17) R= z;1 +,=2 2-.
0, and the stopping criterion is Ilzk]- Ilz* _<-. The optimum is

z*= (1, 0,..., 0)r. The results, including those from 2] and [4] for the same
problems with p n, are tabulated in Tables 1, 2 and 3, which show the number
of iterations necessary to satisfy the above stopping criterion.
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SUFFICIENT CONDITIONS FOR NONNEGATIVITY OF THE
SECOND VARIATION IN SINGULAR AND NONSINGULAR

CONTROL PROBLEMS*

D. H. JACOBSON"

Abstract. Sufficient conditions for nonnegativity of the second variation in singular and non-
singular control problems are presented; these conditions are in the form of equalities and differential
inequalities. Control problem examples illustrate the use of the new conditions. The relationships of
the new conditions to existing necessary conditions of optimality for singular and nonsingular prob-
lems are discussed. When applied to nonsingular control problems, it is shown that the conditions
are sufficient to ensure the boundedness of the solution of the well-known matrix Riccati differential
equation.

1. Preliminaries.
1.1. Introduction. Singular control problems occur often in engineering;for

example, in the aerospace industry a number of important problems are singular
[1], 2]. Mathematical economics is another field in which singular optimal
control problems are common [3]. These and other examples have prompted
researchers to inquire into the mathematical properties of singular arcs [4]-[20],
[28]-[33]. Circa 1964, Kelley [4] discovered a new necessary condition ofoptimality
for singular arcs. This condition was generalized subsequently by Robbins [5],
Tait [6], Kelley et al. [7] and Goh [8], and is now commonly known as the
generalized Legendre-Clebsch condition (or Kelley’s condition). In [9] an
additional necessary condition of optimality for singular arcs was derived and
was shown to be nonequivalent to the generalized Legendre-Clebsch condition.
For want ofan alternative, we shall refer to this condition as Jacobson’s condition.

In this paper we present sufficient conditions for nonnegativity of the second
variation in singular control problems;in strengthened form these conditions
(equalities and inequalities) are sufficient for a weak relative minimum. Both
Kelley’s and Jacobson’s necessary conditions of optimality are derived easily
from the new conditions. We show that the conditions are applicable to totally
singular, partially singular2 and nonsingular control functions. Moreover, when
applied to nonsingular problems, sufficient conditions for the boundedness of the
solution of the well-known matrix Riccati differential equation are obtained;
these are, in certain cases, less stringent than those known heretofore [21], [26].

Control problems without terminal constraints are considered first; the
results are then generalized to the case where constraints on the terminal states
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are present. It turns out that the presence of terminal constraints does not compli-
cate unduly the derivation.

1.2. Problem formulation. We shall consider the class of control problems
where the dynamical system is described by the ordinary differential equations"

(1) 2 f(x u, t) X(to) Xo

where (except for 5)

(2) f(x, u, t) f(x, t) + f,(x, t)u.

The performance of the system is measured by the cost functional

(3) V(xo, to) L(x, t) dt + F(x(t),

and the terminal states must satisfy

(4) d/(x(ts), ts) O.

The control function u(. is required to satisfy the following constraint"

(5) u(t) 6 U, 6 [to, tf],

where the set U is defined by:

(6) U =_ {u(t):lu(t)l <= 1,i- 1,..., m}.
Here, x is an n-dimensional state vector and u is an m-dimensional control vector.

f is an n-dimensional vector function of x at time and f, is an n m matrix
function of x at time t; the functions L and F are scalar. The terminal constraint
function q is an s-dimensional column vector function of x(tf) at t. The functions
f, L, F and are assumed smooth. The final time t is assumed to be given explicitly.

The control problem is: determine the control function u(. which satisfies
(4) and (5) and minimizes V(Xo, to).

1.3. Totally and partially singular problems. It can be shown that, along an
optimal trajectory, the following necessary conditions (Pontryagin’s principle)
hold:

-) H(, , , t), 2(tf) Fx(X(tf), tf) + /v,(7)

where

(8) arg min H(ff, u, 2, t)
uU

and

(9) H(x, u, , t) L(x, t) + 2f(x, u, t).

Here, if(. ), (. denote the candidate state and control functions and 2(.
denotes an n-vector of Lagrange multiplier functions of time. v is an s-dimensional
vector of Lagrange multipliers associated with .
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In general the optimal control function (for the class of problems formulated
in 1.2) consists of bang-bang subarcs and singular subarcs. 3 A bang-bang arc is
one along which Hu,(ff, 2, t) 4: 0, 1, ..-, m (except at a finite number of switch
times where the components of change sign).

A singular arc [17] is one along which

(10) H,,( 2 t) O, 1, ..., m,

for a finite time interval.4 Note that this implies that, on a singular arc, H is
explicitly independent of the control u.

In the sequel we shall make use of the following definitions and assumption.
DEFINITION 1. A totally singular control function is one along which (10)

holds for all [to, tc].
DEFINITION 2. A partially singular control function is one along which (10)

holds for k subintervals of length T, 1, ..., k, and where = T < (ts to).
Assumption. The totally singular control function (. is continuous in t.

2. Totally singular control functions, unconstrained terminal state.
2.1. Existing necessary conditions of optimality. In 7] Kelley et al. show that

the following (generalized Legendre-Clebsch) condition is necessary for the
optimality of a singular arc:

(11) (_ 1)
c F d2 ]L-d-Hu(, 2, t) >= o,

where the 2qth time derivative of H, is the first to contain explicitly the control u.
Kelley at al. used special control variations in order to derive this result;see E7].
Recently an additional (Jacobson’s) necessary condition was discovered [9]. In
order for a singular arc to be optimal it is necessary that

(12) H,f, + f,Qf, >= O,

where

(13) -Q Hxx + ffQ + Qfx, Q(ts) Fx((t), t).

The partial derivatives f,, HI,, H,x andf are all evaluated along the singular arc
(.), fi(.). In [9] the above condition is derived for a scalar control using the
technique of Differential Dynamic Programming [22] in that paper, Q(t) is shown
to be the second partial derivative of V(x, t) with respect to x obtained whilst
keeping u(.)= (.).6 An alternative derivation, using the Lagrange multiplier
rule, is given in the Appendix of this paper.

"Arc" and "subarc" are used synonymously.
4 For simplicity, we shall consider all the controls to be singular simultaneously. If this is not

the case, no conceptual difficulties arise.
It is possible that no time derivative of.H, contains the control u.
Note that here V(x, t) is not the optimal value function.
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Ofcourse, in addition to conditions (11) and (12), Pontryagin’s principle must
be satisfied.

2.2. Second variation (62 V). An expression for the second variation is (see
[233)

(41 v {1/2xxX + u.x} a +

subject to the differential equation

(15) 62 f6x + f,6u 6X(to) O

In order for the singular (stationary) solution to be minimizing it is necessary that

(6) 2V 0

for all 6u(. sufficiently small to justify the second order expansion of E and such
that

(17) (t) + 6u(t) U for all e [to, %].
Both Kelley’s and Jacobson’s conditions are necessary for (16) to hold; see [7]
and the Appendix of this paper. In 2.4 we present sufficient conditions for (16)
to hold. Note that the auxiliary minimization problem (14), (15) cannot be solved
routinely because it is singular.

2.3. Adjoining linearized system to 62 V. We now adjoin (15) to (14) using a
vector Lagrange multiplier function of time 62(0"

+ + +
(8)

+ 6xFxx6Xl.
Integrating 82vS by parts, we obtain

o
(9)

+ [6xVFxx6X
Let us now choose7

(20) 62(0 P(t)6x,
where P(t) is an n x n symmetric,s time-varying matrix having continuous time
derivative P(t). The second variation becomes

{xr(P + Hx + fP + Pfjx + ur(H. + fP)x} dt

+ [xLxx x
This choice of 62 is made in order that 62 l? be a quadratic functional of 6x and 6u (as 62V is).
There is no loss of generality in choosing P to be symmetric" this is so since if P were chosen to

be unsymmetric, P + pr would appear in place of P in (21).
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subject to

(22) 62 ffx + f,fu, fiX(to) O.

Note that 62 62Q, if (22) holds.

2.4. Sufficient conditions for nonnegativity of 62 V. As remarked in 2.2, the
auxiliary problem (14), (15) or (21), (22) cannot be solved routinely owing to the
fact that it is singular. Our new approach to the problem is to choose the matrix
function P(-) such that

T(23) H,x + f,P 0 for all e [to, t].
Here, P(t) is an n x n symmetric matrix function of time and H,x is m x n so that
there are cases where (23) can be solved by choosing appropriate values for some
of the elements of P. By choosing P according to (23) we annihilate the coefficients
of the mixed 6ufx terms in (21). The remaining terms are quadratic forms in
fix(t) and 6x(ty). Clearly, sufficient conditions for (2 " tzv 0 are that (23) hold
and

(24) P + Hxx + fTp + pf, M(t) >= 0

and

(25) -P(ts) + Vxx(X(ts), ts)= G(ts) >= O.

Equality (23) together with inequalities (24) and (25) constitute sufficient conditions
for b2V >= 0 for all bx(. ).

2.5. Sflieient eonlitions for optimality. Sufficient conditions for a weak
relative minimum are obtained by strengthening (24) and (25)"

(26) P + U + fP + Pfx M(t) >0 forallt[t0,

(27) -P(tf) + F(X(tf), tf)= G(tf) > O.

To see this, note that if(23), (26) and (27) hold, then 6 I 0 ifand only if. 6x( 0
almost everywhere including t. However, if 6x(. 0 almost everywhere includ-
ing t, then by our assumptions on L and F (see 1.2) we have that the total change
in cost is

AV L( + bx, t)dt L(, t) dt + F((tf) + bx(tf), tf) F((tf), tf)
(28)

--0,

i.e.,

(29) t2 0 :: AV-- 0.

Thus, since u does not appear explicitly in L, we can always choose 6x(. 0
sufficiently small so that b2 is the dominant term in the expansion for AV; hence
we have sufficiency.

Example. Hu 0, Hx > 0, F, > 0. In this case, P(t)= P(t)= 0 for all

[to, t] satisfies (23), (26), (27).
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Note. If the dynamical equations (1) are linear and L and F are quadratic,
then (23), (24) and (25) are sufficient conditions for optimality because all varia-
tions higher than the second vanish identically.

Example.

c x2, x(O) O,
(30)

2 U, x2(O O,

(LcX1 -F 2XlX2 q- LrX2) dt,(31) V= 2 2

(32) lul _-< 1,

Here, (. 0 is a totally singular control which satisfies Pontryagin’s principle.
We have that

F=0

(33)

(34)

and

Note that Hxx is not positive semidefinite. Equation (23) yields

(36) P12(t) P22(t) 0, 6 [0, 1],

so that the left-hand side of (24) becomes

and the left-hand side of (25) becomes

(38) [ P (tf

Inequalities (24) and (25) are satisfied if we choose

(39) Pll =0, PI -2;

and since the system dynamics are linear, and the cost is quadratic, fi(. 0 is
optimal.

2.6. Relationship to existing necessary conditions. Both Kelley’s [7] and
Jacobson’s [9] conditions can be derived from (23), (24), (25).

Jacobson’s condition. Let

(40) Q + P P,

where Q and P are both n n, symmetric matrix functions oftime then, from (23),
T--(41) H.x + fT.Q + f.n 0
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so that

(42) T7f.(Hx. + Qf. + Pf.) + 1/2(H.x + fr.Q + f,p)f. O.

From (24) and (40),
T(43) 13 Q Hx, + f,(Q + P) + (Q + P)fx m(t);

and from (25) and (40),

(44) -Q(tl) P(ti) + F,x(2(ty), tj) G(ty) O.

Now set

(45) Q(t)

and

(46)

so that

(47) n(ts) -G(ts)
and

(48) P M(t) + fP + Pfx.
Now, since

(49) M(t) 0 for all te [to, t] and G(t) O,

we have that

(50) P(t)

Using inequality (50) in (42) and noting that (23) implies that H.f. is symmetric,
we obtain

(51) H.L + UQL O.

Inequality (51) together with (45) and (46) comprise Jacobson’s necessary condi-
tion.

Kelley’s condition (generalized Legendre-Clebsch). Differentiating (23) with
respect to time yields

(52) "T T "T T TpI:tx + fuP + fuP 0 I:t.x + fP + Pf, M)-f.(Hxx fx +

Postmultiplying (52) by fu and adding its transpose, we obtain

(53)
"T T T T TI:t,xf, + fT, I:t,x + f, Pf, + f, Pf, 2f, Hxxf, 2f, fxPf,

T T2f, Pfxf, + 2f, Mf, O.

Using

-f. P(54) H,x T
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in (53) we have
T TI:t.xf + f Hux f Hx. H.xf 2f Hxx’ + 9( "( "u

(55)
T

Rearranging (53), we have

(56)
") T "T2fuHxfu + 2H.x(fxfu f.) + 2(f.frr f.)Hxu

d d r -2f mf..+ (H.xL) + (fu Hx.) r

However, we have that

(57)

so that

(58)

M(t)>=O for allte[to,

Now, the left-hand side of (58)is just

(59)
c3u

so that

(60) (- )U _>_ o.

This is Kelley’s first necessary condition. If this is met with equality, i.e.,

(61) f M(t)fu O,

then (56) is again differentiated with respect to time and (54) and (56) are substituted
in. This yields Kelley’s second condition, viz.,

(62)
c?u[dt4 Hu >= O.

The generalized condition

(63) (-1)"
cO [d2 ]L-. >__o

is obtained by further differentiations.
Note. In 2.5, we gave sufficient conditions for optimality; a requirement

was that

(64) M(t) > 0 for all e [to, ty].

However, this condition cannot hold unless q 1 (see (56); if q > 1, then
Tf. mf.= 0, contradicting (64)).

T T T "T d
-f Hxf + Hx(ff. f) + (f.f f.)H. + (H.f.) =< O.
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3. Totally singular control functions, constrained terminal state.
3.1. Second variation (62 V*). We shall allow the terminal constraint

(65) 9(x(ts), ts) O,

where @ is an s-dimensional vector function. As before, t is assumed to be given
explicitly.

If 4 is adjoined to the cost functional by Lagrange multipliers v (see [23]),
the second variation is

(66) 62V

subject to9

(67) 62 f,ax + f,au, 6X(to) 0

and

(68) OxgXlts O.

3.2. Adjoining linearized system to 62 V*. As in 2, we adjoin (67) to (66) by
a Lagrange multiplier function 62(.). We integrate the term 62r62 by parts
and set

(69) 62 1/2P(t)Jx.
We obtain finally

(70)
62V* {1/26xr(P + Hx + fP + Pfx)fX + 6ur(H,x + fP)fx} dt

+ 6xr(Fxx + VrOxxP)6xlv
subject to O6x(tz) O.

If 0x has rank s, then s components of 6x(ty)referred to as 6x(ty)can be
solved for in terms of the remaining n s components, 6x"-(tz) for example,a

(71) 6xS(tf) -A{ 1A26xn-s(tf)
where

(72) s AI A2
(n-s)

so that

(73) 6x(ty)=[-A-1A25xn-S(ty)
where Z is n x (n s).

More precisely, we have that ( + 8x’)" f(ff + 6x’, + 6u, t) and 0(ff(tl) + 6x’(tj.), ti)= O.
However, expansions of these which are of higher order than the first do not influence 62V*.

If A is singular, then differently partitioned Ox and 6x(t) must be used.
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We now eliminate the constraint

(74) O,,Sxl 0

from (70) by using (73) in the boundary terms of 62 V*"

(75)
62ff {1/28xr(P + Hxx + frp + Pfx)6X + 6ur(H,x + fP)6x} dt

3.3. Sufficient conditions for nonnegativity of t2 , Sufficient conditions for
_>_ 0 are (by analogy with 2.4)

THx+fP=O for allt[to,

P+Hx+ f,,P + Pf M’(t) >= 0 for all [to,

(76)

(77)

and

(78) ZT(F + vrO,x P)ZI,, )= G’(tf) >= O.

Note that if s 0 (no terminal constraints),

(79) Z I]

and (76)-(78) reduce to (23)-(25).

3.4. Sufficient conditions for optimality. By strengthening the inequalities in
(77) and (78),we obtain

(80) (2 > 0 for all 6x(.) 0

with

(81) 62=0 if and only if 6x(.)=O

almost everywhere, including I. The argument of 2.5 can be used here to show
that (80), (81) imply optimality (weak relative minimum).

Note. As in the case of unconstrained terminal states, these strengthened
conditions can hold only if the singular arc is first order (i.e., the generalized
Legendre-Clebsch condition holds with strict inequality for q 1).

3.5. Relationship to existing necessary conditions. As in 2.6 it is easy to
show that satisfaction of (76)-(78) implies that Kelley’s condition is satisfied.
Jacobson’s condition for problems with constrained terminal state is more complex
than for the unconstrained case; see 9]. We shall not derive this condition here,
from (76)-(78).

3.6. Comment on problems with constrained terminal state. When deriving
necessary conditions of optimality for problems with terminal constraints by
constructing variations of the control function, one is faced with the task of
showing that the chosen variation is indeed admissible [7], [9]. This is a formidable
task even if the linearized dynamical system is assumed to be completely con-
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trollable and , is assumed to have rank s. 1 We remark that the approach
taken in this paper does not require arguments of the type referred to above.
We need only assume that it is possible to satisfy O(x(ts), ts) 0, and that Ox has
rank s at 2(ty), t.. We do not have to construct explicitly admissible control
variations; our conclusions follow directly by requiring that certain time-varying
matrices be positive semidefinite (see 2.3).

4. Partially singular control functions.2

4.1. First and second variation (6 V* / 2 V*). As defined in 1.3, a partially
singular control function may have both singular and nonsingular portions
(i.e., subintervals of singular and bang-bang control). Along nonsingular arcs,
H, -- 0, and the condition (Pontryagin’s)

(82) min H(ff, u, 2, t)
uU

must hold (this is trivially satisfied along a singular arc). In this case the sum of
the first and second variations is

(83)
6V* + 62V* {Hru6u + 1/26xrHx,fx + 6urH,x6X} dt

+ 1/26xr(Fx, + VrOx)6xl,,
subject to

(84)

and

(85)

6 fx6x + f.Ou, 6X(to) 0

Oxgxl, O.

In order to enforce (85) (and /(x(ty), t) 0), we have

(’) + b/(’)e g3,(86)

where

(87)

and

(88)

U3 U2 U

U, {u(.):lui(t)l -<- 1, [to, tf], 1,..., m},

U2 =- {u(.):O(x(ty),ts) 0,2 f(x,u,t);X(to) Xo}.
Note that by (82),

H, 6u >= O, (. + 6u(. e U3(89)

with equality holding along singular arcs and at switch times of the bang-bang
control arcs. If there are no singular arcs and no switchings of the control (i.e.,
[H,I - 0 for all [to, ty] so that fi(. const. + 1 or 1), then Pontryagin’s

11 These are common assumptions [23].
12 In this section we treat the constrained terminal state problem; the unconstrained problem is

a special case.
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principle is sufficient for optimality because the second order terms in (83) can
be made insignificant (i.e., dominated by TH, diu) for 6u(. sufficiently small.
In the case where bang-bang arcs are present (i.e., where (t) switches between
its upper and lower bounds) one can, by placing a control variation in the

Timmediate vicinity of a switch point, cause Hu 6u to contribute less to the change
in cost 6V* + 62 V* than the second variation terms.

Clearly, sufficient conditions for c2V* 0 are (76)-(78) and sufficient con-
ditions of optimality (weak minimum) are these in strengthened form. Less
restrictive sufficient conditions for purely bang-bang control functions have been
given previously [24], [25]. However, in this section, we allow partially singular
(i.e., "partially bang-bang")control functions and thus embrace a wider class
of problems than in [24] and [25].

5. Problems nonlinear in control.
5.1. Introduction. In the last section we indicated that our approach to

sufficiency is independent of whether the control function is totally singular or
partially singular or, in the purely bang-bang case, nonsingular. In this section
we study the more general nonsingular problem where the control u appears
nonlinearly in f and L. We show that our approach is indeed applicable and
give examples to illustrate our results. As a byproduct of the analysis, we obtain
sufficient conditions for the boundedness of the solution of a certain matrix
Riccati differential equation.

We shall consider the following nonlinear optimal control problem:

(90)

(91)

f(x, u, t), X(to) Xo,

V(xo, to) L(x, u, t) dt + F(x(ty), ty).

Here it is assumed, for simplicity, that there are no constraints on the control u
or on the terminal state x(ty), though this in no way limits the wider applicability
of the analysis (see 5.5 for constrained terminal state). In this case the second
variation is

(92) (2 V t
subject to

(93)

Here,

(94)

{1/2(XTHxx6X + 6uTH,x6x + 1/2(uH,,cu} dt + 1/26xTFxx6Xl,s

,5Y fxx + f,,Su, &(to) O.

H,u(t)>=O for allt

is a well-known necessary condition (Legendre-Clebsch) of optimality. For the
problem to be nonsingular, strict inequality must hold, i.e.,

(95) H,u(t) > 0 for all
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A known necessary condition of optimality13 [26] (which together with (95) and
Pontryagin’s principle forms sufficient conditions of optimality) is that the solu-
tion to the following matrix Riccati differential equation be bounded for
e [to, t],:

T T T- Uxx + fTxS + Sf- (H.x + f.S) H2. (H.x + f.S);
(96)

S(tjO- fxxl,.

Sufficient conditions for the boundedness of S(.) are known to be (see [21], [26])

(97)

Hxx Hx.H2.1H. >= 0 for all [to, ty],

Fxx(X(tf), tf) >= O,

H2,1(t) > 0 for all [to,

5.2. Sufficient conditions for optimality. Equation (93) can be adjoined to
(92) using a vector Lagrange multiplier function of time 2(.). If, as before, we let

(98) 62 1/2P(t)bx,

then, the second variation becomes

62 {1/26xT(p + Hxx + frxP + Pfx)bX + 6uT(H. + fP)6x(99)

nt- 1/2(uTHuu(U} dt + 1/2(xT(Fxx

Clearly, b2 " >= 0 if we can choose P(t) so that

(00)

(101)

(102)

TH.+f.P=0 for allte[to,ty],

P +Hx+fTxp+Pfx=M(t)>-_O

--P(tf) + Fx((tf), tf)= G(tf) >= O.

for all e [to, tf],

Moreover, because of (95), we have that

(103) 62 9 >= kN2[fu( .)] for all 6u(.),

where N is a suitable norm on 6u(. and k > 0. Inequality (103) indicates that 621
is strongly positive and, by a theorem of Gel’land and Fomin (27, p. 100], this is
sufficient for (.) to be a minimizing control function (weak relative minimum).
Thus conditions (100)-(102) are sufficient for optimality in this nonsingular
problem. As an immediate consequence we have the following result" Con-
ditions (100)-(102) imply that the matrix Riccati equation (96) has a bounded
solution in the interval [to, ty] (because the boundedness of S(.) is a necessary
condition of optimality). These conditions are, in certain cases, considerably
weaker than (97), as the following example illustrates.

13 Classically known as the "no-conjugate-point condition" [27, p. 100].
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Example.

(104)

(105)

Here,

1 X2, 2 U,

V (1/2x + 2xx2 r- gX2 + 1/2u2) dr.

(106) H,,x 0 Hx F O.
2

These values do not satisfy conditions (97). However, from 2.5, we have that

(107) P12(t) P22(t) 0 Pl l(t) for all e [to,

and

(108) Pll _-< 1

satisfy (100)-(102), so that the stationary solution to this problem, obtained from
Pontryagin’s principle, is optimal. Note that in this particular case the checking
of (100)-(102) is considerably easier than integrating the matrix Riccati differ-
ential equation to see whether or not its solution is bounded in the interval [0, 1. 14

5.3. Derivation of Riccati equation. The Riccati differential equation (96)
can be derived directly from (100)-(102) as follows: From (100) and (101),

T T -1 TP Hxx + frp + Pfx M(t) -(Hux + f, P) H,, (H,x + f,P).(109)

Let

(110)

then

P=P+S;- $ Hxx + frx(P + S) + (P + S)f M(t)
(111)

[H.x + fr.(p + s)]TH2.1EH.x + fr.(p + S)]

Hx + fr(p + S) + (P + S)f M(t)
T T -1 T

(112)
(H.x + f.S) H.. (H.x + f.S)

T T -1 T-- T-(U.x + f.S) H.. f.P Pf.H(H.x + f.S)
-1Pf.H..f.P.

Using (100) and (110) in the last three terms of (112), we obtain
T T0 H + f(S + P) + (P + S)L -(H. + f.S)rHL (H. + f.S)

(3)
-1 T--+ Pf... f.P-

Now choose
-1 T--(114) P -M(t) + fP + Pf + Pf.H.. f.P.

1. of course, in more complicated examples, checking of (100)-(102) may be less trivial.
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From (102) and (110), we have that

(115) -P(tf)- S(tf) + Fxx G(tz) >= O.

Choose

(116) P(tz) G(tz)
Now we have that P(t) is bounded in the interval [to, tz]. This follows from the
fact that (-P) satisfies a Riccati equation for which conditions (97) hold, viz.,

(117)
M(t) >= O, Hul(.t) > 0 for all t [to, tf],

G(tf) >= O.

Using these results in (113) and (115), we obtain finally that
T T -1 T- Hxx + fS + Sfx- (H,x + fuS) H,, (H,x + f,S),

(8)
S(ty) Fxx(2(ty), ty)

which is the Riccati equation (96). Now since (100)-(102) are satisfied by a matrix
function P(.) which has bounded elements, and since, by (117), P(.) is bounded,
we have from (110) the result that S(.) is bounded.

5.4. Another example.

(119)

(120)

Here,

1 X2, XI(0)-- XIO,

2 u, x2(0) X2o,

V (_1:x12 + 2x + 1/2u2) at.

(121) H.x=0 Hxx F=O.
0

These values do not satisfy conditions (97). Conditions (100)-(102) become

[P12 P22] O,(122)

IP; 001 [ 0 VllI [-1 041(123) + + > 0
Pll 0 0

and

(124) I-P11(1)0 001>0"
Let us choose P11(tf)--0; this satisfies (124). From (122), P12(t)--P22(t)--0
for all [to, ty]. If we choose

(125) 11611--2 then Pl1(0)=-2,
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and (123) becomes

1 -2 + 2t1(126) > 0.
-2 + 2t 4

Inequality (126) holds for all e[0, 1]. Thus the solution obtained from
Pontryagin’s principle is optimal, and the Riccati equation associated with
the above control problem has a bounded solution

5.5. Constrained terminal state. From . 3.3 and 5.2, sufficient conditions
for optimality are

(127) for all e [to, tl],

(128) P + Hxx + fTxp + Pf M’(t) >= 0 for all e [to, tl],
(129) Zr(Fx +
and (Legendre-Clebsch)

( 30) /-/..(t) > o
Example.

1 X2,
(131)

2

(132) V C
do

XI(0 XIO XI(1 0,

X2(0) X20, X2(1 0,

2 1/2u2x+1/2x+ )t.

Here,

(133)

(134) Hxx I-
O,

0
F=0, H,,

In this case, because n s 2, condition (129) disappears. As before, we have
that

(135) TH. +f,P= [P12 P22] =0.

Condition (128) becomes

(136) [1 00] [ 0 Pll] [--1 011+ + >0.
PI 0 0

Choosing Pl1(0) --1 and/511 2, the left-hand side of (136) becomes

(137)
1 -1 + 2t]
l+2t 1

which is >_0 for all e [0, 1], so that the stationary solution obtained from
Pontryagin’s principle is optimal. Note that the above sufficiency conditions are,
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in this case, easier to check than the usual sufficiency conditions for nonsingular,
constrained terminal state problems 23]. Moreover, the presence of the terminal
constraints actually makes the choice of P and P(tl) easier (if in this example
there were no terminal constraints, inequality (129) would be violated by our
above choice of Pl1(0) and Pl 1)"

6. Applicability of the new conditions. If the conditions

T(138) H,x +fuP=O for allt[to,

(139) P + H,, + fP + Pf M’(t) >= 0 for all ts [to,

(140) ZT(F + vTox P)ZI,, G!(t) >= 0

cannot be satisfied, then no conclusion can be drawn regarding the nature
(optimality or nonoptimality) of the stationary control function. This is because
the above conditions are sufficient (but probably not necessary), is

Example.

(141)

(142)

(143)

Clearly,

(144)

u, X(to) O,

lul 1,

v ct 1/2o(t)x(t).

(.) o
is a stationary solution for the above problem. Here, H, 0, Hx 1,
Fx -(ty) and P is scalar so that (100) determines

(145) P(t) 0 for all 0, 1].

Condition (101) becomes

(146) 1 >= 0

and condition (102) becomes

(1,47) -e(tz) >__ O.

Clearly, (101) is satisfied and (102) is satisfied if

(148) a(ty) =< 0

but is violated if

(149) (ty) > 0.

However, application of Jacobson’s necessary condition [9] to this problem
shows that if a(ty) > 0, the stationary solution (144) is not minimizing.

The above example suggests the following sufficient condition for non-
optimality of a singular control function.

Current research now indicates that these conditions are necessary.
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7. Sufficient conditions for nonoptimality of a singular control function. The
second variation for the unconstrained terminal state problem is

(10)
{1/2bxr(i0 + Hxx + fTxp + Pfx)6X + 6uT(Hux + fTup)bx} dt

+ 1/26xT(gxx P)cxlt.

If it is possible to choose P(t), [to, ty], such that

(151)

and

(152)

and

(153)

P + Hxx + fTxp + Pfx M"(t) <= 0

-P(tf) + Fxx(2(tf), tf)= G"(ty) <= 0

T T7fuHxu + 7Huxfu + fuPf. < O,

then the singular control is nonoptimal.
The first two conditions cause the quadratic forms in 6x and 6x(ty) in (150)

to be nonpositive. If a rectangular pulse variation 6u(. of height r/and duration
AT is introduced, then the dominant term (for r/and AT sufficiently small) of

(154) 6uT(Hux + f p)bx dt

(155) 1/2rlrvx FT I_I"
:j.,x. + :g.xf. + fruPf.]q(Ar)2"

so that if

(156)

then

T T:zfuUxu + -Huxfu + fuPfu < O,

(157) (2 < 0,

and the singular control is not minimizing.
Example.

(158) 2 u, x(0) 0,

(159) V x2 dt x2(ty).

In this case, conditions (151) and (152) become

(160)

(161)

and

(162)

P+I__<0P__<-I,

-P(ty) 2 <__ 0 P(ty) >= -2

T T-fuHxu + -Huxfu + f, Pf, P.
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Choose

(163) P= -1 and P(ts)= -2;

then conditions (151)-(153) are satisfied and the singular arc is nonoptimal.

8. Conclusion. In this paper sufficient conditions are presented for the second
variation to be nonnegative in both singular and nonsingular control problems.
It is demonstrated that known necessary conditions of optimality for singular
problems and the no-conjugate-point condition for nonsingular problems are
implied by the new conditions. Simple illustrative examples demonstrate the
usefulness of the new conditions. A sufficient condition of optimality for singular
problems is obtained by strengthening the inequality conditions; it is shown that
these strengthened conditions can only be satisfied by first order singular problems.

When applied to the nonsingular control problem, the new conditions yield
sufficient conditions for the boundedness of the solution of the matrix Riccati
differential equation; this result appears to be useful in its own right.

The derivations presented are carried out for the case of u an n-vector, and
s-vector constraints on the terminal state are permitted. Throughout, the final
time ts is assumed to be given explicitly;the generalization of the conditions to
the case where ty is given implicitly is straightforward but tedious.

The Appendix contains a Lagrange multiplier derivation of a necessary
condition of optimality for singular control problems which was derived pre-
viousl using differential dynamic programming [9].

The derivations in this paper are formal. In order to make the proofs rigorous
it is necessary to justify the integrations by parts. Indeed, in view of the assump-
tions made in 1.2, 1.3 these integrations are valid.

Appendix. Lagrange multiplier derivation of Jacobson’s necessary condition
of optimality for singular problems (no terminal constraints). The second variation
is

(A.I)
$

62V= {1/26xTHxxfx + 6uTH,xfix} dt + 1/26xTFxfxl,s

subject to

(A.2) 6:t f6x + f,6u, 6X(to) O.

Adjoining (A.2) to (A.1) with Lagrange multiplier

(A.3) 62 1/2Q(t)6x

(where Q ,is an n x n symmetric matrix function of time) and integrating by parts,
we obtain

(A.4)
+ x(F

Now, choose

T(a.5) H + f Q + QL, Q(ty) F(X(ty), t/);
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then

(1.6) t27 ftlf (uT(Hux q- frQ)6xdt.

Introduce a variation 6u(. which is zero everywhere except, say, in the interval
Its, tl + AT] where

(A.7) tl and tl +ATe[to,

and which has constant magnitude r/(note that (. + 6u(. )e U).
The dominant term of (A.6) produced by this variation is seen easily to be

(A.8) _12r/v T[zfH. + -H.xf, + fT,Qf,]q(AT)2
From (A.8), for nonnegative 62V, we must have

(A.9) r T-f, Ux, + -Hxf + fQfu >= O.

A known necessary condition of optimality [5], [8], [28] is that Hxf, be
symmetric. Using this in (A.9) yields

(A.10) Uxf + f Qf >= O.

This inequality, together with (A.5), comprises the necessary condition of opti-
mality obtained (for the case of scalar control), using differential dynamic pro-
gramming, in [9].
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ABSTRACT CONTROL SYSTEMS: CONTROLLABILITY
AND OBSERVABILITY*

VELIMIR JURDJEVIC"

Introduction. Conceptual ideas of control theory and dynamical systems
have been of profound influence in motivating a general mathematical systems
theory. Because of the somewhat special nature of the field of differential equa-
tions, within which control theory has been developed, it appears desirable to
provide an axiomatic setting for the study of these notions; for instance, an
axiomatic approach might, in addition to providing a link between dynamical
systems and control theory, be of some value in the study of control systems
described by partial differential equations. This paper is an attempt to formulate
a set of axioms for dynamical control systems which are abstract generalizations
of global solutions of control differential equations. In this context, I have made
a study of controllability and observability of linear dynamical control systems.

Among the many generalizations of the concept of dynamical system (see
Bushaw [4]) we will mention only a few. Probably one of the weakest structures
was the concept of "processes" given by Hajek [10]. Roxin [18] considered
"generalized dynamical systems" to be extensions of the classical dynamical
systems (for instance Bhatia and Hajek 2]) where essentially the assumption of
single-valuedness of solutions has been dropped. In regard to optimal control
theory, formalization attempts were made by Bushaw [3] and Halkin [12]; both
investigated implications of their "dynamical polysystems" axioms to optimiza-
tion. Many other formalisms were, to quote Bushaw [4], "little more than preludes
to discussions that are conducted in considerably less abstract terms." My axioms
have essentially abstracted the global existence and uniqueness of solutions and
are of sufficient generality to include a class of partial differential equations.

Section 1, in addition to providing the definitions and basic concepts, deals
primarily with controllability of linear dynamical control systems. Its main result
is the existence of an invariant approximately controllable linear subspace of a
Hilbert state space. The notion of approximate controllability is weaker than that
of Antosiewicz 1 or Fattorini [7]. It is shown that the approximately controllable
space coincides with the controllable space (in the classical sense) whenever the
state space is of finite dimension. From these results the analogue of Kalman’s
canonical decomposition theorem [14] follows immediately. It is an interesting
consequence that all of these results are obtained in the absence of any topological
structure on the class of controls.

Section 2 deals with linear observed systems. The notion of observability of
a linear system is introduced via the concept of "indistinguishable states" and is
due to M. Arbib. It is then proved that, corresponding to any linear observed
system, there exists a unique invariant maximal subspace of the state space on
which the system is unobservable. It is also proved that the definition of ob-
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servability used here is equivalent to that used by Kalman I14] and Markus 17]
whenever the state space has the structure of a Hilbert space.

1. Dynamical control systems.
1.1. Basic definitions. X is a nonempty set, to be referred to as the state space.

Elements ofX will be called states. {1 is a nonempty set, to be called the restraint set.
The set F c_ {flf’R --+ f*} is called the set of controls and its elements will

be called controls. R denotes the set of real numbers. F is said to be closed under
translations if and only if, for any f s F and any s R, the map fs defined by fs(t)

f(t s) for all R is a member of F. F is closed under concatenations if and
only if, for any f and g in F and any s R, the map h defined by

f f(t) for < s,
h(t)

g(t) fort >_ s
is a member of F.

X x R will be called the phase space and its elements will be called phases.
DEFINITION 1.1.1. H is a dynamical control system if and only if Fl satisfies

the following axioms:
(A1) YI:X F x R x R-X
(A2) H(x,f, t, t) x for all x X, f F and R.
(A3) H(x, f r, t) 1-I(Fl(x, f, r, s), f s, t) for all x X, f F and all r, s, in R.
(A4) If, for some x and y in X, f and g in F, r, s, t, v in R, we have

and

then

H(x,f, r, t) Fl(y, g, s, t),

f(u) g(u) for u e (t, v),

Fl(x,f, r, v) n(y, g, s, v).

Axioms (A2)-(A4) will be called the identity, homomorphism and nonanticipation
axiom respectively.

A control f F is said to steer a phase (x, s) into a phase (y, t) if and only if
s =< and rI(x,f, s, t) y. If u and V are subsets of X thenfsteers (U, s) into (V, t)
if and only iff steers every (x, s) (U, s) into some phase in (V, t).

The set sg(x,s,t)= {ylII(x,f, s, t)= y for some f F} is called the set of
attainability from (x, s) at t. Similarly, if U X then the set of attainability from
(U, s) at is defined as follows"

se(u, s, t) t._) se(x, s, t).
xU

A dynamical control system II is said to be controllable on a set U
_
X at

time s e R if and only if for any x and y in U there exists a control f e F which
steers (x, s) into (y, t) for some e R.

A set U
_
X is said to be positively invariant (under H) if and only if

Q) se(u, 0, t) _= u.
t>0

Similarly, U is negatively invariant (under H) if and only if

t=<0
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U is invariant (under I-I) if and only if U is both positively and negatively invariant
(under l-I). It follows directly from the definitions that any intersection of posi-
tively (negatively) invariant sets is positively (negatively) invariant.

DEFINITION 1.1.2. is a dynamical system if and only if satisfies the follow-
ing axioms:

(B1) :X R RX.
(B2) (x, t, t) x for all x X and R.
(B3) (x, r, t) ((x, r, s), s, t) for all x X and all r, s, t in R.
Let 1-I be a dynamical control system. For eachf F let s :X R R --+ X

be defined as follows:

s(x, s, t) FI(x,f, s, t) for all x X and all s, in R.

It follows directly from Definition 1.1.1 that y satisfies the conditions of Defini-
tion 1.1.2 and is, therefore, a dynamical system. Thus 1-I can be viewed as a collec-
tion of dynamical systems parameterized by the elements of F.

It is evident that a dynamical control system 1-I is a dynamical system if and
only if

H(x,f, s, t) H(x, g, s, i)
for all f, g in F, s, in R and all x e X.

DEFINITION 1.1.3. Let the set of controls F be closed under translations. A
dynamical control system H is said to be autonomous if and only if

Fl(x,f, r, t) Fl(x,f,, r s, s)

for all x e X,f e F and r, s, in R.
It follows immediately from the above remarks that a dynamical system

is autonomous if and only if

(x, r, t) (x, r s, s)

for all x e X and r, s, in R; or equivalently, is autonomous if and only if there
exists a function

O’:X x RX

with

’(x, O) x, ’(x, t) ’(’(x, s), s)

for all x X, s, in R and (x, s, t) ’(x, s).
Definition 1.1.1 is similar to Kalman’s definition of a dynamical system [14];

it is more general in that it does not include any continuity requirements. Almost
all of the terminology and basic concepts associated with a dynamical control
system have been taken from control theory with the exception that in a few
instances they have been defined more precisely.

The notion of a dynamical system in Defiffition 1.1.2 is different from the
usual definition given in Bhatia and Hajek [2]. The latter, except for the con-
tinuity requirement, is what is here called an autonomous dynamical system.
I hope that this choice of terminology adds to the clarity of these notions.
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1.2. Elementary properties of afline and linear dynamical control systems.
Let the state space X and the set of controls F be linear spaces defined over the
same ring of scalars . It will be assumed that contains a unit which will be
denoted by 1.

DEFINITION 1.2.1. A dynamical control system FI is said to be affine if and
only if

on(x,f, s, t) + (1 o0H(y, g, s, t) n(ox + (1 )y, of + (1 o0g, s, t)

for all e N, x, y in X, f, g in F and s, in R.
DEFINITION 1.2.2. A dynamical control system H is linear if and only if

n(x,f s, t) +/n(y, g, s, t) I-I(x + fly, f + fig, s, t)

for all , fi in , x, y in X, f, g in F and s, in R.
THEOREM 1.2.3. A dynamical control system Fl is affine if and only if there

exist q) and such that

n(x,f s, t) o(x,f s, t) + (s, t).

for all x X, f F and s, in R, and that"
(i) q) is a linear dynamical control system;

(ii) @ R R R is such that (r, t) q(g/(r, s), O, r, t) + @(s, t) for all
r,s,t in R.

Proof. If II(x,f, s, t) q(x,f, s, t) + @(s, t) as given in the conditions of
the theorem, then it follows by direct verification that II is an affine dynamical
control system.

To prove the converse statement of the theorem assume that 1-1 is an affine
dynamical control system. Let @’R R - X be defined by @(s, t) II(0, 0, s, t)
for all (s, t) R x R, and let q)’X x F x R x R -+ X be defined by o(x,f, s, t)

II(x, f, s, t) 0(s, t) for all x e X, f e F and s, in R.
It is a laborious but straightforward matter to show that q9 is a linear dynam-

ical control system, and its proof will be omitted. Since it follows directly from
the homomorphism axiom and linearity of q0 that , satisfies (ii), the proof of the
theorem is complete.

Incidentally, since O(s, t) must be equal to 1-I(0, 0, s, t) it follows that q) and
are uniquely determined by II.

This remark essentiallyproves the following corollary.
COROLLARY 1.2.4. An affine dynamical control system Fl is linear if and only

if H(O, O, s, t) 0 for all s, in R.
THEOREM 1.2.5. A dynamical control system II is linear if and only if there

exist do and A such that

gI(x,f s, t) aO(x, s, t) + A(f, s, t)

for all x X, f F and s, in R, and that"
(i) (I) is a linear dynamical system;

(ii) A’F x R R X is such that, for any f, g in F and any

cA(f, s, t) + flA(g, s, t) A(0f + fig, s, t) for all s, in R;
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(iii) A(f, t, t) 0 for all f F, R;
(iv) A(f, r, t) (A(f, r, s), s, t) + A(f, s, t) for all f F and r, s, in R;
(v) A(f, r, t) A(g, r, t) for all f and g in F with g(s) f(s) for all s (r, t),

t>r.

Proof Let H(x,f, s, t) (x, s, t) + A(f, s, t) for all x X, f F and s, in R
where and A satisfy (i)-(v) respectively. It follows by direct verification that H
satisfies all of the axioms of a linear dynamical control system. To prove the other
implication of the theorem, assume that 1-I is a linear dynamic control system.
Define ’X R R X as follows"

(x, s, t) FI(x, 0, s, t) for all x X and s, in R.

is a dynamical system as was observed in 1.1 and its linearity follows directly
from the linearity of 1-I.

DefineA’F R RXby

A(f, s, t) I-l(0,f, s, t) for all f F and s, in R.

Property (ii) is a direct consequence of the linearity of 1-I, and properties (iii) and
(v) follow immediately from the identity and nonanticipation properties of I-I
respectively.

To verify property (iv), let f F and r, s, be in R. Then

A(f, r, t) II(0,f, r, t) 1-I(II(0,f, r, s), f, s, t)

II(A(f, r, s), f, s, t) (I)(A(f, r, s), s, t) + A(f, s, t).

This proves (iv) and now the proof of the theorem is completed.
COROLLARY 1.2.6. A dynamical control system 1-I is affine if and only if there

exist , A, such that

rI(x,f s, t) (x, s, t) + A(f, s, t) + O(s, t)

for all x X, f F and s, in R, where and A satisfy the conditions of Theorem
1.2.4, and satisfies condition (ii) of Theorem 1.2.3.

Proof This is a direct consequence of Theorems 1.2.3 and 1.2.4.
The following corollary is immediate.
COROLLARY 1.2.7. An autonomous dynamical control system II is affine if and

only if there exist , A, such that

II(x,f, s, t)= (x, s) + A(f, s, t) + O(t s)

for all x X,.f F and s, in R, where"
(i) (I) is a linear autonomous dynamical system;

(ii) A satisfies conditions (ii), (iii), (iv) and (v) of Theorem 1.2.5 and in addition
A(f, r, t) A(f, r s, s) for all f F and r, s, in R;

(iii) O’R --, X with 6/(0) 0 and O(t r) (O(s r), s) + O(t s) for
all r, s and in R.

1.3. Controllability of linear dynamical control systems. Let the state space
X and the set of controls F be linear spaces over the same ring of scalars . Even
though a few results of this section do not require F to be closed under transla-
tions and concatenations, we shall assume this property throughout the section.
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Corresponding to any linear dynamical control system H, the symbols and A
will have the meaning from Theorem 1.2.5 (and will not be necessarily defined
whenever used). will be referred to as the zero response of H.

DEFINITION 1.3.1. Let H be a linear dynamical control system. For each
s R, the set

V’(s) {xlH(x,f, s, t) 0 for some f e F and some >= s}
is called the domain of null controllability of H at s.

Clearly x e tiff(s) if and only if (x, s, t) + A(f, s, t) 0 for some f F and

>= s, or equivalently,

x= -q(A(f,s,t),t,s) for somefeF and t__>s.

If f e F steers a phase (x, r) into (0, s) for some s _>_ r, then g’R f, defined by
g(u) f(u) for u < s and g(u) 0 for u >= s, steers (x, r) into (0, t) for any >= s.
This remark along with linearity of H essentially proves the next theorem.

THEOREM 1.3.2. Let H be a linear dynamical control system. Then for each
s R, the domain of null controllability V(s) of H at s is a linear subspace of X.

If H is an autonomous dynamical control system, then it follows immediately
that for any s and in R, rig’(s) ff(t) thus in the sequel no reference to time will
be made in the description of the domain of null controllability V" of a linear
autonomous dynamical control system.

THEOREM 1.3.3. If YI is an autonomous linear dynamical control system, then
its domain of null controllability U is negatively invariant.

Proof Let y H(x,f, 0, -t) with x e t/’, f e F and e R, > 0. We want to
show that y e. Let g e F steer (x, 0) into (0, u). Define h" R f by letting

f f(s) fors<0,
h(s)

g(s) fors__>0.

Thus h e F, and

H(y, h, t, u) 1-I(YI(II(x, f, 0, t), f, t, 0), g, 0, u)

H(x, g, 0, u) 0.

This shows that h steers (y,-t) into (0, u), and therefore y rig’. This concludes
the proof of the theorem.

DEFINITION 1.3.4. Let FI be a dynamical control system. For any s . R,

s(0, s) {x’II(0, f, s, t) x for some f V and >- s}
is called the set of attainability from (0, s).

Equivalently, x e s(0, s) if and only if there exists a control f F which
steers (0, s) into (x, t) for some e R. If H is a linear dynamical control system,
then x e s’(0, s) if and only if

x A(f, s, t)

for somef F and some >= s.
If f e F steers (0, r) into (x, s) for some s __> r, then g’R--, f, defined by

g(u) 0 for u < r + s and g(u) f(u + s) for u __> r + s, steers (0, r)
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into (x, t) for any >__ s. Thus in a manner completely analogous to Theorems 1.3.2
and 1.3.3 we get the following theorems.

THEOREM 1.3.5. Let H be a linear autonomous dynamical control system. For
each s R, the set of attainability (0, s) is a linear subspace of X.

THEOREM 1.3.6. IfH is a linear autonomous dynamical control system, then the
set ofattainabilityfrom zero is positively invariant.

Clearly, if H is autonomous then a’(0, t) z(0, s) for any s, in R and there-
fore in the sequel, corresponding to any linear autonomous dynamical control
system the set of attainability from (0, s) will be simply called the set of attainability
from zero and it will be denoted by ’.

All of the previous notions along with their properties have been developed
solely through the structural and algebraic properties of X, F and H. The follow-
ing concept of approximate controllability will, however, be of topological nature.
For this purpose it will be assumed that X is a linear topological space.

DEFINITION 1.3.7. A linear dynamical control system H is said to be ap-
proximately controllable on a set A

_
X at time s R if and only if there exists a

set B
_

A, such that B A and that, for any x A, y B and any neighborhood
U of x, there exists a controlf F which steers (y, s) into (U, t) for some R.

If H is approximately controllable on A (at time s), then H is approximately
controllable on any subset of A which contains B. If H is an autonomous
dynamical control system, and if H is approximately controllable on A at time s,
then H is approximately controllable on A at every time e R. In such cases no
reference to time will be made, and H will be said to be approximately con-
trollable on A.

LEMMA 1.3.8. Let H be an autonomous linear dynamical control system. Iffor
each R, the zero response of II is a continuous function of x, then the closure
of the set of attainability is positively invariant, and the closure of the domain

of null controllability dV is negatively invariant.

Proof We first show that for each >= 0 in R,

(, t)
_ .

Let x ’, and let U be any open neighborhood of (I)(x,t). By continuity of
V {y X’(I)(y, t) U} is an open neighborhood of x. Let y V. By

positive invariance of , (I)(y, t) f-] U. This shows that any neighborhood U
of (I)(x, t) contains a point of ’, which implies that (x, t) ’ or that (, t) .

Now let x , f 6 F and => 0. Then A(f, 0, t) by the definition of .
Since d, and. hence also d, is a linear subspace of X, we obtain that

H(x, f, 0, t) (x, t) + A(f, 0, t) d.

This proves positive invariance of .
The proof of negative invariance of dV is completely analogous, and there-

fore, the proof of the lemma is complete.
LEMMA 1.3.9. Let be a linear autonomous dynamical system defined on a

Banach space X. Assume that satisfies thefollowing continuity requirement" Given
e > 0 and s R, there exists 6 > 0 such that,for all R with It s] < 6,

sup IItI)(x, t) tI)(x, s)l] < e.
[[x[[-<
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Then for each x X, (x, t) is an analytic function of t" furthermore, there exists a
bounded transformation A on X such that for all x X and all R

(x,t)
oAi(x) =- eta(x)"
i=

(For proof see Hille and Phillips [13, pp. 338-342].)
Any autonomous linear dynamical system having the above continuity

requirement will be termed uniformly continuous. This is in accordance with the
terminology used in the context of semigroups by Hille and Phillips [13] and
Yosida [20].

Since (x, t)- Yll =< (x, t)- x + Ily xll, we have that uniform con-
tinuity of implies joint continuity of; i.e., whenever x, x and t, ---, t,

(x,, t,) (x, t) 0.

TIORWM 1.3.10. Let H be a linear autonomous dynamical control system
defined on a Hilbert space X. Let the zero response ofH be uniformly continuous.
Then there exists an invariant closed linear subspace C ofX such that H is approxi-
mately controllable on C.

Proof Let C /’. By Theorems 1.3.5, 1.3.6 and Lemma 1.3.8, C is a positively
invariant closed subspace of X. Let C+/- denote the orthogonal complement
of C. Then C is a closed subspace of X, and X C (R) C+/-. Let P1 "X C and
P2 "X -- C+/- be the projection maps. For k 1, 2 set 1-Ik Pk. H, P. and
AK PK" A. Let 1, (I)k2 be the restrictions of to C and C+/- respectively;
from linearity of ,

1-I(x,f,s,t) l(y,t s) + dz(Z,t s) + A(f,s,t),

I-I2(x,f,s,t d21(y,t s) + 22(z,t s) + Az(f,s,t)

whenever x y + z with y C, z C+/-, and f F, s, in R. Since C is positively
invariant, I-I2(y f, 0, t) 0 for y C, f F and => 0; hence 2(y, t) 0 and
Az(f, 0, t)= 0. By Lemma 1.3.9, (y,.) is an analytic function of t, and hence
so is (y,.). Therefore, 2 (y, t) 0 for all R.

For z C+/- and s, in R we have

(z,s + t) + 2(z, s + t)= (z,s + t)

((z, s), t)

Oll(O12(Z,S),t -F O12(022(Z,S),t

+ (z, s), )
so that

(I)22(Z S -’l- t) (I)22((I)22(z s), t);

thus, (I)22 is a dynamical system on C;. In particular, for any f F and > 0,

A2(f, 0, t) -I)22(A2(f,, 0, t), t)

--(I)22(0 t) 0;

thus, A2(f, 0, t)= 0 for all f F and R. Thus we have shown that for any
yC, Hz(y,f,O,t 0for allfF and tR. Thus H(y,f,O,t) lq(y,f,O,t)C,
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and hence C is invariant under H. In the course of proving the above assertion
we have also proved that H has the following representation"

H(x,f,s,t) @li(y,t s) + 12(z, s) + Ax(f,s,t),

H2(x, f, s, t) (I)22(z s)

for allxX with x=y+z,yC, zC+/- and allfF,s,t in R. For such z,
if f F steers (x, 0) into (0, t) for some R, then "22(z, t) 0; since (I)22 is a
linear dynamical system, necessarily z 0. This shows that V

_
C ’, and

therefore, V
_

C.
V is a negatively invariant closed subspace of X (Theorems 1.3.2, 1.3.3,

and Lemma 1.3.8); analogous arguments yield C a’
_ , and therefore,

This will be used now to show that FI restricted to C is approximately controllable.
First, is dense in C. Let x C, let y , and let U be any neighborhood

of x. We must show that there exists a control h F which steers (y, 0) into (U, t)
for some R. Since a’ is dense in C, there exists

wd 91 U.

Let f F steer (y, 0) into (0, s) for some s R and let g F steer (0, 0) into (w, t)
for some R.

Define h’R - f by , f(u) for u < s,
h(u)

g(u + s) foru>_s.

Then h F and h steers (y, 0) into (w, s + t). This shows that FI restricted to C is
approximately controllable and the proof of the theorem is completed.

In the course of this proof we have also obtained the following corollary.
COROLLARY 1.3.11. If H is an autonomous linear dynamical control system

defined on a Hilbert space X and if its zero response is uniformly continuous, then
the closure of the domain of null controllability is equal to the closure of the set of
attainabilityfrom zero.

THEOREM 1.3.12. Let H be an autonomous linear dynamical control system
defined on a Hilbert state space X. Let the zero response of H be uniformly
continuous.

If either ff(., t) is a self-adjoint operator on Xfor each R, or X R", n >= 1,
then a space C satisfying the conditions of Theorem 1.3.10 is unique.

Proof. Let H be a linear autonomous dynamical control system defined on
a Hilbert space X with * uniformly continuous.

Let C be the closure of the set of attainability from zero. By Theorem 1.3.10
C is invariant under H, H restricted to C is approximately controllable, and further-
more, H has the following representation"

I-Ii(x,f,s,t) (I)ll(Y, s) + (I)12(z, s) + A(f,s,t),

Hz(x, f, s, t) @22(z, s),

where x y + z, y C, z C.
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Let D be any other closed, invariant subspace of X on which 1-I is approxi-
mately controllable.

Let B be a set dense in D with the property that for any x D, y B and any
neighborhood U of x, there exists a control f F which steers (y, 0) into (U, t)
for some R.

By invariance of D, it immediately follows that /’

_
D, so that C

_
D.

Let yB,y--z+w with zC and wC-. Since B__D, we have yD and
therefore y D.

From the controllability properties of D it follows that, for some sequences
{f(n)}

_
F, t, >= 0,

lim 1-I(y, f(n), O, t,) y.

This implies that lim,_ l-12(y f(n), 0, t,) lim,_ (I)22(W tn) W.

Let (., .) denote the inner product on X. Observe that if (., t) is a self-adjoint
operator in X, then so is (I)22(" t). For any e R,

But,

(22(w, t), w) (22(w, t/2 + t/2), w) (2(w, t/2), 2(w, t/2))

(@2(w, t/2), tI)z(W, t/2)) 1122(w, t/2) 2 >= O.

lim (tI)zz(W, t,), w) (lim O22(w, t,), w) (- w, w) wll 2 0,

This shows that w 0, and therefore, B
___

C. Since B D it follows that D C,
and hence D C. This completes the proof of the first case.

For the second let X R", n >= 1. Set

E=DfqC.

E is a closed linear subspace of X with the property that for any x E and any
yB with y z + w,zC,wC+/-, there exists a sequence t, =>0 with
lim,O22(w,t,) 0. If t, __< M < for all n, then w 0, and therefore,
B __. C. Since B D we have that D

_
C, and therefore, D C. So assume

t, . From our assumption on X R", (I)22(W t) eAz2t(w) where A22 is an
m x m matrix, m being the dimension of C+/-. Let S be the nonsingular matrix of
dimension m such that

ea22’w es+N)’s-’(w) Se+m’S l(w),

where D and N are diagonal and nilpotent matrices respectively. This implies
that lim, 2(w, t,) 0 if and only if, for each eigenvalue 2i of A2, Re 2i < 0
in which case

lim 22(w, t)= 0
t--

and therefore E {0}. This implies that D
_

C, and hence C D. This concludes
the proof of the theorem.

The space C of Theorems 1.3.10 and 1.3.12 will be called the space ofapproxi-
mate controllability of 1-I.
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COROLLARY 1.3.13. Let H be a linear autonomous dynamical control system
defined on X R, n >= 1. If the zero response ofH is uniformly continuous in t,
then YI restricted to the space of approximate controllability is controllable.

Proof. Let H, X and satisfy the conditions.
Every subspace of a finite-dimensional state space is closed so that from

Corollary 1.3.11

V" C ’ ’.

Let x and y be in C. Let f F steer (x, 0) into (0, s) for some s R and let g F
steer (0, 0) into (y, t) for some R.

Define h’R by
f(u) for u __< s,

h(u)
g(u + s) foru>__s.

Then h f, and h steers (x, 0) into (y, s + t). Therefore H restricted to C is indeed
controllable.

COROLLARY 1.3.14. Let H be a linear autonomous dynamical control system

defined on R". If the zero response of H is uniformly continuous in t, then there
exists a time T > 0 such that any two states in the controllable space can be steered
one to the other in time at most T.

Proof. Let H, X and satisfy the above conditions. Let {xa, x2, ..., x,,}
_

X,
m __< n, be a basis for ’. Let t e R be such that (0, 0) can be steered to (xi, re) for
i= l, 2,..., m, and set T max t, 1 =< __< m. Then, (0,0) can be steered to
(xi, T) for l, 2, m; let fi F steer (0, 0) into (xi, T), i.e.,

A(fi, O, T) xi.

Every x has the form x = 2x for some 2i set f il 2ifg. Then
A(f, 0, T) x, and therefore f steers (0, 0) into (x, T).

Let x and y be any states in C. From invariance of C, y (x, T)e C and
therefore there exists f F which steers (0, 0) into (y (x, T), T), i.e.,

y (x, T) A(f, 0, T).

This shows that f steers (x, 0) into (y, T); the proof of the corollary is completed.
Remark. Theorem 1.3.12 gives some sufficient conditions for the uniqueness

of an approximately controllable space. I conjecture that, even under the hypo-
thesis of Theorem 1.3.10, an approximately controllable space is unique.

1.4. Examples. In addition to the linear control differential equation in R"
(whose controllability properties are well known), the vibrating string equation
provides an interesting example of a linear dynamical control system in infinite-
dimensional spaces.

Example 1.4.1 (The vibrating string equation). Let the space X be the space
of all pairs (x, x2) where x "R --* R is bounded and has a bounded and absolutely
continuous derivative (k 1, 2). For x e X, let the norm of x be defined by the
following"

x max sup Ix()l, Ix2()l
dx() dx2()

,sup
eR R R --- R --
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With this norm (and the obvious linear space structure) X becomes a Banach
space.

Let the restraint set f be the space of all real, bounded and differentiable
functions on R and let the set of controls F consist of all piecewise constant

f’R f; F is closed under translations and concatenations.
Let ’X x R X be defined by

(I)(t)x=
la’(t) It(t)/(X1"(t) ’(t)! x

for all R and x X, where

x(’0 dz

for all R and all bounded and measurable x "R R and p’(t) stands for the
time derivative of #.

After a somewhat laborious but straightforward computation, it can be shown
that is a linear autonomous dynamical system on X.

Using define a dynamical control system H on X F R R as follows"

H(x, f, s, t) (t s)x + (t s r)f(r) dr

forallxeX, s, tinRandfeFwithf= (0f). II is an autonomous linear dynamical
control system.

If H1 and 1-I2 are the components of H, then it can be verified directly that"
(i) (c3H2/c3t)(x,f,s,t) Fll(X,f,s,t for all e R;
(ii) for each x e X and f F, 1-I satisfies the partial differential equation

c32y(, t) c32y(, t)
f(t)()t2 2

with y(, s) x a() and (y/&)(, s) x2() for all R.
This is a well-known inhomogeneous vibrating string equation; it belongs

to the class of partial differential equations of hyperbolic type. Actually it can
be shown that solutions of hyperbolic equations in general are examples of
dynamical systems.

The next example gives a dynamical control system defined on an infinite-
dimensional Hilbert space but where the system is not induced by a partial
differential equation.

Example 1.4.2 (Translation example). Let the state space X L2(-, );
let the set of controls F consist of all f L2(- 3, ) which are bounded and have
compact support.

Define I-I’X F R R X as follows"

1-I(x, f, s, t)() x( (t s)) + f( (t z)) dz

for all x e X, f F, s, in R and all R.
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For every feF there exists an M < Do and a < b such that If()[ < M
for all e R and { "f() :/= 0}

___
[a, b]. This implies that for any s e in R

Thus

f( (t )) d d __< [f()[ d: d
(t S)

<= M2(t s)2(b + t-s-a)<

IIl-I(x,f,s,t)ll <= I[xll 2 + M2(t s)2(b + s a) < ,
and therefore I1 is indeed a mapping from X x F x R x R into X.

It can be directly verified that 11 satisfies all the axioms ofa linear autonomous
dynamical control system. A point x is in the set of attainability from zero if and
only if for some f e F and > 0

for all e R.
Let

x() f( (t l)) dl f(l) dl
--t

dx dx }B x e X "-- e L2(- Do, Do), has compact support

For any x e B and any > 0 there exists an f e F which steers (0, 0) into

(x, t); thus B
__

a/, and since B X, it follows that

Similarly one can show that the domain of null controllability Y satisfies 4r X.
Therefore II is approximately controllable on X.

2. Observed linear systems.
2.1. Basic definitions. Let Z be a linear topological space over the ring of

scalars . Z will be called the output space. W {f :R Z} will be called the
space of output functions. We assume that the set of controls F

_
f is a linear

space over and that it is closed under translations.
DEFINITION 2.1.1. A relation S

___
F x W is an observed linear system if and

only if there exists a triple (X, l-I, H) such that:

(C1) (i) X is a linear topological space (the state space).
(ii) rl is an autonomous linear dynamical control system on X x F

xRxR.
(iii) H:X --. Z is linear and continuous.

(C2) Given any (f, w) e F x W, (f, w) e S if and only if w(t) HH(x,f, O, t) for
some x e X and all e R.

Any triple (X, I-I, H) with (C1) and (C2) will be called a state representation
for S. Evidently a linear observed system has many state representations.

DEFINITION 2.1.2. Let (X, FI, H) be a state representation for an observed
linear system S.
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Then states x and y are said to be indistinguishable under FI and H (and this
will be denoted by x y) if and only if

Hn(x, f, O, t) Hn(y, f, O, t)

for all f e F and e R. It follows immediately that x y if and only if

H(x y, t) O

for all R, where (I) is the zero response of I-I. Clearly, is an equivalence rela-
tion on X. For each x X let Ix] denote the equivalence class of x under and
let X X/...

S is said to be completely observable in X if and only if Ix] {x} for all
x X. S is called completely unobservable in X if and only if X {X} or, equiva-
lently, Ix] [y] for all x and y in X. Since in that case [0] Ix] for all x X (and
(I) maps onto), it follows that S is completely unobservable in X if and only if
/-/= 0o

2.2. Observability; decomposition theorem.
THEOREM 2.2.1. Let (X, II, H) be a state representation for an observed linear

system S. Then there exists a unique subspace U ofX with thefollowing properties"
(i) U is invariant under d, i.e., (U, t) Ufor all R;
(ii) H(x) 0 for all x U;

(iii) U is a maximal subspace of X with properties (i) and (ii).
Proof Let U {x X’H. (x, t) 0 for all R}.
It follows immediately from linearity that U is a linear subspace of X. To

show (i) let x U and let s R. Since

H((x, s), t) n(x, + s) 0

for all R, we get that (I)(x, s) U. This shows that indeed (I)(U, s)
_

U. (ii) fol-
lows immediately from the fact that, for all x U,

Hx H(x, O) O.

To show (iii), let V be any subspace of X with properties (i) and (ii). Let v V.
Then (I)(v, t) V by (i), and H. V 0 by (ii); therefore, H(v, t) 0 for all R.
This shows that v U and hence V

_
U. This proves (iii). Of course, uniqueness

is an immediate consequence of maximality. This concludes the proof.
TrmOREM 2.2.2. Let (X, l-I, H) be a state representation for an observed linear

system S, where X is a Hilbert space and the zero response of FI is continuous on
XxR.

Then S is completely observable in X ifand only if there do not exist subspaces
U and V ofX such that

(i) X= U@V, U4:0;

(ii) 1-[l(x,f,s,t --(I)ll(U, s) -+- (I)12(v, s) -k- Al(f, s, t),

rI(x f s, t) (I)22(I) s) + A2(f, s, t)

for all x X with x u + v, u 6 U, v V,f F and s, in R here FI FI 2 and A A2

are the projections of FI and A onto U and Vrespeetively; 1, (I)12 and (I)22 denote
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the appropriate restrictions, to U and V, of the projections of onto U and V;
(iii) H. U 0.
Proof. Let S be a linear observed system and let (X, rI, H) be a state representa-

tion for S satisfying the additional requirements of the theorem.
Assume that there exist subspaces U and V of X satisfying (i), (ii) and (iii).

Let u U, u 0. Then, because of (iii),

HFI(0,f, O, t) HFl(u,f, O, t) H. A(f, 0, t) H(I)11(u, t) HA(f, 0, t) 0

for all f F and R. This shows that u and 0 are indistinguishable and hence S
is not completely observable in X.

To show the opposite implication, assume that S is not completely observable
in S. Let distinct states x and y be indistinguishable under H and H. Then
0 : x y 0, so that U {x :H(x, t) 0 for all R} is a nontrivial linear
subspace of X: evidently U is closed by continuity of H and (I). Let V be the
orthogonal complement of U, so that X U V. Let rl 1, H2, 1, (I)2 and A1, A2
be the projections of H, (I) and A onto U and V respectively. Similarly let (I)21
and (I)22 be the analogous restrictions of 2. By (i) of Theorem 2.1.1, 21(u, t) 0
for all u U and R. Therefore H has the following representation:

I-Ii(x,f,s,t --Oll(U, S) + (I)12(V, S) nt- Al(f, s, t),

Hz(x,f, s, t) (I)22(v, s) + Az(f, s, t)

for all x X with x u + v, u U, and v V,f F and s, in R. By (ii) of Theorem
2.2.1 it follows that H. U _= 0. The proof of this theorem is completed.

COROLLARY 2.2.3. Let (X, H, H) be a state representationfor an observed linear
system S, where X is a Hilbert space and the zero response of FI is continuous
on X R. Then there exists a unique closed subspace U of X with the following
properties:

(i) U is invariant under rb;
(ii) S restricted to U is completely unobservable;

(iii) U is a maximal subspace of X having (i) and (ii);
(iv) S is completely observable in the orthogonal complement Vof U.
Proof Let U {x :HO(x, t) 0 for all R}.
By Theorem 2.2.1, U satisfies (i), (ii) and (iii). To prove (iv), assume that S is

not completely observable on V. Let x - y in X be such that

H(x, t) H(y, t) for all e R.

Then H(x y, t) 0 for all e R, i.e., x y e U. Since also x y e V, we get
that x y 0; this is in contradiction to the assumption that S is not com-
pletely observable on V. This completes the proof.

Remarks. The notion of indistinguishable states and its role in the defini-
tion of observability is apparently due to M. Arbib; it was communicated to me
by L. Kerschberg. The alternate condition for observability given by Theorem
2.2.2 was used as the working definition by both Kalman in [14] and Markus in
[17]. The definition adopted in the present paper is more general in that it depends
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less on the structure of the state space, and, furthermore, it gives a very construc-
tive way of generating the completely unobservable subspace of the state space
(Theorem 2.2.1).

Acknowledgments. The author expresses his warmest gratitude to Professors
O. Hajek and S. K. Mitter for their valuable help and encouragement.
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ERRATUM" OPTIMAL CONTROL OF PROCESSES DESCRIBED BY
INTEGRAL EQUATIONS. I*

V. R. VINOKUROV

The line immediately following (1.1) was printed incorrectly and should be
replaced by" "... where x,f and K are n-dimensional column vectors and u is an
r-dimensional...."

* This Journal, 7 (1969), pp. 324-336.
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N-PERSON NONZERO SUM DIFFERENTIAL
GAMES WITH LINEAR DYNAMICS*

PRAVIN VARAIYA?

Abstract. There exist equilibrium strategies for nonzero sum differential games with N players
if the dynamics are linear and if the cost to each player is convex.

1. Introduction. Consider the following linear differential system"

(1) (t) A(t)x(t) + Bl(t)u(t) + + BN(t)uN(t), [0, T] a.e.,

with state x(t) in R" and controls uj(t) in Rmj, 1 <_ j <= N. The matrices A, Bj have
appropriate dimension and their coefficients are bounded, measurable functions
of t. We impose once and for all the following boundary values-

(2) x(0) x0.

The function uj(t), 0 <=. <= T, is the control of player j. For a given fixed M,
0 _<_ M =< m, player j is allowed to choose any measurable control uj which
satisfies the constraint condition (Cu), where

(CM) [Uj(t)] 2 dt <= M if M <

(Coo) [uj(t)J 2 dt <

Here [ujl 2 square of the Euclidean norm in R"j. We also write

Iluj 2 luj(012 dt

so that (CM) reads [uj
Controls which satisfy the constraint condition are called admissible controls.

The set of admissible controls of player j is denoted )(M).
Suppose for each 1,..., N player chooses an admissible control u.

This choice determines a unique function x(t), 0 <= <= T, which satisfies (1) and
(2). This function is called the trajectory corresponding to the controls
u, ..., uu. Also corresponding to this choice of controls, player incurs a cost
J-- J(u,..., uu). We consider cost functions of two types and we denote the
cost J by J or ji according to whether it is of type I or type II.

(Type I) Jl(u ,’", uN)= gi(x(r)) + f(t, u(t))dr,

(Type II) uJi (u l, t/N) gi(x( T)) + f/(t, tli(t)) dt q- hi(t x(t)) dr.

* Received by the editors September 17, 1969, and in revised form February 27, 1970.

" Electronics Research Laboratory, College of Engineering, University of California, Berkeley,
California 94720. This research was supported by the National Aeronautics and Space Administration
under Grant NGL-05-003-016 (Sup 6).
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In the above x(t), 0 <__ <__ T, is the trajectory corresponding to (u l, .’., us).
It is the objective of each player to minimize his own cost.
DEFINITION 1. Let 0 __< M __< oe be fixed. For a fixed k equal to I or II let

J’ be fixed cost functions. Controls ui e q/i(M) are said to form an equilibrium
strategy for the game G (Jkl, "", Jv;M) if for each 1, ..., N,

(3)

for all vi e @’i(M).
We assume throughout that the functions gg,f, hi which constitute the cost

functions J satisfy the following conditions:
(i) gi(x), fi(t, ui), hi(t, x) are continuous in all variables, bounded from below,

and for each fixed t, they are convex in the remaining variables.
(ii) hi, fi are C2 in x, ui respectively and g(x), gT(x), h(t, x), h’i’(t, x), f(t, Ui)

f’i’(t, ui) are continuous in all variables and, furthermore, there exist positive
numbers el, 2 such that for all t, x,

fT(t, u) >= I, e.2I h’[(t, x), g21 g’[(x).

In (ii) the prime denotes differentiation with respect to x or u and I denotes the
identity matrix.

We can now state our principal result.
THEOREM. (I) Let J, J be cost functions of type I and let 0 <= M < o.

There exists an equilibrium strategyfor the game G (ji, J M).
(II) Let J, J be costfunctions oftype II and let 0 <= M <= o. There is a

To > 0 such that ifthe duration T in (1) satisfies T < To then there exists an equilib-
rium strategyfor the game G (J, Jv M).

In 2 we give some preliminary results required for the proof of the theorem
in 3. In 4 we give some extensions to the case of nonlinear dynamics and
compare our results with those reported in the literature.

2. Preliminary results. The following notation is helpful to the exposition.
Recall the notation [i(M). We denote ql(M)= {u (u, ..., uN)lui[i(M),
l <=i<=N}.

Evidently qJ(M) c @’(oe) for all M. Now (oe) is a Hilbert space under the
norm

i=1 i=

As such, this norm induces a topology on @’(oe); this topology will be called the
strong topology. Also associated with /(oe) in a natural manner is the weak
topology [2]. For M < oe, by the strong (weak) topology of @’(M) we mean the
corresponding relative topology. Finally, a function a" @’(M) Rp is said to be
strongly (weakly) continuous if cr is continuous when (M) has the strong (weak)
topology. Evidently if cr is weakly continuous then it is strongly continuous.

The proof of this theorem was suggested by an account of a theorem of Nikado-Isoda in
[1, pp. 30-33]. The author is very grateful to the reviewer for pointing out a serious error in the
previous version of the proof.
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In the remainder of this section let 0 < M < v and k I or II be fixed.
Let J], ..., J be fixed cost functions of type k. Finally let G denote the game
(g, Jv M).

DEFINITION 2. Define h’#(M) //(M) -. R by

N

0((Ul’ UN)’ (Vl’ VN)) 2 J/k(Ul, Ui-1, I)i, Ui+l, UN).
i=1

LEMMA 1. U* (U’, U) is an equilibrium strategyfor G ifand only if

(4) 6(u*, u*) __< (u*, v) for all v #(M).

Proof Suppose u* (u’,..., u)
v (v1,’", vN) e ’(M). Then

is an equilibrium strategy. Let

(5) * u5J(u, u)=< *"’’, Ji(Ul u_ vi, u) 1 < < N

Adding these inequalities yields (4). Conversely, suppose (4) holds. Substitution of
v (u, u.*,_ 1, vi, u.*,+ 1,"" u]) in (4) gives (5).

PROPOSITION 1. The function x:’(M) R" given by x(ul, uN) x(T) is
weakly continuous. (Here x(T) is the state of (1) corresponding to the controls
(u,, u).)

Proof.

x(T) (I)(T, O)xo + i=l ((T, t)Bi(t)ui(t) dt,

where is the transition matrix function associated with (1). Now the function

T

ui j (T, t)Bi(t)ui(t) dt
0

is a strongly continuous linear function of ’i() into thefinite-dimensional space
R". Hence it is weakly continuous and the assertion follows.

COROLLARY 1. Thefunctions ri ’(M) -* R, where ,i(u) gi(x(T)), are weakly
continuous.

Proof ,i gi x is the composition of continuous functions.
DEFINITION 3. A function a:g(M) - R is said to be weakly (strongly) lower

semicontinuous if for each a in R the set {ulu #(M), a(u) =< a} is weakly (strongly)
closed.

It is well known that if a 1, "’", aN are weakly (strongly) lower semicontinuous
then a /=1 ai is also weakly (strongly) lower semicontinuous.

PROPOSITION 2. Let a://(M)- R be convex and strongly lower semi-
continuous. Then a is also weakly lower semicontinuous.

Proof Let e R. Then the set {ula(u) __< } is strongly closed. But since a is
convex this set is also convex, and then it is enough to remember that a strongly
closed convex set is also weakly closed.
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PROPOSITION 3. Thefunctionsfi’(M) R, where

f(u,) f,(, u,()),

is convex and strongly lower semicontinuous.

Proof The convexity follows from the fact that fi is assumed convex (in ui)
and integration is a linear operation.

Next let ui,j, j 1, 2, ..., be a sequence in ok’i(M and let ui in ’i(M) be such
that

(6) lim lui(t) ui,j(t)l 2 dt 0
j

and
T

(7) | fi(t, uid(t)) dt <= .
d 0

Because of (6), taking subsequences if necessary, we can assume that limj ui,j(t)
ui(t) a.e. Now the functionfi is bounded from below by assumption. By Fatou’s

lemma we conclude (using (7)) that

a => lim inf f(t, uid(t)) dt >= lim inff(t, uid(t)) dt

fi(t, ui(t)) dt

so thatf is strongly lower semicontinuous.
COROLLARY 2. The functions fi as defined above are weakly lower semi-

continuous.

Proof The result follows from Propositions 2 and 3.
Recall Definitions 1 and 2.
DEFINITION 4. Let v6 (M) be fixed. Let ’’(M)- R be the function

(u) (u, u)- (u, v). Also let U {u](u) > 0}.
LEMMA 2. (I) Suppose that the cost functions J are of type I. Then U is

weakly open.
(II) Suppose that the cost functions J are of type II. Then there is a To > 0

such that if T < To then U is weakly open and /(u) oe as u .
Proof (I) Suppose the cost functions are of type I. Then is also given by

N

O(u,, ..., u) (,(u,, ..., u) ,(u,, ..., u,_,v,u,+,, ..., u))
(8)

i--1

N N

+ 2 fi(bli)- ffii(Vi)
i=1 i=1

By Corollary 1, the first sum is weakly continuous; the second term is weakly
lower semicontinuous by Corollary 2, whereas the third sum is constant. Hence
v is weakly lower semicontinuous, so that the set Uv {ulo(u) _-< 0} is weakly
closed and its complement U is weaklyopen.
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(9)

(II) Suppose the cost functions are of type II. Then ’v is also given by
N

q,(u u) y ((u u) ,(u, ..., u,_, v,, u,+, ..., u,))
i=1

N

+ y @(u,)+ ,(u,...,
i=1

i(U l’ Ui- l’ Vi, Hi+ 1’’’’’ UN))
N

i=1

Once again the first sum is weakly continuous and the third sum is a constant.
By Proposition A.1 of the Appendix, there is a To > 0 such that if T < To then

(i) the first sum plus the second sum is strongly lower semicontinuous and
convex (hence weakly lower semicontinuous) and

(ii) the first sum plus the second sum grows indefinitely as I[u[[ grows
indefinitely.

Repeating the argument of the first part proves assertion. (II).

3. Proof of theorem.
Step 1. If the cost functions are of type II, choose To to satisfy the conditions

of Lemma 2. Suppose the theorem is false. Then by Lemma 1, for each u ’(M)
there is a v (M) such that (u, u) (u, v) > 0, i.e., u U,,. Hence (M) has
the following weakly open cover:

(0) /()= ,.
v(M)

Next we show that there is a finite subset {Vl, "", vv} of q/(M) such that

p

(11) ’(M) U Uv,.
i=1

Case i. Suppose M < . Then ’(M) is a convex, strongly bounded and
closed set so that it is weakly compact. Then (10) must have a finite subcover (11).

Case ii. Suppose M . Let vl q/(M). By Lemma 2, ,l(u)--+ as
I]u[I--+ . Hence there is ml < such that ,,(u) > 0 whenever
That is, {ul ]lull 2 > ml} c UI. Now since q/(ml)is weakly compact there exist
v2, vv such that q/(M1) c U vi=2 U,.,. Hence

p

//(ov) (M1) U {ul IJull 2 > Ma} [J Uv,,
i=1

so that once again (11) holds. Note that the assertion says that for each u e qC(M)
there is 1 < j =< p such that %(u) > 0.

Step 2. Let V be the convex hull of {v,, ..., Vv}, i.e.,

i=l i=
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Define the functions 7j:V R by

7j(v) max (0,(v), 0).

First of all, since V is finite-dimensional the weak and strong topology coincide.
Next, 7vj is strongly continuous on q/(M), hence it is continuous on V, and so 7j
is continuous on V. Finally, by Step 1, the continuous function

p

j=l

satisfies
7(v) > 0 for all v e V.

Step 3. Define the function r/: V V by

(v)
yj(v)

j=l

Then r/is continuous and so by the Brouwer fixed-point theorem there is v* in V
such that rl(v*) v*. Suppose 7(v*) > 0, j 1, ..., 1, and yj(v*) 0, j > l. Then

(*) (v*)
j=l

and the fixed-point condition becomes

(12) v*=
= (v*) v.

Also, 7j(v*) > 0 is equivalent to (v*, v*) > (v’*, vj) so that we get

(v*),,,(13) 0(v*, v*) > vj)
= 7(v*)

qtv

Step 4. Finally, for cost functions of type I or type II, (v*, v) is convex in v
so that we obtain

(v*, v*) v*,
= (v,),v <= = (v*’ v)

which contradicts (13), and the theorem is proved.

4. Extensions.
(i) It should be easy to see that all the propositions of this paper are true if

(1) is replaced by a linear differential-difference equation. Also in part (I) of the
theorem the differentiability conditions on gi are unnecessary.

(ii) A careful study of the Appendix shows that its results remain valid if (1)
is replaced by a nonlinear differential equation of the form

Y f(t,x, ux,...,

provided f is C2. In turn this implies that part (II) of the theorem remains valid.
(iii) Part (II) of this theorem was proved in [3] for the special case where the

functions gi -= 0, andf, hi are quadratic. A detailed study including stability and
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synthesis of the solution for the quadratic case appears in [4] where it is also
shown that, in general, part (II) of the theorem is false for arbitrary duration T.

Ap.pendix. Let v (v l, "", vN)II(M) be fixed. Let gi,f/,hi, 1 =<i_< N,
satisfy the assumptions (i) and (ii) in 1, and consider the function a’ql(M) R

(u,..., u) u,) + ,(u,..., u,) + ,(u, ..., u)
i=

defined by

Eft(t, ui(t)) + hi(t, x(t)) hi(t, xi(t))] dt
i=

+ gi(x(t))- gi(xi(t))t
where x(t), 0 =< =< T, and x(t), 0 _< =< T, are the trajectories of (1) corre-
sponding to the controls (u, ..., u) and (u, ..., u_ , v, u+ , ..., u) respec-
tively.

PROPOPOSITION A.1. There exists TO > 0 such thatfor all 0 <= T < T0,
(i) a is strongly lower semicontinuous,

(ii) a is convex,
(iii) a(u)--, v as Ilull--’
Proof. We already know thatf/and ’i are strongly lower semicontinuous so

that it is enough to show that /i is strongly lower semicontinuous. Now let
u u2, be a sequence of controls in q/(M) converging strongly to u in q/(M),
and let x 1, x2, and x be the corresponding trajectories. By well-known argu-
ments we can show that

lim sup Ix(t) x(t)l O,
j---} O<=t<=T

i.e., x converges uniformly to x. It follows by Fatou’s lemma that

lim hi(t, x(t)) dt >= hi(t, x(t)) dt.

The remaining two assertions follow if we prove there are To > 0, eo > 0
such that for all 0 __< T < To and for all u and w in (c),

(A.1) c32a(u + w)
--0

eo wll 2

To this end let u, w in q/(o) be fixed. Let x and xi, be the trajectories of (1)
corresponding to controls (u + w) and (ul + wl,.’., ui-1 + wi_l,vi, ui+l
+ wi+l,’", uN + wu)respectively. Then

(u + w)=
i=

[f/(t, ui(t) + wi(t)) + hi(t, x(t))- hi(t, xi,(t))] dt

+ gi(x(t))- gi(xi,(t))},,
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where

ji

x(t), xi(t) are trajectories corresponding to u and (u1,"’, ui-1, vi, ui+l, us)
respectively and

(A.2)

It follows that

zj(t) (t, z)Bj(z)wj(z) dz.

jg:i j:i

By assumptions (i) and (ii) in 1 we get the estimate

t20
(A.3) -a-(u + Cw)

cg- i__l g’llWi(t)] 2 g21. ,’zJ(t)l 2 dt- ;21. ,’zJ(r)] 2

From (A.2) and the assumptions that the coefficients of the matrices in (A.1) are
bounded it is easy to see that there is a constant m (depending only on the matrices
A(t), Bj(t)) such that

Izj(t)l 2 __< mt will 2.

Hence
2

<= mNt j Wj 2).
Combining with (A.3) we obtain

gll[Wl[2 -- E --1/2e’2raNT2 liwJ [[2 e’2mNT
i=1

(A.4) (:1 1/2’2mN2T2 e’2mN2T) Ilwll 2.

Obviously one can choose eo > 0, To > 0 such that (A.1) is true.
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NONLINEAR CONTROLLABILITY VIA LIE THEORY*

G. W. HAYNESf AND H. HERMES

1. Introduction. The form of the control system studied throughout most of
this paper is

(1) )(t) B(x(t))u(t), Y dx/dt,

where x is an n-vector and B(x) an n x r matrix with columns denoted
bl(x), br(x). We shall assume that the components of B(. are Coo (infinitely
differentiable) functions, although this condition could often be relaxed. The con-
trol vector u will always be assumed Lebesgue measurable; of particular interest
will be the case where its values lie in a bounded set of Euclidean r-dimensional
space, Rr.

We begin by interpreting the work of Chow [1] and Hermann [2], [3], [4]
to the system (1). Following Chow, we shall say the system (1) has rank r at x if
B has maximum rank r in every neighborhood of x. A point x is regular for (1),
or for B, if when system (1) has rank r at x, rank B(x) r. Since, in our formulation
coordinates are assumed, we may define the Jacobi bracket of two Coo, n-vector-
valued functions a, b as

[a, b](x)= ax(x)b(x)- bx(x)a(x),

where ax(x) denotes the n x n matrix of partial derivatives (cai(x)/cx2), ai(x) being
the ith component of a(x).

Define D(B) to be the set bl, b"; DI(B) to be the set bl, b together
with all elements of the form [bi, b2], i,j 1,..., r; D2(B)= D(D(B)) etc.
We define the derived set to be D(B) U 2>= o DJ(B)

Remark. Although our notation is similar to that used by Hermann [2] our
meaning is different. Indeed, Hermann considers the set of all C maps of R"
to R", which we denote Coo(R", R"), as a module with ring of multipliers Coo(R", R 1).
Consider the columns of B as spanning a subspace N, in this (infinite-dimensional)
module. Hermann then defines D(N) N; DI()= N’ + IN, N], i.e., the sum
of linear combinations of elements of N’ and their Jacobi brackets with coefficients
in C(R",R1); D2()--DI(DI(])), etc.; and finally the derived system D()

U 2>-o D2(N’) Thus here, D(N’) is a subspace of the module Coo(R", R"); on the
other hand, our derived set D(B) is merely a collection of elements of Coo(R", 1t").

We shall use the notation D(B)x to denote the elements of D(B) evaluated
at x, and we view D(B)x as a collection of vectors in R". Let dim D(B)x denote
the dimension of the subspace of R" spanned by D(B)x. Suppose that in every
neighborhood of x, B(x) has maximal rank r (i.e., system (1) has rank r at x)
and the maximal value of dim D(B)x is s. Following Chow [1 we call s the rank of

* Received by the editors July 15, 1969, and in final revised form March 15, 1970. This research
was supported by the National Aeronautics and Space Administration under Contract NAS2-4898
at the Ames Research Center, Ames, Iowa.

" Martin Marietta Corporation, Denver, Colorado 80201.
2]: Department of Mathematics, University of Colorado, Boulder, Colorado 80302.

450



NONLINEAR CONTROLLABILITY VIA LIE THEORY 451

the completion of (1) at x. Clearly r =< s =< n; the integer s r is called the index
of the system (1) at x. Assume there exist elements br+ 1, ..., b of D(B) such that
if/ is the matrix with columns b l, br, b"+ 1, ..., b,, then rank/(x) s in
every neighborhood of x. The system

(2) 2 =/(x),

where 7 is now an s-dimensional control vector, is called a completed system
associated With (1).

Note that we do not associate a unique completed system with (1). In fact,
x may be a regular point for some completed system and not for another; or we
may have the case where no completed system has x as a regular point. We
illustrate these possibilities in the follow.ing example, suggested by C. Lobry.

Example 1. Consider B(x) to be the 3 2 matrix with columns

Then

bl(x) O, b2(x)
o x

0

b3(x) [b,b’](x) 0

while if/ has columns b 1, b2, b3, we see that/ has rank three in every neighborhood
of 0 but rank/(0) 2; hence 0 is not a regular point. However

b4(x) lib2, bl], bl](x)

hence if we choose /(x) to have columns b 1, b2, b4, then rank/(0) 3. For
either choice of/, the system 2 =/(x)fi is a completed system of rank three
at the origin associated with 2 B(x)u; in the second case the origin is a regular
point.

We may obtain an example where no completed system associated with
B(x)u has the origin as a regular point as follows. Let B(x) be the 3 x 2

matrix with columns

1

bl(x)
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while

ba(x)

0

1

exp(- 1/x
0

if Xl 0,

if xl O.

One may readily verify that the rank of the completion of our system is three,
at the origin, but that any element of D(B) has third component zero at the origin.

When interpreted in this setting, Chow’s results give sufficient conditions
that the set of points attainable by solutions of (2), starting from initial data
x(0) x, form an s-dimensional manifold. Let the vectors ei, i= 1, 2, ..., r,
form a basis for Rr. It also follows that all points on this manifold can be attained
by solutions of (1), starting at x, and having controls with values at time in the
set { + e1, ..., + er}. This generalizes recent work of Kuchera [5].

Our main purpose will be to study the uniform approximation of trajectories
of (2) by trajectories of (1). If, in each case, the controls are restricted, say to have
unit, or less, length, one may approximate the orbit (point set in R") of any solution
of (2) by the orbit of a solution of (1). However, as will be seen, to approximate
trajectories of solutions of (2) corresponding to unit controls, by solutions of (1),
the magnitude of the control values in (1) needed to do this increases with the
index of the system (1).

Another result which arises naturally is that of local-local controllability
(see Definition 1), i.e., the ability to reach all points in some neighborhood of an
initial point x by solutions of (1) without leaving some other preassigned
neighborhood. This is a stronger (in some sense) property than complete con-
trollability and clearly of practical importance. Sufficient conditions for (1) to
have this property are given.

2. Interpretation of Chow’s results to (1). Let Br denote the transpose of B.
With B one may associate the system of partial differential equations Br(x)cf/cx
=0; the ith equation has the form .= b(x)c3f/cxj 0 while the ordinary vector
differential equation 2 hi(x) is called its associated characteristic equation. One
should note that the ith characteristic equation of Br(x)c3f/Ox 0 may be
obtained from the control system (1) by placing the ith component of the control
vector u equal to 1 and all other components equalto zero.

The results of Chow [1] pertain to points attainable by "piecing together"
characteristic solutions i.e., if qg( y) denotes the solution of the ith characteristic
equation, satisfying data qg(0, y)= y, then a point z attained from y by two
characteristic solutions pieced together has the form z qgJ(t2, qg(t, y)). It is of
fundamental importance to note that the Chow formulation allows the charac-
teristic solution to be considered with decreasing, as well as increasing time. Thus
if q9 is a piecing together of characteristic solutions such that in some time interval
I, p is a solution of the ith characteristic equation, we only know that
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b(t)

___
bi(q(t)), e Ii. This presents no problem in the system (1), since the

minus sign may be obtained by merely taking a control with -1 as its ith com-
ponent and all others zero.

For 1 _<_i=< r, let eg R (real r-dimensional space) have a one in its ith
component and all other components zero. Define

V= {+__ex,..., +er}_ E

and

U {u measurable; u(z) e V, z >__ 0}.

Then a solution q of (1) corresponding .to a control u e U is a piecing together of
characteristic solutions in the sense of Chow. With the above in mind, we may
combine satz B and C (Chow [1]) (see also Hermann [2]) as follows.

THEOREM 1. Let system (1) have rank r, and its completion have rank s, at x.
Assume (2) is a completed system associated with (1) such that x is a regular point
for both B and . Then there exists an s-dimensional manifold M through x such
that all points on this manifold are attainable by solutions of (1) with initial data
x(0) x and control u U. Furthermore, given a sufficiently small neighborhood
ofx, the only points attainable by such solutions of(l), which remain in the neighbor-
hood, are points ofM.

We next give two examples, the first (following Chow) to illustrate the
necessity that x be regular for both B and/, the second example to illustrate the
"local nature" stressed in the’ last sentence of the theorem.

Example 2. We consider the three-dimensional system 2 B(x)u, where

n(x) 0

0 xx3

Here the point x (0, 0, 0) is regular for B; i.e., rank B(x) 2. Computing, we
0

have[bl, bZ](x) ; b3(x).IfwelethavecolumnsbX,bZ, b3,thentherankof

X3
the system 2 -/(x) is three, at the origin; however, the origin is not a regular
point since rank/(0) 2. It is easy to see that all points attainable by solutions of

B(x)u (or & =/(x)g), initiating from the origin, lie in the plane x3 0. Thus
the manifold of attainability has dimension two, and we can conclude that 0 is
not a regular point for any completed system associated with B(x)u, or
equivalently, every element of D(B)o has third component 0 at the origin.

Throughout, for y Rr, we shall use the notation [y[ to denote the Euclidean
length of y.

Example 3. The purpose of this example is to illustrate that if one does not
restrict solutions to lie in a small neighborhood ofx, the last st.atement ofTheorem
1 need no longer be valid. We consider, again, a three-dimensional system
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Yc B(x)u where B is a 3 2 matrix with

txp [- a/(Ixl 2 1)]
b(x)

b.(x) O,

b(x) 1,

iflxl > 1,
b2(x) O,

if xl =< 1,

b(x) 1,

b23(x) O.

Then, for any x, rankB(x)= 2. If Ixl < 1, [bl(x),b2(x)]--0. If Ix[ > 1,
ffbX(x), b2(x)] (ff2x2/(Ixl 2 1)2] exp [- 1/(Ix21 1)], 0, 0). Let / have columns
b 1, b2, [b, b2]. If Ixl > 1 and x2 va 0,/ has rank 3 at x and x is regular for both
B and/.

Now consider x2 4:0 and Ixl < 1. Then/ B and x is regular for B and/.
In this case the integral manifold, M2, of Theorem 1, is the intersection of the
unit ball (origin centered) with the plane xl x. If we choose a neighborhood of
x, contained in the unit ball, the only points attainable by trajectories of the
original system which remain in this neighborhood, are points on this plane.
However, without this restriction, all points in some neighborhood of x may be
attained by trajectories of the system with controls u e U. This occurs even though
the unit ball is foliated by leaves {(x,x2,x3):Xl const.} since we may exit the
ball on the leaf x x, then move on an arbitrary path in the half-space x2 > 0
and reenter the ball on a different leaf to reach points near x.

Motivated mainly by the last example, we introduce another concept of
controllability for a general control system:

(3) 2(t) f(x(t), u(t)).

DEFINITION 1. The system (3) is locally-locally controllable at x if given any
e > 0 there exists a 6 > 0 such that all points of the f-neighborhood of x can be
attained by trajectories which do not leave the e-neighborhood. (Clearly 6 =< e.)

DEFINITION 2. The system (3) is globally-locally controllable at x if all points
in some neighborhood of x can be attained by trajectories through x.

In terms of these definitions, we note that if, in Example 3, Ixl < 1, system (1)
is not locally-locally controllable at x. However, with Ixl < 1 and x2 0, the
system is globally-locally controllable at x.

It is interesting to compare these notions with that ofcomplete controllability
i.e., any two points can bejoined by a solution. For example, the "Bushaw problem"

1 X2, 22 --Xl " U

is completely controllable; yet it is easily noted that if x 0, then the system
is not locally-locally controllable at x. On the other hand, complete controllability
certainly implies global-local controllability.

Example 2 illustrated that one of the possibilities which may occur when the
completion of (1) has rank n at x but x is not regular for any completed system
associated with (1) is that all solutions of (1) remain on an (n- 1)-manifold.
The next example, also suggested by C. Lobry, shows that another phenomenon,
i.e., local-local controllability, may occur in this case.
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Example 4. Let B(x) be the 3 x 2 matrix with columns

b(x)

be(x) 1. ifxl 0,

exp (- 1/x2)
if xl 0.

Then

b3(x) [b2, bl](x)

b3(x) 0 if X 0.

0
0

(- 2/x3) exp (- 1/x2)
if Xl :/:0,

As commented in Example 1, dim D(B)o 2; however if/ has columns bl, b2, b3,
then the completed system 2 =/(x)t7 has rank 3 at the origin since clearly /
has rank 3 in every neighborhood of the origin. However, the origin is not a
regular point for any completed system associated with 2 B(x)u. It is quite
clear that the completed system 2 -/(x)7 is locally-locally controllable at the
origin. We shall next show that this is also the case for the original system B(x)u.

Let y (Y l, Y2, Y3) be any point in some neighborhood of the origin. The
case y3.= 0 is trivial, so assume Y3 0. We will show how to attain y by a solution
of B(x)u, x(0) 0. First choose u 1, u2 0 so that at some time > 0,
x(tl) O. Let o exp (-1/x1(t1)2); now choose ul(t) 0, Uz(t sgn Y3 for

(tl, t2] where 2 is such that 0(t2 tl) Y3. We then get x3(t2) Y3, and say
x2(t2) fl while xl(t2) xl(tl). Let t3 t2 + tl, and now choose u2(t) 0 and
ul(t) -1 for t.e(t2, t3]. This leaves us with xl(t3)= 0, x2(t3)= fl, x3(t3)= Y3.
Now choose ul(t)= 0 and u2(t)= sgn(y2- fl) if (Y2- fl):/: 0 for e(t3,t4],
where (t, t3) (Y2 fl) if (Y2 fl) : 0 and otherwise t t3. We now have
xl(t4) O, x2(t4) Y2, x3(t,) Y3; switch u2 to zero and we can use ul alone to
attain the desired final point. It is also easy to see that given any e > 0, we can
reach all points in an ae-neighborhood of the origin without leaving the e-neigh-
borhood, hence our system is locally-locally controllable at the origin.

Suppose that system (1) has rank r at x while (2) is an associated completed
system of rank s at x and x is regular for both B and/. Then it is a consequence
of Theorem 1 that a necessary condition for (1) to be locally-locally controllable
at x is that s n. To show that this is also a sufficient condition requires some
further analysis and will be a consequence of the next section.

3. Uniform approximation of trajectories of (2) by trajectories of (1). If
system (1) has rank r and the completed system (2) has rank s at x and if x is
regular for both B and/, the tangent space to the manifold M of points attainable
from x is spanned by bl(x), b(x) for x in a neighborhood of x. Thus if ff
is a smooth function satisfying (0)= x, (t)s span {bl((t)), bs(b(t))} for
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>= 0, then describes a curve on M. Let

t {a measurable" (t) c Rs, I(t)l 1, _>_ 0}.

Then clearly a solution of (2), with control e t and initial data x(0) x, de-
scribes a curve on M. The goal of this section will be to show that such a solution
may be uniformly approximated (on a compact time interval) by a solution of (1);
however the magnitude of the control, needed in (1) to do this may be large.
Throughout the remainder of this section we will assume (1) has rank r at x, while
system (2) is an associated completed system of rank s at x and x is regular for
both B and .

Theorem 1 shows that all points on M are attainable by solutions of (1),
even with controls u e U. It is natural, then, to try to approximate a solution
of (2) on a compact time interval [0, T] by finding a solution q of (1) which agrees
with at many points; i.e., say /(kT/m)= q(kT/m) for m a large integer and
k 0,1,..., m.

The major difficulty that occurs in doing this is to show that the time it takes
to reach an arbitrary point on M" near x by a solution of (1) tends to zero as the
point tends to x. This will be the purpose of the next two lemmas, which will
relate the time it takes to reach a point on M from x by a solution of (2), with
control t e t, to the time needed to reach the point by a solution of(l) with control
uU.

LEMMA 1. Let ( denote a solution of5 hi(x), x(O) x, where b is obtained
from b, b by p bracket operations. Then there exists a control u U such
that the corresponding solution o(., u) of (1) satisfies"

(i) q(4Pz, u)- x zp+ lbi(x) + o(p+ 1)

(ii) p(4Pt 1/(1 + P), u) i(t) o(t)

Proof If b is one of the set b l, br, then p 0 and (i) merely states that
there exists a u e U (in particular in this case u ei) such that q(z, ei) -x

zbi(x) + o() as z 0, which is evident. Also (ii) merely reduces to q(., e)
i(. ). The proof proceeds by induction. However, the general step is similar to

the case p 1. Thus for clarity of presentation and simplicity of notation we will
present only this argument.

Suppose b is obtained by the use of one bracket operation, i.e., b [bj, bk].
Let TJ(t)y denote the solution, at time t, of 2 B(x)e bJ(x), x(O) y, where
1 =< j =< r. From the interpretation of the bracket operation (see, for example,
[6, 1.4]) Tk(-t)TJ( t)Tk(t)TJ(t)x x tZ[bJ(x), bk(x)] + o(t2) as - 0. Let
u be defined by

u()

e if z [0, t],

ek ifz6(t,2t],

-e if 6(2t, 3t],

-ek if 6 (3t,4t].
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Then q(4t, u)= Tk(--t)TJ(--t)Tk(t)TJ(t)x. Let (.) denote the solution of
Yc bi(x), x(0) x"then,

Since

i(t)- x t[bJ(x), bk(x)] + o(t).

q(4t, u) x t2[bJ(x), bk(x)-[ + o(t2) as t- 0,

(i) and (ii) follow easily for the case p 1. The results, for arbitrary p, follow in this
manner by induction.

LEMMA 2. Let (. be a solution of (2) corresponding to a control and
initial data x(O) x. Then there exists a solution q(. u) of(l) with control u U
and a z Z(to) such that q(z, u) (to) and Z(to) 0 as to - O.

Proof By Theorem 1, we are assured of a value z and control u U such that
q(z,u) q(t0). We concern ourselves, therefore, with showing that (to) 0
ast0 0.

Let y be a regular point for B and and Ti(t)y denote a solution, at time t,
of bi(x), x(O) y for 1 __< =< s. Let pg denote the minimum number of bracket
operations needed to obtain b from b l, br. Then, from Lemma 1, we may
find a control ui U such that the corresponding solution q(., ui) of (1) through
initial data x(O)= y satisfies q(4P’t/ +P’), ui) T(t)y o(t) as t- O, or, from
Lemma 1 (i), q(4P’t/ +P’), ui) y tbi(y) + o(t) as - O. To simplify notation,
denote q(4P’t/ +po, ui) by Si(t)y.

Consider the map h’R- M defined by hits,..., t)= S(t) Sl(t)x.
(Note that if, for 1 __< k __< s 1, we let yk sk(tk)... S(t)xo, then if tk,’’’, t
are sufficiently small, yk is a regular point for B and/.) The Jacobian (differential)
(Dh)(O) is just the s s matrix with columns b(x), ..., b(x) and hence is non-
singular. Now h(O, ..., O) x and the implicit function theorem applies to show
that h maps a neighborhood of zero onto a neighborhood of x. Specifically, for
to such that @(to) is in this neighborhood there exist times t, ..., t, each
depending on to, such that S(t) S(ta)x qt(to), and, for 1 __<i_< s, each
ti 0 as to - O. Now we may "piece together" a control u U in the obvious
way such that its corresponding solution q, through x, satisfies

(49(i-lL 4P’t/(x +v’), u) S(t)" S(t)x (to)

Let

"C Z(to) L 4Pit/(1 +pi)

Then qg(z(t0), u) P(to) and Z(to) - 0 as to 0 as required.
THEOREM 2 (Uniform approximation of a solution of (2) by a solution of (1)).

Let be any solution of (2) with initial data x(O) x and control , defined
on an interval [0, T] such that for [0, T], if(t) is regular for both B and . Then
given any e > 0 there exists a solution q9 of(l) corresponding to initial data x(O) x
and some bou’nded measurable control u, such that max {lo(t) O(t)l :0 _< _<_ T} < .

Proof We first note that if qg(., u) denotes a solution of (1) with control u,
then for any real a, q(at, u) q(t, au) for all t.

Let N(e, /) denote a compact e > 0 neighborhood of {if(t)’0 =< =< T) and
let fl max {Ibi(x)’x N(8, ), 1 <_ =< s}. Note that with lul _-< 1, if qg(., u) is a
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solution of (1), then Iqg(t,u)- (t)l =< e on [0, #] if 2#fl < e. (The 2 is needed
since and b may have opposite direction.)

For any integer k, consider /(T/k). By Lemma 2 there is a control u U
and a r such that the corresponding solution q of (1) satisfies qg(rl, u) p(T/k)
and we may choose k large enough so that :1 < # (i.e., here we need zl 0 as
T/k 0). Then there exists an > 0 such that oT/k t hence qg(t, u) (T/k)

qg(aT/k, u) q(T/k, au). Since t < #, Iq(t, u) O(t)l < e for 0 <= <= T/k.
Now the solutions q, agree at T/k; we may repeat the procedure with x

replaced by O(T/k) and obtain the result for [0, 2T/k], etc.
The approximation procedure is probably best illustrated by Example 5,

given after the next corollary.
COROLLARY. Ifeach point x R" is regularfor both B and B and rank/(x) n,

then the system (1) is completely c6ntrollable and locally-locally controllable at
every point. Furthermore, if is any continuously differentiable map, ’[0, 1 --, R"
and e > O, there exists a bounded measurable control u such that the corresponding
solution q)(., u) of (1) satisfies max {](t) (p(t)] :0 =< _< 1} < e.

Proof Clearly it suffices to prove the last statement. Let be a continuously
differentiable map ’[0,1] R". Since rank/(x)= n for all x, define
v(t) =/-0P(t))(t). Then p satisfies (t)- t((t))v(t) and the desired result
follows from Theorem 2.

Example 5 (Uniform approximation of a trajectory of the completed system
by a trajectory of the original system). The system considered is

(i) 2 B(x)u, B a 3 2 matrix with columns

1
b2bX(x)- 0,1,1 /(1/Xl)2 (x) (1, 0, 0).

Its completed system is

(ii) 2 -/(x),/ a 3 3 matrix with columns bl(x), bE(x), as above, and

-2(1 / x)ba(x) [b 1, bE](x) 0, 0,
(2 + 2x c})2]

The solution of the completed system which we will approximate will be
for t (0, 0, 1) and initial data x (0, 0, 0). Thus O(t) (0, 0, 1/2t). This
solution uses only the contribution of the Jacobi bracket of b and bE. Thus if
Ti(t)y denotes the solution of 2 hi(x), x(0)= y, 1, 2, we know from the
interpretation of the Jacobi bracket that we should expect to approximate O(t)
by TE(-t)T(-t)T2(t)T(t)x. One may note that by varying the magnitude of
the control vector u, one may vary the speed of traversing a solution of 2 bi(x).

Let ul(e)= ), u2((x) Oe), and define

u(t)

u(a) if0=<t=<y,

b/2((X) if y < _< 27,

-ul(cz) if27 < __< 37,

-u2(a) if 37<t=<47
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FIG.

for cz, 7 > 0, and extend u(. periodically. Let 99(., u) denote the solution of (i)
which corresponds to this choice of u and initial data x (0, 0, 0). We may note
that 99(9,, u) Tl(o9,)x, 99(29,, u) YZ(o9,)Y(o9,)x, p(39,, u) Y(-o9,)TZ(o9,)Y
(07)x, 99(49,, u) T2(-a9,)T(-a9,)TZ(a9,)T(o9,)x, etc.

Calculating the actual solution of (i) gives

99(9,, u) (0, 09,, 7/2), q9(2),, u) (czT, 9,, cz7/2),

2(09,)2 + (09,)3

0’4 + 409, + 2(09,)2
cp(49,, u)

2(09,)2 + (09,) 3
0, 0,

4 + 407 + 2(09,)2

etc. (See Fig. 1.)
Now suppose we wish an e > 0 uniform approximation to if(.) where we

take, for y R3, yll /3= llyil and 0 < e < 1. Our goal will be to choose 0 and 7
so that q(4kT, u) ff(4kT) for k 0, 1,..., and IIq(t, u) q(t)ll =< e for all t.

Let 7 e. Then [qg(t, u)- l(t)[ =< e, [qgz(t, u)- I//2(t)[-< e for 0 __<t__< 49,,
and I03(47)- 993(47, u)l 129, e212 + el/(4 + 4e + 2e2)1. Choose 7 e2[2 + e]/
(8 + 8e + 4e2); hence 11P3(49,) 993(49,, u)l 0 and clearly [O3(t) q93(49,, u)[ 0
and clearly [IP3(t)- q93(t,u)[ _<_ e for 0 =< __< 49,. This choice of 7 gives
0 (8 + 8 + 4e2)/([2 + el) since 0 determines the "speed" with which we move
along cp, we see that for small e, 9, is small (many switches) and 0 is large. The above
choices of cz and 9’ therefore yield (4k7) qg(4k7, u) 0, k 0, 1, 2,..., and
lib(t) qg(t, u)[I <- for all t.
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It is interesting to compare the results obtained for the systems (1), (2) with
those which might be obtained for

(4) 2 a(x) + B(x)u, 2 a(x) + (x)u,

where B,/ are as in (1), (2) while a(. is a C, n-vector-valued function.
It is natural to ask whether points attainable by solutions of (5) are attainable

by solutions of (4). In general, the answer is no, as will be shown by the following.
Example 6. We shall modify Example 3 so that the rank of the completed

system is less than n, the spacial dimension. For x (x l, .", x,) let

a(x) (0, O, O, -(x2 + x2)).
Let

1
b(x) 0,1,1 q- (1 -+- x)2’0 b2(x) (1,0,0,0).

Then, as in Example 3,

--2(1+x1) 0)[b,b2](x) b3(x)-- 0, 0,(2 + 2x + x)2"

and the completed system (2) has rank 3; i.e., n 4, s 3, r 2.
Starting from the origin, with the completed system 2 a(x) + (x)8, one

may follow the x3-axis (i.e., xa x2 x4 0) and hence attain, for instance,
the final point x= (0, 0, 1, 0). However, with the system 2 a(x)+ B(x)u, we
cannot keep x x2 0 and increase x3 to 1. Thus the term -(x + x2) will
necessarily give a contribution;i.e., we can reach points (0, 0, 1, a) but only with
a<0.

Acknowledgment. The authors would like to thank C. Lobry for his helpful
remarks and examples.
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THE OPTIMIZATION OF TRAJECTORIES
OF LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS*

H. T. BANKS AND MARC Q. JACOBS

Abstract. Our aim in this paper is to examine a number of fundamental questions in the theory
of optimal control of processes monitored by certain general systems of linear functional differential
equations with finite memories. In our model the controls may appear in a very general nonlinear
functional manner which permits us to consider retardations of a rather general character in the
control variables. In particular, we prove a maximal principle for such systems. We consider existence
questions in the class of admissible Borel measurable (respectively piecewise continuous, almost
piecewise continuous) initial functions and controls. We also show that certain solutions of an un-
controlled linear functional differential equation are piecewise analytic or quasi-piecewise analytic.

1. Introduction. The linear functional differential equation describing the
controlled systems studied in this paper is given in (2.3) below. Many authors
have studied control systems with delays in the state variables and there are several
extensive bibliographies available in these areas [7], [183, [48], [20], [53]. Recently,
models for systems with delays in the control parameters have been proposed
and some results for these systems have been obtained [5], [6], [14], [22], [303,
[34], [35], [38], [39]. Such models occur naturally in the study of gas-pressurized
bipropellant rocket systems [14], in population models [5], [42], and in some
complex economic models currently under study.

In 2, we set down the notation, definitions and standing hypotheses that
will be required throughout. In 3, we prove (see Theorem 3.1) that the collection
of points in R", which can be attained at time from admissible Borel measurable
initial functions and controls, is compact and depends continuously (with respect
to the Hausdorff metric) on t. The assumptions required for this theorem are in
effect no more than is usually required just to prove the existence of solutions
to the linear functional differential equation (2.3) (see [3], [6]). Since the Lebesgue-
Stieltjes measures, which will appear below in the variation of parameters for-
mula (2.7), can be atomic, we cannot conclude that the abovementioned fixed-
time cross sections of the attainable set are convex. However, if we add rather
mild assumptions (properties (A1) and (A2) in 3), then we do obtain the convexity
of the fixed-time cross sections of the attainable set (see Theorem 3.2). We then
adapt an argument of Lee and Markus [40] for ordinary control problems to
obtain the statements ofthe maximal principle in 4 (Theorem 4.1 and Remark 4.1).
Theorems 3.1 and 3.2 can be regarded as extensions of some well-known results
by Neustadt [46] and Olech [47]. Several very special cases of these two theorems
have appeared in the literature [13], [38], [39], [48. The actual statement of
the maximal principle is confined to the time optimal control problem, although
this is not an essential feature (cf. the remarks preceding Lemma 4.1). This maximal
principle complements recent work of Banks [5] and Kharatishvili [34], [35],
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and in effect contains some of Lee’s work [38], [39] as special cases, although Lee
has considered a somewhat different class of cost functionals. Also our work in
essence includes the necessary conditions determined by Halanay in [21]. Even
in the cases where our work overlaps with that of the above authors, our methods
of proof differ in that we have made extensive use of a number of fairly recent
developments in the theory of measurable multifunctions [2], [10], [11], [29],
[31], [32], [36], [47] to greatly simplify the arguments.

In 5 we turn to a study of analyticity properties of "fundamental matrix"
solutions to certain systems of functional differential equations. Many authors
(see the references in [7], [18], [53]) have studied various aspects of the analyticity
of the solutions of very special types of functional differential equations, although
none of these results appear to include those presented in 5. Theorem 5.1 is a
rather straightforward application of known results in ordinary differential
equations. However, Theorem 5.2, which is extremely believable, seems to require
a proof involving a substantially more intricate form of analysis than is needed to
prove its simple counterpart in the theory of ordinary differential equations.
It should be noted that the conclusion of Theorem 5.1 guarantees a type of piece-
wise analyticity of the "fundamental matrix," whereas Theorem 5.2 gives only
what we have termed quasi-piecewise analyticity. One might expect that if the
coefficient matrices in system (5.2) are analytic, and if one starts with an analytic
initial function, then the solution of the functional differential equation will also
be analytic. Indeed, several authors have attempted to prove such results (for
example, see [48], [49]), but very simple examples reveal that such general theorems
are not true (see Remark 5.1).

Finally, in 6 we apply the aforementioned piecewise analyticity (respectively
quasi-piecewise analyticity) properties to show that under certain circumstances
the admissible initial functions and the admissible controls may be delimited
to an appropriate class of piecewise continuous (respectively almost piecewise
continuous) functions and the attainable set will be the same as if one were using
Borel measurable admissible initial functions and controls. These results are
simply analogues of those obtained by Halkin [24] for ordinary linear control
problems using the work on subintegrals by Halkin and Hendricks [25]. Halkin’s
paper extends earlier work in [19], [23], [41].

2. Notation, definitions, and general hypotheses. If X and Y are nonempty
sets, then a multifunction tl :X --. Y is simply a subset of X Y with domain
equal to X; equivalently fl is a mapping of X into the nonempty subsets of Y
If Yis a topological space and tl(x) is compact for each x s X, then we say fl :X --. Y
is a compact multifunction. Ifs is a a-algebra of subsets ofX and if Yis a topological
space, then we say a multifunction tl :X Y is sO-measurable if the set fl-F
defined by

fl-F {x Xlfl(x) f’l F - }
belongs to ’ for each closed F Y. If X is a topological space and 1 is the
collection of Borel sets in X, then we shall write Borel measurable instead of
-measurable.

The authors are grateful to a referee for pointing out that related results were recently presented
by F. M. Kirillova et al., C. Olech, and D. H. Chyung and E. B. Lee during the Fourth IFAC Congress,
Warsaw, 1969.
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It is assumed that a definite norm [. is given on any of the finite-dimensional
vector spaces which come into our discussion. The closed ball in Rp with center
at the origin and radius r will be denoted by SP(r).

The real vector space of all real p x q matrices will be denoted by 50pq for
any pair of positive integers p and q. Let [a, b] be a compact interval in R, and let
H:[a, b] 50 be a function of bounded variation. We shall use #H to denote the
Lebesgue-Stieltjes measure on [a,b] determined by H (see [16, p. 358 if.I). In
constructing such measures from H, H will always be taken to be left continuous on
(a, b). We observe that if ---, Tn(t), [a, hi, denotes the scalar function defined
by

Tn(t Varsta,tln(s), [a, b],

and if I#/I denotes the variation of the Lebesgue-Stieltjes measure/n, then one
has [16, p. 362]

(2.1) I1- T.
For conciseness, we frequently use IHl(t) for Tn(t) (this should not be confused with
IH(t)l which is the norm of the matrix H(t)). If g:[a, b] Rp is #n-integrable, then

’g(t dH(t) integral g over [a, b] respect measure/zn.denotes the of with to the

We use 501([a, b], n, RP) to denote the collection of all #n-integrable functions
g [a, b] Rv.

If f2 "[a, b] --+ Rp is a multifunction, then f2(t) dH(t) is used to denote the

set (possibly empty)

g(t) dg(t)lg e 2’x([a, b],, RP), g(t) e f2(t), a <__ <__ b

(cf. [2-], [10], [11], [15], [26-], [47], [33]).
We shall deal frequently with mappings f’X x Y--, Z, where X, Y, Z are

sets. It will be convenient to use f(x,. ), where x is a fixed element of X, to denote
the mapping y --+ f(x, y), y e Y. The mappingf(., y)’X -+ Z for y a fixed element
of Y is similarly defined.

Throughout the paper we make the following standing hypotheses" (H1)
F and G are two Lebesgue measurable mappings from R x R into 5,,; (H2)
F(t, s) 0 for s >_ 0; (H3) F(t, s) F(t, z) for s __< z, where z is a given positive
constant; (H4) G(t, s) 0 for s >__ t; (H5) G(t, s) G(t, r) for s __< ; (H6)
for each fixed R the functions G(t,. and F(t,. are of bounded variation on R;
(H7) there is a Lebesgue measurable function fl’R --+ R which is Lebesgue sum-
mable on every finite interval and which satisfies

VarsRF(t, s) Varst_,01F(t, s) __< fl(t), e R,
(2.2)

VarsRG(t, s) Vart_,,lG(t, s) fl(t), R.

Let h’R" x R R" be a given function such that for each e R the function
u--+ h(u, t), u R", is continuous, and for each u R the function t-+ h(u, t),

R, is Borel measurable. We shall consider control systems which can be
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described by systems of real functional differential equations (FDE’s) of the form

(2.3) (t) x(t + s) dsF(t, s) + h(u(s), s) dsG(t, s),

where both integrals in (2.3) are understood in the Lebesgue-Stieltjes sense with
the symbol d being used to emphasize that the measures are constructed from
the functions F(t,. and G(t,. ).

Let U "[- z, oe) R" and ’[- z, 0] R" be given Borel measurable,
compact multifunctions. It will be assumed that there is a positive constant M
such that

u(t) = SIn(M), h(U(t), ) = S"(M), -,
(2.4)

(t) S"(M), - O.

A triple {99, u, tl} is called admissible if q9 "[- r, 0] R" and u’[- r, tl] Rm,
>- 0, are Borel measurable functions satisfying

(2.5)
q(t) (I)(t), -: _< < O,

u(t) e u(t), - <_ <= t.
The selection theorem of Kuratowski and Ryll-Nardzewski [36] assures the exis-
tence of admissible triples.

Remark 2.1. It is noted that if u’[a, b R" is a Borel measurable function,
then the function h(u(t), t), [a, hi, is also Borel measurable. This follows
easily from the fact that there is a sequence of Borel functions, u,’[a, b] - Rm,
whose range is a countable set, and which satisfy lim Un(t U(t) for each [a, hi.
It follows now from the assumptions on h that h(u,(t), t), [a, b], are each
Borel measurable functions and lim h(u,(t), t) h(u(t), t), [a, hi. Consequently,

h(u(t), t), [a, hi, is Borel measurable.
For any admissible triple {q, u, 1} there is a unique absolutely continuous

function (or response) x(t, q, u), 0 =< =< l, satisfying (2.3) almost everywhere
on [0, tl] and the initial condition

(2.6) x(t, q, u)= q(t), -z <= <= O.

According to the variation of parameters formula [3], this response is given by

x(t, q, u) q)(O) Y(O, t) + q)(s) d F(o, s )Y(a, t) da

(2.7)
+ h(u(s), s) dG(a, s g(a, t) da,

where for fixed > 0 the function s Y(s, t), 0 =< s =< t, is an n n matrix solution
of

(2.8) Y(s, t) + F(a, s a)Y(e, t)da E, 0 <_ s <= t,

which is of bounded variation and which satisfies Y(t, t) E, the n n identity
matrix, and Y(s, t) =_ 0 for s > t.
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A point x R" is attainable if there is an admissible triple {99, u, l} such that
x(tl, q, u) x. The attainable set (, U) (or simply ’ when and U are under-
stood) is defined by the equation

(, U) =- {x R"lx is attainable}.
The fixed-time cross sections of (, U) at >_ 0 are denoted by (, U) (or
simply when and U are understood) and are defined by the equation

sg,(, U) {x e R"lthere exist {q0, u, t} admissible such that x(t, q, u) x}.
3. Properties of the attainable set without convexity assumptions. We begin

with some simple lemmas and observations.
LEMMA 3.1. Let the standing hypotheses of 2 be satisfied. Then

IN(s, t)l _-< IEI exp fl() d, 0. _< s _< t.

Proof This is an easy consequence of (2.8) and the boundary conditions.
Remark 3.1. Ifo is a compact interval and H" J --, 5pq is ofbounded variation,

then H has the well-known decomposition into a sum of a singular function, an
absolutely continuous function, and a saltus (jump) function. We note also that
if H A + N where A is the saltus function and N is continuous, then Var H

Var A + Var N. It is also observed that if H is continuous, then t--, Tu(t),
e ,, is also continuous. Consequently, from (2.1) it can be shown that I#nl is

nonatomic whenever H is continuous.
The next lemma is in essence contained in the papers of Liapunov [43,

Blackwell [8], and Olech [47]. There are, however, some technical differences
so we include a proof for the sake of completeness.

LEMMA 3.2. Let be a compact interval and let H’ pq be of bounded
variation on . Let )’o Rp be a #n-measurable compact multifunction. Let

1(, 1#1, R) be such that (t) SP(p(t)), 3.. Then .I’, f(t) dH(t) isP compact.

Proof First we observe that by the Lebesgue-Nikodym theorem (for example,
see [16, p. 263]) there is a ]#nl-integrable function B’-, pq such that

fjg(t)dH(t)= f,g(t)B(t)dlHl(t), g G ’1(5, #/-/, RP).

We write T/ e + v, where e is the saltus function of T/and v is continuous.
It is an easy matter to prove that the multifunction --+ f(t)B(t), , is measurable,
where )(t)B(t) {x e Rq[x yB(t) for some y e f(t)}. Moreover, f(t)B(t) c
Sq(p(t)[B(t)[), e o. One can also verify the identities"

(3.1) fo. f(t) dH(t) f. f(t)B(t) dlHl(t) f. (t)B(t) da(t) + f. (t)B(t) dv(t)

the proof of the first equality is facilitated by versions of Filippov’s selection lemma
[11], [31], and the second equality follows from the definition of and v. Now
# is purely atomic and #v is nonatomic so the conclusion of the lemma follows
from (3.1) and a remark of Olech’s [47, p. 100] (see [11] also for the nonatomic
case).
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LEMMA 3.3. Let H and ; be as in Lemma 3.2. Let )"; -. Rp be a multifunction
with a Borel measurable selection that is, there is a Borelfunction g* " --. Rp such

that g*(t) f(t) for each . Then t-.f(t) dH(t) coincides with the set M(f], H)

{fg(t)dH(t)lthefulctiolg’J--RPisBorelmeasurableadg(t)"(t),tJ}.
Proof Clearly M(f, H) .1., (t) dH(t). Conversely, suppose g 6 1(,, tzn, RP),

g(t) f(t), .. Then there is a Borel set Eo = with I#l(Eo) 0 and there is
a Borel function ,’--, Rp such that , g on oEo [50, p. 225]. Using
for the characteristic function of a set S we see that , g’" ZJ\Eo + g*" Zo is a
Borel function satisfying ,(t)f(t), tJ, and g i.e. [#HI. Hence,

f,,(t)dH(t)= f,g(t)dH(t), and so fg(t)dH(t)d(,H). This completes the

proof.
In preparation for the next lemma let us introduce some additional notation.

F, G’[0, oe) R L,, are mappings defined by the following two relations"

/(t, s) f(a, s a) Y(, t) d,

J(t, s) =_ G(, s)Y(a, t) da, t>_O, sR,

where F, G, and Y are the functions defined in 2 which appear in (2.3) and (2.7).
We define a function ’R x R - R x R" by the equation

(u, t) (u, h(u, t)), R, u Rm,
where h is the function introduced in 2 (see (2.3)). A function F’[0, ) R

m+,), is defined by the equation

F(t s)= lL;(t,s)_l’ >= O, sR,

where O,,, denotes an m x n matrix all of whose entries are zero. A multifunction
L’R R x R" is defined by the condition

L(t) W(U(t), t), >= -z.

Remark 3.2. The sets L(t), __> -z, are evidently compact. Let b >= 0 be given.
If # is any Lebesgue-Stieltjes measure on [- , hi, then the multifunction U][- r, b]
is #-measurable. This follows from the assumption that U is Borel measurable.
Using Lusin’s theorem for #-measurable multifunctions [11], [31] and extensions
of Scorza-Dragoni’s theorem [11], [32], we can prove that the multifunction
-. L(t) ;/g(U(t), t), [-z, b], is/-measurable. Hence LI[-z, b] is #-measur-

able for every Lebesgue-Stieltjes measure # on [- z, b]. We note also that because
U is Borel measurable and compact, there is a Borel measurable function
u*’[-z, oe)--. R such that u*(t)e U(t),t >= -z (see [36]). Remark 2.1 shows
then that L has a Borel measurable selection. Recall now that tI) was also assumed
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tO be Borel measurable. Hence, in evaluating either of the integrals

(s) dff(t, s) or L(s) dF(t, s),

the conclusion of Lemma 3.3 may be applied.
LEMMA 3.4. Let the standing hypotheses of 2 be satisfied. For >= 0 define

lt(, U) to be the set

(o)r(o, t) + (s) dP(t, s) + L(s) F(t, s).

Then we have the identity

(, (,, o.
Proo Examining the third summand on the right-hand side of (2.7) we use

the assumptions on G in 2 to write

h(u(s), s) dG(, s Y(, t) d h(u(s), s) dG(, s Y(, t) d

h(u(s), s) d G(, s)Y(, t) d

The last equality follows by utilizing an unsymmetric Fubini theorem [9] to
interchange the order of integration. We have the identity2

(3.3) h(u(s), s) ds(t, s) :(u(s), s) dsF(t, s).

Consequently from (3.2), (3.3), and (2.7) we have

(, u) = ,(, u).

Since F(t,. is left continuous on (- z, 0), we have that if r _<_ s, < O, and s, 0
as n oo, then lim F(,s,-z)= F(,-z), 0 < =< v. Therefore from the Le-
besgue dominated convergence theorem and the definition of we get that {0}
is not an atom of #(t,.). Hence

(p(s) d,P(t, s) ((s) d(t, s)

if (p(s)= 5(s) except at s 0. From this remark, the variation of parameters
formula (2.7), and Remark 3.2 one can show the reverse inclusion t(O, U)
c t(, U). If the detailed proof of this inclusion is carried out, then the meaning
of the comment in the preceding footnote becomes clear. This completes the
proof of the representation formula of the lemma.

THEOREM 3.1. Let the standing hypotheses of 2 be satisfied. Then"
(i) the sets ](ap, U), >= O, are compact;

Our reason for introducing the auxiliary functions W and F is to avoid certain questions con-
cerning the existence of Borel measurable selections. Halkin used a similar device in [24].
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(ii) the mapping, s(d, U), >= O, taking its values in the compact non-
empty subsets of R" is continuous with respect to the Hausdorff metric [1];

(iii) for any >_ 0 the set U tto,l s(, U) is compact.

Proof of (i). This is an immediate consequence of the representation formula
in Lemma 3.4 and Lemma 3.2.

Proof of (iii). This is readily deduced from (ii).
Proof of (ii). Let S denote the closed unit ball in R" with center at the origin.

We must prove that given tx >- 0 and e > 0 there is a 6 > 0 such that

(3.4) 1, + eS t and t+eSCt,, t- txl < b, >= O.

The relations in (3.4) can be verified by considering two cases" (a) > t; (b)
0 __< < t. Consider case (a) first. Suppose xt e s; then there is an admissible
triple {(p, ut, t} such that x, x(t, q),, u). Define the function ’[- :, t]
to be the restriction of ut to I-z, t]. Using the variation of parameters formula
(2.7), Lemma 3.1, inequalities (2.2) and (2.4), hypothesis (H4) of 2 and some
standard manipulations with Lebesgue-Stieltjes integrals, we obtain the estimate

Ix(t, qg,, u,) x(t,, qg,, a)l MI Y(O, t) Y(O, x)l

(3.5)
+M fl(a)l Y(a, t) Y(a, t)l d

+MIEI j
+M fl(a)[ Y(z, t) Y(z, 1)[ da.

We now give a similar estimate for (b). By the Kuratowski-Ryll-Nardzewski
selection theorem [36] there is a Borel function u*’[-z, oe)--, R such that
u*(t)e D(t), >= -. We note that u u,-)t_,0 + u* .),,,j is a Borel function
and {q)t, ua,tx} is admissible. For reasons similar to those adduced to support
(3.5) we get the inequality

Ix(t, qg,, u,) x(t,, qgt, u,)l MI Y(O, t) Y(O, t,)l

.+M fl(z)l Y(a, t) Y(a, tl)] d

+ Mlel " B(=)[exp f]
+M ()l Y(, t) Y(, t)l d.

From the continuity of Y(e,.), the Lebesgue dominated convergence theorem
and inequalities (3.5) and (3.5’), there results the following statement.

Statement 3.6. Given t 0 and e > 0 there is a > 0 depending only on t
and e such that It- t[ N 6, 0, implies Ix(t, Ot,ut)- x(tx,pt,)l e and
Ix(t, ,, u,) x(t, ,, u)l e.
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Statement 3.6 implies

(3.6) sg,+S=s,, It-tl_<-fi, t>_0.

The other inclusion relationship in (3.4) is proved by a symmetric argument
which is omitted.

Remark 3.3. Let --* -(t), >_ 0, be a compact multifunction which is con-
tinuous with respect to the Hausdorff metric. If we impose a terminal condition
of the form

(3.7) x(t 1, q), U)
_

ff’(t 1),

then by the usual device [46], Theorem 3.1 yields an existence theorem for the
time optimal control problem. If we consider only admissible controls whose
domains [-7, l] lie in some fixed interval [-7, ], and if there is a terminal
constraint (3.7) or, indeed, if the right end is free, then Theorem 3.1 can be used
to give an existence theorem for the problem of minimizing P(x(t 1, q0, u)) on the
class of admissible triples {99, u, tl} such that (3.7) is satisfied,3 or for the problem
of minimizing P(x(tl, qg, u)) on the class of admissible triples {o, u, }, where P
is a real-valued continuous function on R".

In order to deduce necessary conditions for the optimization problems
mentioned in Remark 3.3 it is desirable to have that the sets s(, U) are convex.
Simple examples show that this cannot be deduced under the general circum-
stances of Theorem 3.1 because the Lebesgue-Stieltjes measures involved in the
representation formula, s(, U)= t(, U), of Lemma 3.4 can be atomic. It
is noted that any function on an interval [a, b] into 5pq which is of bounded
variation has only a denumerable number of discontinuities. We say that F has
property (A 1) if for each e R it is possible to index the points O(t), 1, 2,
in the interior of [-7, 0] at which F(t,. is discontinuous, in such a way that con-
tinuous functions Oi(t), R, are defined and Oi(t), R, is strictly
increasing, 1, 2,.... We say that G has property (A2) if for each R, G(t,.
is continuous at -r and it is possible to index the points (t), 1, 2, ..., in the
interior of [- 7, t], at which G(t,. is discontinuous in such a way that continuous
strictly increasing functions i(t), e R, 1, 2,.-, are defined.

THEOREM 3.2. If in addition to the standing hypotheses of 2 we assume that
(0) is convex, F and G are Borel measurable, F has property (A1) and G has property

(A2), then conclusions (i), (ii), and (iii) of Theorem 3.1 are still valid and (, f),
>= O, are convex.

Before proceeding with the proof we give another lemma that will be useful
in the proof.

LEMMA 3.5. Let p’R R be a continuous strictly increasing function. Let
f:[a, b] pq be a Lebesgue summable function. We define three functions

Actually for these existence statements it is not necessary to assume that the multifunction -is continuous or even compact. It suffices to have the multifunction ,Y- closed (i.e., -(t) is closed for
> 0) and upper semicontinuous in the Kuratowski sense (see for example [37], [12], [31]). We keep

the stronger hypothesis of continuity because it is needed in proving necessary conditions for a mini-
mum.
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W2, W3 "R pq by the equations

W,(s) f()I(s p()) d, s e R,

W2(s) f()J(s p()) d, s e R,

Wa(s) f()J(- s + p()) d, s e R,

where I, J "R R are the step functions defined by the relations

{0, x<O, {0, x<O,
I(x) J(x)

1, x>O, 1, x=>O.

Then W is continuous, 1, 2, 3.
Proof First we remark that p:[a, b] [p(a), p(b)] has a continuous inverse

p-l:[p(a),p(b)]- [a,b] which is also strictly increasing. Some elementary
calculations yield the following formulas:

W(s)

0

f() d- ’)f() d

W(s)

0

f()d

o- ,(s)f() d
and

for s <- p(a),

for s > p(b),

for p(a) < s <= p(b),

for s < p(a),

for s >__ p(b),

for p(a) <= s < p(b)

0 for s > p(b),

W3(s) f() d for s <_ p(a),

d forp(a) < <= p(b).f() s
(s)

The continuity of the functions W, 1, 2, 3, is an immediate consequence of
these formulas and the continuity of p- on [p(a), p(b)].

ProofofTheorem 3.2. We write F(t, s) AF(t, s) + NF(t, s)and G(t, s) AG(t, s)
+NG(t,s), where Av(t,’) is the saltus function for F(t,.), Aa(t,.) is the saltus
function for G(t,. ), and both NF(t,. and N(t,. are continuous. Denote the
jump of F(t,. at Oi(t) by Bi(t) and the jump of G(t,. at ((t) by C(t), 1, 2,....
Thejump of F(t,. at z is denoted by B_ a(t) and thejump of F(t,. at 0 is denoted
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by Bo(t). The jump of G(t,. at is denoted by Co(t). From Remark 3.1 and in-
equalities (2.2) it follows that

(3.8) IB(t)l, Ifg(t)l -/(t), t R.
i=1 i=1

Since F and G are Borel measurable, the functions Bi, Cj, i= -1, 0, 1,2,...,
j 0, 1,2,..., are all Lebesgue measurable. For example, let us show Bi is
Lebesgue measurable, i>= 1. Define s,(t)= 1/n- O(t), n 1,2,3, then
s,(t) > -Oi(t) and lim s,(t)= -Oi(t). Since F(t,.) is left continuous on (-r, 0),
we have

Bi(t) lim F(t, s,(t)) F(t, Oi(t)).

Since F is Borel measurable, the functions F(t, s,(t)) and F(t,-O(t)) are
Borel measurable (a fortiori Lebesgue measurable). Hence B is a Borel function
and thus Lebesgue measurable. The proof of the measurability of the other
functions is similar. Define B(t)-- Z=I B(t) and C(t)-- E?=I Ci(t (both series
converge by (3.8)). The saltus functions AF and AG can be written in the form

(3.9) AF(t, s) B_ a(t)J(- s ) + Bo(t)J(s) + Bi(t)I(s + O(t))
i=1

and

We have

AG(t, s)= Co(t)J(s t)+ Ci(t)I(s i(t)).
i=1

/(t, s) A(a, s a)Y(a, t) da + Nv(a, s z)Y(a, t) da,
(3.10)

(t, s) A(e, s)Y(e, t) de + N(e, s)Y(e, t) de,

and the second terms on the right-hand side of both equations depend continuously
on s by the Lebesgue dominated convergence theorem. Using (3.8), (3.9) and the
dominated convergence theorem we get

AF(, S )g(, t) d B_ ()Y(, t)J(- s + z) d

(3.11) + Bo()Y(e, t)J(s ) de

+ B(e)Y(e, t)I(s + 0()) de.
i=

According to property (A) and Lemma 3.5, each term in the series (3.11) is con-
tinuous in s. We also have

(3.12) B()g(, t)I(s + O())d KIEI IB()l d, i= 1,2,...,
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where K exp fl() d. Moreover, the series Zi--1 ]Bi(e)l de converges by

(3.8). Hence, by the Weierstrass M-test and (3.12), the series in (3.11) converges

uniformly for s e [- z, 0] (t >= 0 is fixed). Therefore the function s --. AF(e, s e)

Y(e, t) de, z __< s __< 0, is continuous, and we conclude that F(t,. is continuous
on [-, 03 for each fixed >= 0. By an entirely parallel argument it can be shown
that t(t,-) (also F(t,. )) is continuous for each fixed _> 0. Using the Lebesgue-
Nikodym theorem [16, p. 263] it is determined that there exist integrable Borel
functions V "[ , 0] 5,, and Vr "[ , t] 2’m +,), such that

q)(s) ds(t, s) q)(s) V(s)

for (p e ([- , 0], #(t,., R") and

g(s)d,r(t,s) g(s)Vr(s)

for g e 2’1([-z, t],/r,,.),R"). From the representation formula in Lemma 3.4
and an extension of Filippov’s selection principle [11], [31] we obtain

(3.13) (, U) (0)(0, t)

By Remark 3.1, ],.) and ]r,.) are nonatomic and we conclude that (, U)
is convex (see [47], [11]).

We shall use co (B) to denote the convex hull
COROLLARY 3.1. Let denote the multhnction --co ((t)),- z < 0.

Let U*’[-z,) R be a Borel measurable compact mult(unction such that
U*(t) SIn(M) and co (h(U(t), t)) co (h(U*(t), t)) for -z. Let the hypotheses
of Theorem 3.2 be satisfied. Then

u) u*), => 0.

Proof The identity is easily verified by using (3.13), the linearity of V(s)
and Vv(s) and Theorem 7.1 in [11 ].

As a particular case of Corollary 3.1 we obtain the following corollary.
COROLLARY 3.2. Let the hypotheses of Corollary 3.1 be satisfied. In addition

suppose (t) is the set ofextreme points ofW(t), and U# I--c, oe) - R" is a multi-
.function such that U#(t) SIn(M) and the set of extreme points of co (h(U(t), t))
is equal to h(U#(t), t), >= -. If the multifunctions q/and U # are compact and
Borel measurable, then

sJt((l), U)= t((I), U#), _>_ 0.

Remark 3.4. In Theorem 3.2 it was assumed that (I)(0) is convex. If this should
happen not to be the case, then one can always select o, a compact convex
subset of (I)(0) (for example, (I) o could be a singleton point set), and define

[ q)(t), - 0,
*(t) o, =0.

Since q)* is also Borel measurable, compact, and satisfies (I)(t) S"(M), e [- , 0],
we could replace by * and Theorem 3.2 could be applied.
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4. Necessary conditions for an optimal control. The properties of the
attainable sets deduced in 3 suggest that the main geometric ideas involved in
proving the maximal principle for ordinary linear control problems (see [40])
are going to retain their validity for certain of the optimization problems formu-
lated in Remark 3.3. We shall only consider the time optimal control problem
mentioned in Remark 3.3. It willbe clear from the discussion that the results can
be used to prove a maximal principle for the other problem discussed in the
aforementioned remark if we add additional assumptions which assure that on
compact convex subsets of R" the mapping P assumes its minimum on ,
the boundary of , e.g., when P is linear (cf. [21]).

The following lemma is true and the arguments are entirely similar to those
given in 40, pp. 72, 129].

LEMMA 4.1. Let , ( "[a, b] R" be compact multifunctions which are con-
tinuous with respect to the Hausdorff metric. Let (t) be convex for a <_ <__ b.
Let t* (a, b] be such that (t*) f-) ((t*) and (t) f3 eb(t) if a <= < t*.
Then x* (t*) f’] ((t*) implies x* O(t*).

We shall use (x, y) to denote the scalar product, x, y R", and A’ to denote
the transpose of a matrix A.

THEOREM 4.1. Let the hypotheses of Theorem 3.2 be satisfied. If {q*, u*, t*} is
an optimal solution to the time optimal control problem in Remark 3.3, then there is
a function if’J0, t*] R" which is of bounded variation and satisfies the adjoint
equation

O(s) + /(a)f’(a, s a)da e, 0 <= s <= t*,

where e is an outward normal to a support hyperplane to the set ,(, U) through
the point x(t*, q*, u*) on the boundary of ,(, U) such that

(i)

(ii)

for every admissible q)

>_ q)(s) dsF(a, s o0, O(oO de

h(u*(s), s) dsG(a, s), /(z)> de

h(u(s), s) dG(o, s),

.]’or every admissible u. Moreover, if -(t) is equal to a fixed compact convex set
c R" for >= O, then e can be picked to satisfy the transversality condition: e is

normal to a common support hyperplane separating ,(, U) and
Proof Let x* x(t*, q*, u*). By Theorem.3.2 and Lemma 4.1 we infer that

x* belongs to the boundary of ,. There is a vector e R" with ]el 1 such that

max {<e, x)lx e t*} <e, x*>.
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Using the fact that the value of tp(0) does not affect the value of the second term
on the right-hand side of (2.7) (cf. proof of Lemma 3.4) and some elementary

(q*(0), eY’(O, t*)) >= (Cpo, eY’(O, t*)), qo O(0);

p*(s) d F(a, s a)Y(a, t*) d

(4.1b)
(s) d F(a, s a)Y(a, t*) da e

for every admissible

h(u*(s), s) dG(, s r(, t*) d,

(4.1c)
’*

u(s) s)dG(a s daY(,t*)

for every admissible u. Define (a) e Y’(a, t*), 0 a t*. Then by appropriately
using the unsymmetric Fubini theorem [9] and some standard manipulation with
the scalar product in (4.1b), (4.1c), relations (ii) and (iii) are proved. The fact that
a (a), 0 a t*, is of bounded variation and satisfies the adjoint equation
is an immediate consequence of (2.8).

The transversality condition is just a geometric property. In proving this
condition we use the norm in R" defined by Ix[ 2 (x, x). We have
for 0
be such that [a, b,] is the minimum value that the function (x, y) Ix y[,
(x, y)e . Z, assumes. Then a, b, 0 and e, (b, a,)/]a, b,] is a unit
outer normal to . at a, and a unit inner normal to Z at b,. Hence

(4.2)
{x](e,, x

{x[(e,,x- b,) 0} , n 1,2, 3,-...

We might as well assume e, e and b, b as n . Then a, also converges to b.
Using (4.2) and the fact that . , as n (the limit is taken with respect
to the Hausdorff metric) we find that

{x(e, x

so that {x[(e, x b) 0} is a hyperpiane satisfying the transversality con-
dition.

Remark 4.1. We can put conditions (ii) and (iii) of Theorem 4.1 in a form which
will in many cases be more manageable if we assume that F(t,. and G(t,. have
no singular part and if the functions Oi, , 1, 2, 3, .-., introduced in properties
(A) and (A2) are of class C. Let us indicate the form which (ii) and (iii) take in
this case. We use the decompositions F AF + Nv and G Aa + N which
were introduced in the proof of Theorem 3.2. According to our assumptions,
Nv(t,. and Na(t,. are absolutely continuous. By some rather involved analysis,
which includes several applications of the unsymmetric Fubini theorem [9], it

reasoning involving formula (2.7), we can show that

(4.1a)
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can be shown that condition (ii) of Theorem 4.1 implies

(ii’) (q*(s), P(s)) >= (q(s), P(s)) a.e. on [- z, 0]

for every admissible q, where P is defined by

P(s) =-O(s + "r)B’_ 1(S + )+ (pl -1(s))B(p (s))K,(s)vi(s)
=1

+ 0( , s ) d, s e [-, 0],

and pi(a) a- Oi(a) for a6 [0, ], K denotes the characteristic function of
[pi(0), pi(z)] [- z, 0], and v(s) 1/i(p (s)) for s 6 [- , 0], 1, 2, 3, .... By
a similar type of analysis which is again omitted, (iii) can be shown to imply

(iii’) (h(u*(O, ), Q()) (h(u(O, ), Q()) a.e. on [- , t*]

for every admissible u, where Q is defined by

Q(0 0()C;(),() + 0(7 ’())C( ())@()fl,()
i=1

N+ t(,0d

and is the characteristic function of [0, t*], is the characteristic function of
[i(0), (t*)], and fli() 1/i( ’(0), - N N t*.

5. Analytieity results for solutions of FDE’s. As the reader is by now well
aware, the representation (2.7) of solutions to (2.3) in terms of "fundamental" or
"adjoint" matrix solutions [3] is of immense importance in the study of control
of such systems. In this section we investigate analyticity properties of these
fundamental matrix solutions for certain types of linear (in the state variable)
systems which are special cases of (2.3); namely,

(5.) (t) x(t- O)A(t) + x(t + s)A(t,s) ds + h(u(t), t)
i=0

with 0 0o < 01 <’" < 0 N v, which corresponds to an F(t,. consisting of
an absolutely continuous function plus a saltus function with a finite number of
constant (in t)jump points. A somewhat more general system allowing retardations
in the control variable u is discussed further in Remark 6.1 at the end of 6. The
associated fundamental matrices X(t, a) satisfy (as a function of t)

2(0 x(t O,)A,(t) + X(t + s)A(t, s)ds, > ,
(5.2) ,=o

X(a) E, X(t) O fort<a.
Since the corresponding adjoint matrices Y(a, t) satisfy (in a) systems [20] which
can be put in a form similar to that of (5.2) and since we have X(t, a) Y(a, t),
to investigate analyticity properties of X. and Y in a or it suffices to examine the
analyticity in of solutions to (5.2). Considering the following two examples one
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sees that systems of the type (5.2) with analytic coefficients and analytic initial
function need not possess an analytic solution.

Example 5.1. The scalar system

(t) x(t- 1), > 0,

x(t) 1, [- 1,

has a unique solution on [-1, 2] given by

1, t[-1,0],

x(t) 1 + t, [O, 1],

3/2 + t2/2, [1,2],

which is not analytic at 1.
Example 5.2. The scalar system

0

5c(t) x(t + s)ds, > O,
-1

x(t) , [- , o,
has a unique solution on [-1, 2] given by

1,

x(t) l+sinht,

1 +sinht- (n- 1)
n=l

which is not analytic at 1.

(t 1)2n-
(2n- 1)!

t[1,2],

Remark 5.1. Example 5.1 can be used to contradict a theorem of Pinney [49,
p. 237], while Example 5.2 contradicts a result due to Oguzt6reli [48, p. 52]. (It is
not difficult to show that the right side of the system in Example 5.2 is analytic in
x in the sense of Volterra [51], [48] as required in Oguzt6reli’s theorem.)

In light of the previous examples and remarks one might expect under
reasonable assumptions on the coefficients to obtain not analyticity but some
type of piecewise analyticity for solutions to (5.2). We are thus motivated to
introduce the following concepts (see also Halkin [23] and Levinson [41]). A
functionf:R R is analytic on [a, b] if there exist e > 0 and a function g analytic
on (a e, b + e) such thatf g on [a, b]. We say thatfis piecewise analytic (pwa)
on [a, b] if there exists a partition a so < sl < < s b such thatfis analytic
on [si- 1, si], 1, 2, ..., v. Finally,fis said to be quasi-piecewise analytic (qpwa)
on [a,b] if there exists a partition a so < s <’" < s b such that f is
analytic on (si- 1, si), 1, 2, ..., v.

Combining a modification of the step method [18] with known results for
ordinary linear differential equations we can prove the following theorem.

THEOREM 5.1. Let A(t, s) 0 in (5.2) and - Ai(t), O, 1,..., K, be (real)
analytic on [a, oo] into . If the lags 0, 1, 2,..., K, are commensurate, then
the solution to (5.2) is pwa on [a, a + T] for any T > O.
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Proof We shall only give the proof for K 1, 01 1. In the case of a finite
number of commensurate lags (i.e., there exist 6 > 0 and positive integers qi such
that 0i qfi, 1, 2,..., K) one uses the following arguments on intervals of
length 6 instead of intervals of length 1. Thus we consider the system

f((t) X(t)Ao(t + X(t 1)A l(t), > a,

(5.3) X(a) E,

X(t) O, < a,

and denote by 3 the solution of

B(t) YlB(t)Ao(t),

(a) E.

From the theory of ordinary differential equations it is known that
exist and are analytic on (a e, a + T + e) for some e > 0. Since the solution X
of (5.3) agrees with 3 on [a, a + 1], we have that X is analytic on [a, a + 1].
Furthermore, we see that

(5.4) X(t) X (a + n)?B-
+n

for t6 [a + n, a + n + 1], n >_ 1. Hence the analyticity ofB, 3-x A1 on [a + 1
a + 2], and that of X on [a, a + 1] imply that X is analytic on [a + 1, a + 2],
which by the same reasoning leads to the analyticity of X on [a + 2, a + 3].
A finite number of repetitions of this reasoning using (5.4) completes the proof.

Remark 5.2. From the definition of the determinant it follows immediately
that ilia, fl] is any interval of analyticity ofX (the solution to (5.2) with A(t, s) =_ 0),
then either X(t) is singular for every [a, fl] or else there are at most a finite
number of points in [a, fl] where X-l(t) fails to exist.

Just as the step method fails in existence proofs for (5.2) whenever A(t, s) O,
this form of the step method will not be of use in proving analyticity results for
solutions to the general system (5.2). We can, however, obtain the following result
by utilization of successive approximations with step-like procedures.

THEOREM 5.2. Suppose that (t, s) - A(t, s) and Ai(t), O, 1,..., K, are
(real) analytic on [a, o) x [-, 0] and [a, o) respectively into . If the lags
01, 02, "", 0, are commensurate, then the solution to (5.2) is qpwa on [a, a + T]
for any T > O.

Again, we shall here give a proof of this theorem only for the special case

2(t) X(t)Ao(t + X(t- 1)Al(t + X(t + s)A(t, s)ds, e [0, T],

(5.5)
X(O)= E, X(t)=O fort<0,

as it will then be clearly seen how one modifies the ideas to obtain the result for
commensurate lags on [a, a + T]. Since the uniform limit of a sequence of real
analytic functions need not be analytic, if we wish to use successive approximation
techniques to obtain analyticity results, then we must work with complex systems.
That is, we must somehow replace (5.5) by a system defined on a domain in the



478 H.T. BANKS AND MARC Q. JACOBS

complex plane C which contains [- 1, T] so that the system is equivalent to (5.5)
on [-1, T]. Before beginning the proof we give some preliminary results which
will be needed.

LEMMA 5.1. If f iS analytic in a region (a,b)= {z x + iyla < x < b,
-d < y < d} and continuous at z a from within (a, b), then F defined by

F(z) =_ f(() d( is an analytic function on (a, b).

Proof From the extended form of Cauchy’s theorem [52] it follows that F is
independent of path in 6(a,b) and is thus well-defined. For z 6(a,b) in a

neighborhood of zo e (a, b) we have F(z) F(zo) + f(() d( which is analytic
zO

at zo by well-known results.
LEMMA 5.2. Suppose (t, s) e(t, s) is real analytic on (-e, r + e) x (- 1 e, e)

c R2. Then there are sets and in C of the form

{z x + iylx(-, r + ),ye(-,)},

{z x + iylxe(-1 i,i),ye(.-6,6)}

and afunction (z, w) --, e*(z, w) analytic on x c C2 such that *IK , where
K {(x, 0)Ix e [0, T]} x {(x, 0)Ix e [- 1, 0]} (or K [0, T] x [- 1, 0] as a subset
of R2).

Proof. Define (-, T + ) (1 , ), which is an open region in R2

on which a is analytic. It then follows [45, p. 5], [27, pp. 41-42] that there is an
open set * in {22 with * R2 and an analytic function a* on * such
that a*l a. The set K defined in the lemma is compact in C and K f-I (C\*)
is empty since K f’l R c . It is then not difficult to show that there is a b > 0
such that and as defined in the lemma satisfy K *.

Proofof Theorem 5.2. Our first task is to somehow extend system (5.5) (or, as
in the ustal case of successive approximations, its equivalent in integral form)
to a system on a complex domain where of course we want all coefficients involved
to be analytic. From Lemma 5.2 and standard arguments it follows that there
exist domain , (see Lemma 5.2) and analytic continuations (which we again
denote by A and A) of the mappings (t, s) A(t, s) and Al,t) to g/ and

respectively. Let s, and r be b/2 neighborhoods in C (using the usual norm
in C) of the sets [- 1, 0] and [0, T] respectively. These are the regions on which we
shall work throughout the remainder of the proof.

For k any integer, we define Sk {Z t Clk < Re (z) < k + 1 } fq (Nse U @-).
We shall consider the system defined for z e Sk U. {k + 1 }, k >- O, by

X(z)=E+ft{x()A(()+X((-1)A()O,z
(5.6)

+ ft- 1,ol
X( + w)A((,w)dw}d(,

where we must indicate the paths of integration to be used. The path [0, z] for
z e Sk U {k + 1 } consists of straight-line segments joining z and k, k and z 1,
z- landk- 1,...,z-(k- 1) andl, landz-k,z-kand0. Notethatthe
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path will always lie in -. The integral | X(( + w)A(, w)dw, for ( on the
1,0]

polygonal path joining 0 and z described above and S, U {m + i}, is to be
integrated along the w-path of straight-line segments joining 0 and - + m,- + m and i. Hence for any Sm {m + l} this latter integral depends on
the values of X along the segments joining and m, m and i. Note that for
z real the system (5.6) with the proper initial conditions reduces to the integrated
form (in the usual sense) of (5.5).

We next obtain a quasi-slabwise analytic (i.e., analytic on S, k 0, l,...)
solution to (5.6). To do this we define successive approximations X,, show that
each is analytic on S,, k 0, l, ..-, and show that {X,} converges uniformly on
each S. The limit function will be the desired solution. Define for n 0, i, 2, ...,
X,(z) 0 for Re(z)< 0 and X,(0)= E. For zSk IO {k + 1}, k 0, 1,2,...,
define Xo(z) E and

X"(z)=E+fto,z]{X"-x()A()+X"-l(-l)Al()
(5.7)

+ ft- 1,o
X,_ ( + w)A(, w) dw} d

for n 1, 2, ..., where the paths of integration are the polygonal paths described
above. Note that each X,, n >= 1, is defined on @z [A - less the rays
(Ak>_O {z k + iyly 4: 0}.

We shall say that a function g is left continuous at z k, k _> 0, if g() g(k)
as k, Sk- 1. A similar meaning is attached to "right continuous at z k."
Finally, we shall say that g is continuous at z k if it is both left and right con-
tinuous at z k in the above sense. We now state and prove an induction lemma
which will yield analyticity of X, on the Sk.

INDUCTION LEMMA. Let n >= 1. Let k >= O. Then X,_ analytic on S_ So, S1,
", Sk and continuous at z 0, 1, 2, ..., k imply X, analytic on Sk and continuous

atz=k.
Note. Since clearly none of the approximations are left continuous at z 0,

we understand "continuous at z 0" to mean "right continuous at z 0" in
the above lemma.

Proof. Suppose the assumptions of the induction lemma are true. We can
then establish the following lemma.

LEMMA 5.3. Let m be afixed integer, 0 <= m <= k. For ( S (_J {m} (_J {m + 1 }
define

F() | X,_ ( + w)A(, w)dw.
1,0]

Then F is analytic on Sin, right continuous at z m, and, if rn < k, left continuous

atz=m+l.
Use of the hypotheses of the induction lemma and Lemma 5.3 yield that

the integrand

o() X._ l()Ao() + X._ ( 1)A() + f X._ 1( + w)A(, w) dw
1,0]
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in (5.7) is analytic on So, S,..., Sk_ 1, and continuous at z 0, 1, ..., k- 1,
left continuous at z k. Hence by the extension of Cauchy’s theorem (see the
proof of Lemma 5.1) the part of the integral in (5.7) from 0 to k along the polygonal
paths is actually independent ofpath (as long as the paths cross the lines Re (z) m
through the point z m). Thus, (5.7) may be written

(5.8) X.(z) F + ()d + () d,

where as usual denotes integration along the straight-line segment joining

z and z2. The first integral in (5.8) is now independent of z e Sk. Thus we need
only show that the second integral is analytic for z Sk. But this follows imme-
diately from the hypotheses of the induction lemma, Lemma 5.3 and Lemma 5.1.
We therefore have X, analytic on Sk.

We shall next argue that X, is right continuous at z k; the arguments for
left continuity are not dissimilar and will be omitted. From (5.8) we have

X,(z)- X,(k) d;() d for z e Sk, the integrand being analytic on Sk and

right continuous at z k. Thus o is bounded in some "right neighborhood" of
z k, from which the desired result follows immediately. To complete the proof
of the induction lemma it remains only to establish the validity of Lemma 5.3.

Proof of Lemma 5.3. Making the assumptions given in the statement of the
induction lemma, we let m be a fixed integer, 0 __< m __< k. Then F(), (e Sm, can
be written

F(() X,,_ ,( + w)A((, w)dw + X,,_ ,( + w)A((, w)dw
+m

X,,_ (w)A((, w () dw + X,_ (w)A((, w () dw.
--1

The right continuity of F at z m follows from the continuity of A, the bounded-
ness of X,_ in right and left neighborhoods of z m and a right neighborhood
of z m 1, and the theorem on dominated convergence. For m < k the proof
that F is left continuous at z m + 1 is similar. (If rn k, these arguments are no
longer valid in obtaining left continuity of F at m + 1 since at this stage in the
induction we do not have that X,_ is left continuous at k + 1, which is needed
for the boundedness conclusions about X,_ .)

We turn next to the analyticity arguments for F on Sin. We shall argue that the

function f defined by f(()= X,_ l(w)A((, w- ()dw is analytic on Sin, simi-

lar arguments being valid for the term X,_ (w)A(, w ) dw in F above.
-1

Fix (o e S,,. For ( in a sufficiently small neighborhood Ao of (o we can write

Xn_ I(W)A((, W ) MW Xn_ I(W)A((, w ) dw

4- X,_ x(w)A((, w- )dw =- h(() + h2((),
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where the integrands are analytic in on o for each fixed w e o and analytic in
w on oo for each fixed e o. A straightforward application of Morera’s theorem
establishes the analyticity of h on o. Use of a theorem of Hartogs-Osgood

ml[28, p. 28] yields that h is of the for g(w, )dw, where g is analytic in
,o

o x A/d, from which the analyticity of h follows easily.
Having confirmed the validity of the induction lemma, we point out that it

follows directly from the analyticity properties of Xo (recall Xo(z)= E for
ze S U {k + 1}, k 0, 1,... and Xo(z)= 0 for Re(z) < 0) and the induction
lemma that each X, is analytic on each S.

We next prove that the sequence {X} converges uniformly on the region of
interest. Let be the positive integer (1 > T) such that S for k >__l and
S_ . (Recall the definition of S, Nse and .) We shall show that the
sequence {X,} converges uniformly on 9t _= U-S U {k}. We note that we
trivially have uniform convergence of {X} on S-1 U {0} to the function X
defined by X(z) 0 for z e S_ 1, X(0) E. Recall now the definition of X given
in (5.7) and the integration paths employed. For any z e 9t let s(z) denote the
arclength of the polygonal path described above (see (5.6)) which joins 0 to z.
Let M be a bound for IAo()l, IAI()I, e -, and IA(, w)l, (, w)e @- x .
Then for z e 9t we have

IX,(z) Xo(z)l f[o,z {Xo()Ao() + Xo(( 1)A 1()

Xo( + w)A(, w)dwt d
1,o]

IA((, w)lldwlt Id’l

<=f {M+M+MO,z]

__< 3M(1 + 6)s(z) =_ ps(z).

Furthermore,

IX2(z)- Xl(Z)] ][t0, {M]XI() Xo()l + MIXI( 1) Xo( 1)1

ft MlXa( / w)- Xo( / w)l ldwl} ldl
-1,0]

For ( e So we have

MIXa( / w)- Xo( / w)lldwl-
1,ol

MIX.( + w)- Xo( + w)l Idwl

Mps( + w)ldwl < Mps(()ldwl

<= Mps()(1 + ).
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For ( e Sk, k 1, we find that

(5.9) s(( + w)< s(()

for any w lying on the path consisting of straight-line segments joining -1 to
-( + k and -( + k to 0. Hence the above estimate is also valid for these values
of (. It follows that

IX2(z)- X(z)[ _<_ {Mps() + Mps(() + Mps(()(1 + 6)}ldl
O,z]

=< 3M(1 + 6)p f s()ldl
O ,zl

p.[s(z)]
2

Using this estimate and the above ideas it is easily shown that

IX(z)- X(z)l < p
[s(z)]

3!

and, in general,

IX.(z)- x._ (z)l _-<
n!

for z 9t. Hence for n > m, we have

(5.10) IX,,(z)- Xm(Z)l <-
j=m+l j=m+l J!

But for z 9 we have that s(z) <=/(1 + 2(6/2)) =/(1 + 6). Using this with (5.10)
yields the uniform convergence of {X,} on 9. Let us denote by X this limit function
on 9 U S_ 1. Since each X, is analytic on S and continuous at z k, we have
that X also, possesses these properties. Furthermore, for each n, X,(z) is real-
valued whenever z is real, from which it follows that X is real analytic on (0, 1),
(1, 2), etc. Finally, since X, converges to X uniformly on [- 1, T] it is not difficult
to argue that X is the unique solution to (5.5), which completes the proof of
Theorem 5.2.

One might reasonably expect a stronger type of analyticity (say pwa) than that
obtained in Theorem 5.2 to be true for systems of the type (5.2) even with A 0.
The authors have tried unsuccessfully so far to obtain these stronger results.
Several ideas using different integration paths in defining the successive approxima-
tions (see the proof of Theorem 5.2) and stronger assumptions on the coefficients
have been tried. These lead to either a lack of analyticity of the estimates in the
desired regions, or else an inability to obtain uniform convergence of the estimates.
The authors were able to prove that the solution to (5.5) is analytic on [0, 1], but
could not adapt these methods to prove analyticity on [k, k + 1] for k > 0. The
fact that one is using a zero initial matrix on [-1, 0) appears to be essential in
obtaining analyticity on [0, 1]. (Note that in this case the system loses some of its
lag behavior on [0, 1] and is much more like an integral equation.)
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The analyticity results obtained in this section can be used to study the zeros
of the multipliers in the maximal principle for control problems involving func-
tional differential equations (see Remark 5.2 and [4], [5], [6], [21]). The informa-
tion thus obtained can be especially useful when the maximal principle is also a
sufficient condition for optimality (see [21]). Another application ofthese analyticity
results is discussed in the next section.

6. Application of the analytieity results. We shall use pwc as an abbreviation
for piecewise continuous, and when we say a function f’[a, b] Rp is piecewise
continuous we are taking the standard definition. We shall say that f is almost
piecewise continuous (apwc) if there is a finite number of points si [a,b],

0, 1, ..., N, with the property that fl{e, fl] is pwc for [e, fl]c [a, b] for which
si [o,fl], O, 1, ..., N.

In this section we shall demonstrate how some of the work with subintegrals
of multifunctions by Hhlkin and Hendricks [25] and the related existence theory
for piecewise continuous optimal controls [24] can be applied in special cases of
(2.3) to give analogues of Theorem 3.2 when the admissible triples {(p, u, t} are
required to be pwc (or apwc) (i.e., (p and u are pwc (or apwc)).

Lebesgue measure will be understood in all of the integrals appearing in this
section. Suppose a multifunction H’[a, b] Rp is given. Then we have defined

H(t) dt and with [a, b] understood we denote this by H. We define

f*H =-Ill g(t)dtlg’[a, b] Rp is apwc and g(t) H(t),t6 [a, bit.
LA 6.1 (Halkin-Hendricks). H is convex.

We omit the proof. Let it suffice to say that the proof of Theorem 1 [25, p. 365]
may in effect be repeated. One need only takef andf to be apwc in that proof and
observe that fl"x[a,bl\E d-f2"zF, is apwc if E c [a, b] is the union of a finite
number of intervals.

A set E Rq is said to be semianalytic (see Lojasiewicz [44] or Halkin and
Hendricks [25]) if for every point in Rq there exists a neighborhood V of that point
such that

EVI V= U {xeRqif(x)=0 and gij(x)>0 for j= 1,2,...,1},
i=1

where gij andf are real-valued functions which are analytic on V.
LEMMA 6.2 (Halkin-Hendricks). Let H "[a, b] --, Rp be a compact multifimction

and suppose the graph ofH is bounded. Let there exist a finite set ofpoints si, O,
1,..., N, such that a <_ So < sl < < sN <- b and such that for each compact
interval [, fl] [a, b] which contains none of the points si the graph ofH restricted

to [, fl] is semianalytic. Then H H.

Again this is only a slight extension of the main result (Theorem 2) in [25].
Indeed, the proof is clear upon examining the proof of that theorem. In effect one

observes that H H g H where g H denotes the set of
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extreme points of the convex set H, and that H is convex, and then the

proof is immediate. To show that H o H one need only show that

the function g’[a, b] Rp is apwc, where g is defined by the condition that g(t)
is the lexicographic maximum (with respect to an arbitrary orthonormal basis
for Rp as in Olech [47]) of H(t), e [a, b]. If the s, 0, 1, ..., N, and an interval
[cz,/3] are chosen as in the hypotheses ofLemma 6.2, then Halkin and Hendricks [25]
have shown glib, fl] is pwc. Hence g’[a, b] -, Rp is apwc.

LEMMA 6.3 (Halkin). Let B’[a, b] Rq --. Rp be a continuousfunction with the
property that there is a finite set of points si, O, 1,..., N, such that a <= So
< sl < < sN <= b and such that Bl(a, so) Rq, Bl(sN, b) x Rq and Bl(si_l,si)
X Rq, 1, 2, N, are analytic. Define ’a, b] x Rq

-* Rp+q by the relation
(t, u)= (u,B(t, u)). Let f’[a, b] R be a compact multifunction satisfying the
generic hypotheses ofLemma 6.2. Then the compact multifunction ’[a, b] - Rp+q

defined by /U(t) 3(t, f(t)), 6 [a, b], also satisfies the generic hypotheses ofLemma
6.2.

This result is a modification of a statement of Halkin’s [24]. Since Halkin
omitted a proof and since the above lemma differs somewhat from his result, we
shall suggest a proof which is straightforward. There will be no loss in generality
if we assume that the same points satisfy the hypothesis of Lemma 6.2 with
H’[a, b]- Rp replaced by f’[a, b]--* Rq. It will suffice for us to show that if
[, fl] [a, b] and si 6 [, fl], O, 1, N, then #][, fl] has a semianalytic
graph. Let N denote the graph of #q [, fl] and let Po (to, Uo, Xo) be an arbitrary
point in R x Rq x Rp Rp+q+ 1. Then there is a neighborhood Vo of (to, uo) in
R x Rq Rq+l and analytic functions f/,g/x, i-=- 1,..., k, j 1,..., l, on Vo
such that

k

E f’l Vo U {(t, u) Rq+ llf/(t, u) 0 and gij(t, U) > 0 for j 1,... 1},
i=1

where E is the graph of f[[, fl]. Let3 denote the set {(t, u,x)e Rp+q+ 1](t, u)e No}
then 3 is a neighborhood of Po in Rp+ q+ 1. A generic point (t, u, x) in Rp+ q+ is also
denoted by (t, u 1, uq, x 1, xp), and we write (B1, Bp) for the function
B. Let 7r,’Rp+q+l -- Rq+l be defined by re(t, u, x) (t, u). Define functions f/and
g,2 on 3 by the equations

p

f/(t, u, x) [f/(rc(t, u, x))] 2 + [B"(t, u) x"] 2,
n=l

’ij(t, u, x) gij(rc(t, u, x))

for i= 1,..., k, j 1,..., 1. Then we have that there are real numbers ,fl
such that (, fl) [, fl] and such that B is analytic on (, fl) x R. One can now
verify that

N fl 3 f’l ((, fl) x n+) U {(t, u, x) e Rp++ l](t, u, x) 0 and ,i(t, u, x) > 0
i=1

for j= 1,2,...,1},
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where the functionsf and ’ij are analytic on 3 f3 ((4, fl) RP+q). We can assume
Po e(, ) Rp+q since the contrary case can be dealt with trivially. Thus ff is
semianalytic and this proves the lemma.

We now turn our attention tv the control system (5.1). Let ?(, U) denote
the collection of all points in (, U) which are attainable from admissible triples
{, u, t}, where "[- z, 0] R" and u "[0, t] R are apwc. Let (O, U) denote
the collection of all points in (, U) which are attainable from admissible triples
{, u, t} where both and u are pwc. The variation of parameters formula (2.7)
when applied to the FDE (5.1) gives

(6.1) x(t, , u) (0)Y(0, t) + h(u(a), a)Y(a, t) da + ()(, t) da,

where (, t) is defined by the equation
K

(, t) Ai(a + Oi)Y(a + Oi, t)gt-0,,ol(a)
i=1

+ (s,- s)g(s, t)ds, - O.

Let a function ’[-r, 0] x R Ra" be defined by

(, e) (e, e(, t)), r 0, e e e,
and let ’R x [0, t] R+ be the function defined by

(u, ) (u, h(u, )(, t)), 0 t, u e R.
R+" R RDefine projections g and ’R by the equations

(u x)= x (u x) eR x R"= R +"

(O,x)=x, (O,x) eR x R"=R’.

In each of the following three formulas the first integral on the right-hand side
of the equation is over the interval [0, t] and the second integral is over the interval
[-r, 0]. Using (6.1) it can be shown that

(6. (, (0g(0, t + ((, + (,(I

whenever the left-hand sides are nonempty.

We remark that the representation theorems can easily be shown to be valid under the analyticity
hypotheses placed on (5.1) in 5 (Theorems 5.1, 5.2).

denotes the subintegral in Halkin and Hendricks [25" i.e., if H’[a, b] R is someHere

multifunction, then H g(t) dtg’[a, b] R is pwc and g(t)e H(t) for e [a, b
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THEOREM 6.1. Let the homogeneous part of (5.1) satisfy the hypotheses of
Theorem 5.2, and let the functions hlR x [0, t], >= 0, satisfy the same conditions
as thefunction B in Lemma 6.3. Let "[ z, 0] - R and U "[0, R" be compact

multifunctions satisfying the generic hypotheses of Lemma 6.2. Then

,(, )= ,*(, c), >= o.

Proof. With the aid of Theorem 5.2 and a few rudimentary deductions one
can show that the function .’R [0, t] - Rm/n and the multifunction U’[0, t]- R satisfy the generic hypotheses of Lemma 6., and similarly for the function
9J" [-z, 0] x R" R2n and the multifunction "[-z, 0] R". Thus Lemmas 6.3
and 6.2 and the second formula in relation (6.2) apply to give the desired conclusion.

THEOREM 6.2. Let the homogeneous part of (5.1) satisfy the hypotheses of
Theorem 5.1 and let thefunction h be analytic on R x [0, ). Let ’E-, O] R"
and U "[0,) R be compact multifunctions such that the graph of and the
graph of U[[0, t] for >= 0 are bounded and semianalytic. Then

,(, u)= (, c), >= o.
With the aid of Theorem 5.1 and the above remarks the proof of this theorem

will be so similar to Halkin’s proof [24] of the corresponding result for nondelay
systems that it can safely be omitted.

Recalling Remark 3.3 one sees that Theorems 6.1 and 6.2 give new existence
theorems for certain optimal control problems in the class of apwc admissible
triples {q, u, t} and the class of pwc admissible triples {q, u, t} respectively.

Remark 6.1. Finally, we point out that the conclusions of this section can be
extended to include systems with certain types of delays in the controls. In partic-
ular, results similar to those given in Theorems 6.1 and 6.2 can be obtained for
systems of the form

c(t) x(t Oi)Ai(t) + x(t + s)A(t, s) ds
i=0

(6.3)

+ h(u(t hi) hi)Bi(t d- h(u(s), s)B(t, s) ds,
i=0

0 ho < h < < h =< z, which corresponds to a G(t,. in (2.3) consisting of
an absolutely continuous function plus a saltus function with a finite number of
jump points. The statements and proofs of these results are so similar to those
above that we shall omit them here.

We note that these results can be obtained under hypotheses on (6.3) so as
to include as special cases systems of the type

2(t)-- 2 X(t- Oi)Ai(t + x(t + s)A(t, s)ds + u(t- hi)Bi(t).
i=0 i=0
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SOME SUFFICIENT CONDITIONS FOR THE GLOBAL AND LOCAL
CONTROLLABILITY OF NONLINEAR TIME-VARYING SYSTEMS*

E. J. DAVISON’ YD E. G. KUNZE:
Summary. Sufficient conditions are derived for global and local controllability of nonlinear time-

varying systems with control appearing linearly. It is shown that the controllability of A(t, x)x
+ B(t, x)u can be related to the controllability of the linear system A(t, z)x + B(t, z)u, where
z belongs to a certain set of continuous vector functions. This result is then used to specify a class of
nonlinear systems which are globally controllable.

1. Introduction. This paper deals with the controllability of nonlinear time-
varying systems with control appearing linearly. This problem has been studied
by Hermes [1], who showed that a nonlinear system is locally controllable, if the
associated Pfaffian system is not integrable. Markus and Lee 23 and Kalman [3]
obtained conditions for local controllability of a more general class of systems
than will be considered here, by showing that the nonlinear system is locally
controllable if the linearized system is completely controllable.

The results obtained in this paper provide sufficient conditions for complete
and total controllability as defined by Kreindler and Sarachik [4] for linear systems.
A distinction is made between global controllability (i.e., the system is controllable
in the whole of the state space R") and local controllability (i.e., the system is con-
trollable only in some domain of R"). It is shown (Theorem 1) that the system
Yc A(t, x)x + B(t, x)u is globally completely (totally) controllable, if the linear
system : A(t, z)x + B(t, z)u is completely (totally) controllable for all functions
z C,[to, ts]. If the linear system is controllable only for z in some bounded family
c, then a criterion for local controllability results (Theorem 2). Theorem 3 shows
how the controllability matrix Q(t, z) introduced by Silverman and Meadows [5]
can be used to test whether the linear system is controllable for all functions z
belonging to C,[to, ts] or cg, thereby giving a simple computable criterion for the
global or local controllability of single input nonlinear systems. This criterion is
then used to specify a class of nonlinear systems which are globally controllable
(Theorem 4).

In deriving these results, the problem is transformed into one of showing the
existence of a fixed point for a mapping x P(z), which is solved by using
Schauder’s fixed-point theorem. The existence of a fixed point requires that the
determinant of Kalman’s controllability matrix [1] of the linear system, here
denoted by G(to, t; z) with initial time to and final time ty, have a positive lower
bound relative to z in C.[to, t] or cg.

2. Preliminaries. Consider the nonlinear time-varying system with linear
control represented by the equation

(1) dx/dt A(t,x)x + B(t,x)u, to <= < oo,
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where the state x is an n-vector, the control input u an m-vector, A is an n n
and B an n m matrix. Assume that the elements aik(t, X) of A (i, k 1, 2, 3,..., n)
and the elements bib(t, x) of B (i 1, 2, 3, ..., n, 1, 2, 3, ..:, m) are continuous
functions of x for fixed and piecewise continuous functions of for fixed x and
fulfill the following conditions:

(2) [aik(t, X)[ <= M, [bil(t, x)[ __< N for all x R", [to, ts]
where M and N are positive real constants.

The following definitions are due to Kreindler and Sarachik [4].
DEFINITION 1. The system (1) is said to be completely state controllable at to

in the domain of controllability D c R", if each initial state X(to) in D can be trans-
ferred to any final state xs in D in some finite time t(x:r >_ to. (If D is the whole
state space R", the controllability is said to be global. If D is not the whole of R",
the controllability is said to be local.)

DEFINITION 2. The system given by (1) is said to be totally state controllable
in the domain of controllability D, if it is completely state controllable in D on
every interval [to, t], t > to. (If D is the whole of R", the controllability is said
to be global, otherwise it is said to be local.)

To derive sufficient conditions for the controllability of system (1) consider
first the simpler system

(3) dx/dt A(t, z)x + B(t, z)u,

where the argument x of A and B has been replaced by a specified function
z C,[to, ts], the Banach space of continuous R"-valued functions on [to, t].
For each fixed z C,[to, t], system (3) is linear; and with X(to) Xo, the solution
is given by

(4) x(t) b(t, to; z)xo + (t, z; z)B(z, z)u(z) dz.
to

In (4), b(t, to;Z) is the state transition matrix of the system

(5) ax/at z)x

and is determined by

d
(6) dS(t, to; z) A(t, z)(t, to; z), b(to, to; z) I,

where I is the identity matrix. Define

(7) H(to, z; z) (to, z; z)B(z, z),

(8) G(to, t; z) H(to, z; z)g’(to, z) dr.
to

The prime indicates the matrix transpose.
Necessary and sufficient conditions for system (3) to be controllable are

summarized by the following lemmas (Kreindler and Sarachik [4]).
LEMMA 1. System (3) is completely state controllable at to if and only if there

exists a finite time tf > to such that the rows of the matrix H(to, z z) are linearly
independent functions of z on [to, tf].
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LEMMA 2. System (3) is totally state controllable if and only iffor all to and for
all s > to the rows of matrix H(to, z z) are linearly independent functions of z on
to, tA.

3. Derivation of results---global controllability. Assume that system (3) is
either completely or totally controllable for all z C,[to, t/]. For complete con-
trollability, by Lemma 1, the rows of H(to, ; z) are linearly independent functions
of z on some [to, ts]. This implies that the matrix G(to, t/;z) defined by (8) (the
Gramian matrix for the set of m-dimensional vector functions H on the interval
[to, t/I) is positive definite for t/. Total controllability, by Lemma 2, then
implies that the Gramian matrix G(to, t/;z) is positive definite for all to and all
ts > to. In either case a control u always exists such that the system (3) can be
transferred from any Xo R" tO any x/ R" in a finite time. Consider the control

(9) U(to, t, s z) H’(to, t; z)G(to, s z)- xEb(ts, to z)- Xxs Xo].

Using (7) and (8) and inserting (9) into (4), we obtain from (3)"

(o) x(t)= 4)(t, to;Z){Xo + 6(to,t;z)6(to, t;z)-[4)(t,to;Z)-x-
and it is easily verified that

X(to) Xo, x(tz) x,.
Clearly U(to, t, ts;z) as defined by (9) will transfer the system from Xo to x for all
z C,[to, t:r]. In the following discussion it will be convenient to view the right
side of (10) as an operator P(z)(t), i.e.,

(11) P(z)(t) dp(t, to;Z){Xo + G(to, t;z)G(to, t;z)-[(tx, to;Z)-xx- Xo]}

so that (10) can be written in the form

(12) x P(z).

The following theorem now gives conditions under which the nonlinear system
(1) is globally controllable.

THEOREM 1 (Global controllability). The system

dx/dt A(t, x)x + B(t, x)u

is globally (a) completely state controllable at to or (b) totally state controllable, if
the following three conditions all hold:

(A) The elements aik(t, X) of A (i, k 1,2, ..., n) and bit(t, x) of B (1 1, 2,
.., m, i= 1, 2,..., n) are piecewise continuous functions of and con-
tinuous functions of x.

(B) [aik(t X)[ <-- M, [bit(t x)l <- N,for all x R", [to, tr], where M and N are
positive real constants.

(C) There exists a constant c > 0 such that

inf det G(to, tr z) >= c
C,[to,tj,]

(a) for some ts > to, in the case of complete state controllability at to,
(b) for all to andfor all t > to, in the case of total state controllability.
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The proof of the theorem will be based on the following lemma.
LEMMA 3. If conditions (A), (B), (C) of Theorem 1 are satisfied, then for every

pair Xo, xy R", the operator P defined by (11) has a fixed point in C,[to, ti].
Proof of Lemma 3. Define Iz(t)l ’= Izi(t)l and let the norm in C,[to, tl]

be

(13) Ilzll max {[z(t)l:to <-_ <__ ty}.
Consider the closed and convex subset of C.[to,

(14) d/ {zlz e C,Eo, tf], Ilzll
where the constant K is defined by

(15) K {(1 + C)[xo[ + C[xf[enM(ty-t)}enM(ty-t)

with
(16)

where

sup JIG(t0, ty Z)-
zeCn[to,ty]

where G(to, ti z)-

IlG(to, tf; z)- 111 max Igu(to, tf; z)l,
i=1

{gij(to, t.r; z)}. Let f be the image of

(17) fl =_ {xlx P(z), z e

It is clear that the operator P as defined by (11) is continuous and it is easily
established from the Arzela-Ascoli theorem [6] that the image set f defined by
(17) is compact and is a subset of p defined by (14). Hence by Schauder’s theorem
[6], the operator has a fixed point.

Proof of Theorem 1. The significance of Lemma 3 is that there always exists
at least one function z* C,[to, ty], which, introduced into (10), provides an x*
such that x* z*. This x*, however, is a solution to system (1) for the control
input U(to, t, ty z*), which is easily verified by differentiating x* with respect to t.
Since U(to,t, ty; z*) takes system (1) from Xo to xy on the interval to, tl], and
since by Lemma 3 there is a U(to, t, ty; z*) for all Xo, xy e R", system (1) is globally
controllable. In particular, if condition (C(a)) of Theorem 1 holds, the above
conclusion is true for some finite time interval [to, ty], and the system is completely
controllable. If condition (C(b)) of Theorem 1 holds, the above conclusion is true
for every finite time interval [to, ty], and the system is therefore totally controllable.

4. Local controllability. The method used to establish Theorem for global
controllability can be used to derive a theorem for local controllability under less
restrictive conditions; i.e., it will no longer be necessary that the elements of A
and B be bounded for all x R", and the Gramian determinant need only have a
lower bound on a bounded set of functions z. This bounded set is defined by

(18) {zlz C,[to, ty];Z(to) Xo,Z(ty) xy;xo,xyeR"; Ilzll Kx},
where K1 is some real positive nonzero constant.

THEOREM 2 (Local controllability). The system

dx/dt A(t, x)x + B(t, x)u
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is locally, (a) completely state controllable at to, or (b) totally state controllable,
about the origin if the following three conditions all hold:

(A) The elements ai(t, x) of A (i, k 1, 2,..., n) and bu(t, x) of B (l 1, 2,
.., m, i= 1, 2,..., n) are piecewise continuous functions of and con-

tinuous.[’unctions of x.
(B) [ai(t, z)l <= M, [bil(t, z)] <= N for all z c, [to, ty], where M and N are

positive real constants.

(c) inf det G(to, ts z) >= c for some c > 0
C

(a) for some ts > to, in the case of complete state controllability at to,
(b) for all to and for all ty > to, in the case of total state controllability.

The proof of the theorem is based on the following lemma, which is a counter-
part to Lemma 3.

LEMMA 4. The operator P defined by (11) has a fixed point in cg defined by (18)
such that x* P(x*), /f lxol < K=, [Xcl < K3, where K2 and K3 are real positive
constants which are sufficiently small and not both zero, and if conditions (A) to (C)
of Theorem 2 are fulfilled.

ProofofLemma 4. The proof follows exactly the same reasoning as Lemma 3.
Proof of Theorem 2. The proof is the same as for Theorem 1, if one uses

instead of C,[to, ty] and Lemma 4 instead of Lemma 3.

5. Relation of Gramian matrix to controllability matrix. A serious difficulty
in the application of Theorems 1 or 2 is to show that condition (C) holds. Therefore
a relation which shows that condition (C) holds (at least for certain cases) will
now be given.

If the additional assumption is introduced that A(t, z) and B(t, z) are piece-
wise differentiable on [to, t/] at least n 2 and n 1 times, respectively, then the
controllability matrix Q of Silverman and Meadows [5] can be introduced.

Define the matrix

(19) Q(t; z, z(1)), z

where Pk(t;z, z(1), z(k)) is recursively defined by

(20)
Pu(t; Z, Z(1), Z(k)) -A(t,z)Pk_(t; z,z), zg-x))

d
(t.z,z+ -d-[P ),..., z-)),

(21) Po(t, z) B(t, z).

For simplicity denote Q(t;z, Z(1), Z(n- 1)) by Q(t, z). The results obtained in [7]
allow the formulation of the following theorem.

THEOREM 3. Assume that A(t, z) and B(t, z) of (3) are piecewise differentiable on
[to, ty] at least n- 2 and n- 1 times, respectively, and that B(t, z) is an n 1
vector. If infzc,t,o,,l (ore)[det Q(t, Z) 2

7 for some 7 > 0 and for some in Its, t],
where Its, ta] is a subinterval of [to, ts], then det G(t, tt;z of Theorems 1 and 2
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has a lower bound such that

inf det G(t, t ;z) >= e for some/3 > O.
Cn[to,t$] (or cg)

(22)

6. Some numerical examples.
Example 1. Consider the system

2x x2 + sin [g(xa,x2, t)]u,

2 x + sin [g(x , x2, t)]u,

where g(xl, x2, t) is a continuous function of xl, X2 and a piecewise continuous
function of and satisfies the following inequality"

0 < /3 g(x1, X2, t) /3 for all xl, x2 C.[to, ty], [to,

By using Theorems 1 and 3 global total controllability is easily established. The
coefficients of x l, x2 and u fulfill the conditions (A) and (B) of Theorem 1. Condi-
tion (C(b)) is established by using Theorem 3. The determinant of the controllability
matrix is

(23) det Q(t, z)

sin [g(zl, z2, t)]

sin [g(z, z2, t)]

d
sin [-g(zl, z2, t)] - sin [g(z, z2, t)]

d
sin [g(zl, z2, t)] sin [g(zl, z2, t)]

which yields

(24) det Q(t, z) 2 sin2 [g(zl, z2, t)].

From (24) the smallest lower bound is readily determined"

(25) inf [det Q(t, z)] 2 >= 4 sin4/3 > 0,
zCn[to,tf]

which holds for all t. Hence by Theorem 3, condition (C(b)) of Theorem 1 is
satisfied, and system (22) is therefore globally totally controllable.

Example 2. Consider the system

00
1

0
(26) 2

1 xx X+ .
0 1

For {max (x l, x2)[ _-< K < 1, conditions (A) and (B) of Theorem 2 are satisfied.
Theorem 3 will be used to establish the third condition. The determinant of the
controllability matrix is

-1
(27) det Q(t, z)

1 22,
Z1Z2

and

-1 2 1
(28) inf [det Q(t, z)] 2 inf K4)2.e eg 1 2 2 (1-z1z2
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Hence condition (C(b)) of Theorem 2 holds and system (26) is locally totally con-
trollable about the origin.

7. A class of nonlinear systems which is globally controllable. Theorems and
3 can be used to establish classes of nonlinear systems which are globally con-
trollable. The following is an example.

THEOREM 4. Consider the system

(29a) 2 A(x, t)x + B(x, t)u,

where A(x, t) and B(x, t) have the following form"
al, al, 2 0

a2, a2,2 a2,3

(29b) A

(29c)

an- 1,1 an- 1,2 an- 1,3

an, an, 2 an, 3

0 0

an- 2 ,n

an- 1,n-

an,n-

an 1,n

lail(t, x)] <= M, lb,(t, x)l <-_ N for all x e Rn, e [to, ty].

then a sufficient condition that system (29be
(a) globally

(i) completely state controllable at to,
(ii) totally state controllable,

(b) locally about the origin
(i) completely state controllable at to,
(ii) totally state controllable

is that the following three conditions all hold:
(A) The elements aik(t, Z) of A(i, k 1, 2,..., n) are piecewise differentiable

on [to, ty] at least n 2 times and b,(t, z) is piecewise differentiable on

[to, tf at least n 1 times.

(B) (a) In the case of global controllability
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(b) In the case of local controllability

[au(t, z)[ <= M, ]b,(t, z)[ <= N for all z cg, [to,

where cg is defined by (18).
(C) (a) In the case of global controllability, there exists a constant c > 0 such

that

b2,(tj, z)>= c, a2.. (tj z)>c for allz

1, 2, ..., n 1, for some tj [tO, tf].
(b) In the case of local controllability, there exists a constant c > 0 such

that

bZ,(tj,z) > c, a2.. for all zeCg, 1 2, .,n-1,,,,+l(tj, z) C

for some
(i) for some tf > to in the case of complete state controllability at to,
(ii) for all to andfor all t, > to, in the case oftotal state controllability.

Proof It is easily established for (29), that

n-1

(30) det Q(t, z) b, l-I ai.,+ l.
i=1

Theorem 4 immediately follows on using this result together with Theorems
1, 2 and 3.

Remark. It is seen then that for the class of systems given by (29), the system
is globally totally controllable if all the elements are bounded and if the product
of the superdiagonal elements ofA with b, is equal to zero at most only a countable
number of times. This is a generalization of the nonlinear time-varying system
considered in [8] which is as follows:

(31)

0 1 0

0 0 1

_an,1 an,2 an,3

0 0

0 0

0 1

an,n- an,n_

x+
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SOME SUFFICIENT CONDITIONS FOR OPTIMALITY IN CONTROL
PROBLEMS WITH STATE SPACE CONSTRAINTS*

J. E. FUNK’J" AND E. G. GILBERT:I:

1. Introduction. The sufficient conditions obtained in this paper are an out-
growth of the work of Mangasarian 53. As in his paper, a chain of inequalities
and some ad hoc assumptions lead to a simple and direct proof of the main results.
However, the hypotheses here are weaker, a somewhat different problem is treated,
and jumps in the "multipliers" corresponding to the differential constraints are
allowed. The inclusion of the jumps is important, for, without them it is impossible
to prove optimality in almost all optimal control problems where there is a state
constraint of the form g(x, t) <__ 0. If certain convexity and normality assumptions
are imposed in the optimal control problem considered, the sufficient conditions
become necessary. The corresponding result does not follow for the conditions
given in 5]. The sufficient conditions given here also apply to a number of in-
teresting control problems without state space constraints, including those where
sufficient conditions of a similar type have been obtained previously [3, [4, [5.

Very recently Mangasarian and Schumaker [6] extended the conditions
in [5] to allow for jumps in the multipliers. These conditions were used to solve
certain problems (the determination of spline functions) in which the sufficiency
conditions of 5] were not adequate. For some of the problems which were con-
sidered the sufficient conditions were also shown to be necessary, but the close
relations between necessary conditions and sufficient conditions developed in this
paper were not made clear.

The general method of attack is to start with a set of conditions which are
necessary and then suitably strengthen them to obtain the sufficient conditions.
Depending on the necessary conditions and optimization problem formulation, one
can obtain different sets of sufficient conditions. The treatment in this paper is
restricted to the rather general problem formulation and necessary conditions
given by Neustadt 7], [8]. Similar developments can also be carried out for the
problem formulation and necessary conditions given by Gamkrelidze 9], Hestenes
and Guinn 2], 1], Warga [10], [11], and others.

2. Problem formulation and necessary conditions. Let the following problem
data and conditions be given: I Its, t2] RX, a compact interval; G = R", an
open set; U = R, a compact set; U = U, an arbitrary set for each I;f(x, u, t),
a continuous function from G U I into R" whose derivative with respect to
x, fx(X, u, t), exists and is continuous on G U I g(x, t), a function from G I
into R which is C2 on G I; g(Xl,X2) for -/,..., 0,..., m ( and m are
nonnegative integers), functions from G G into R whose derivatives, gix(xl, x2)
and gi(x, x2), exist and are continuous on G G.

* Received by the editors September 4, 1969, and in revised form February 4, 1970. This work
was supported by the United States Air Force under Grant AFOSR-69-1767.

" Air Force Institute of Technology, Wright-Patterson Air Force Base, Dayton, Ohio 45433.
: Computer, Information and Control Engineering Program, University of Michigan, Ann

Arbor, Michigan 48104.

498



OPTIMALITY IN CONTROL PROBLEMS 499

Let denote the set of those functions u(t) from I into R which are measurable
and satisfy u(t) c U, for almost all e I. Given u , x(t) is said to be a solution
of the equations of motion,

(2.1) (t) f(x(t), u(t), t),

corresponding to u if x(t) is an absolutely continuous function from I into G which
satisfies (2.1) for almost all e I. The optimal control problem can now be stated.

Optimal control problem. Find u e ’ such that the corresponding solution x
satisfies

(2.2) Zi(x(tl), x(t2)) 0, -/, .-., 1

(2.3) Zi(x(tl),x(t2)) 0, 1,..., m

(2.4) g(x(t), t) =< 0 for all I,

and go(X(tx), x(t2))is minimum.

(omit if/ 0),

(omit if m 0),

THEOREM 2.1 (Necessary conditions [7], [8]). Let w i and z denote respec-
tively an optimal control and the corresponding solution of the equations of motion.
Then there exist a (row)function from I into R", a (scalar)function from I into
R and elements ai6R for i= -#,..., m such that the following conditions
hold:

(N1) (t) is absolutely continuous and satisfies
(2.5) (t) -fx(z(t), w(t), t) + 2(t)px(z(t), t)

for almost all I, where

(2.6) p(x, t) g(x, t)f(x, w(t), t) + g,(x, t).

Also O(t) :/: gx(Z(t), t) on a subset of I ofpositive measure.
(N2) 2(t) is continuousfrom the right in (t, t2), is nonincreasing on I, is constant

on all subintervals ofI such that g(z(t), t) < 0 and satisfies
(2.7) 2(t2) 0.

(N3)

(2.8) ao =< 0,

a__<0,
(2.9)

0 0,

(2.10)

t(tl) and (t2) satisfy

Zi(Z(tl), z(t2)) 0 } t,
Zi(Z(tl), z(t2) < 0

Iil / 2(t) > O,

(2.12)

t(tl)--- Z a,Z,x,(z(t,),z(tz)) +

t(t2)-- Z OqZix2(Z(tl)’Z(t2))"
-li
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(N4) w(t) satisfies the integral maximum condition

(2.13) [0(t) 2(t)gx(z(t), t)] [f(z(t), w(t), t) f(z(t), u(t), t)] dt >__ 0

for all u

which, if Ut U for all i, can be replaced by the pointwise maximum condition

(2.14) [if(t) 2(t)gx(Z(t), t)] [f(z(t), w(t), t) f(z(t), u, t)] >= 0

for all u U and almost all I.
It should be emphasized that the continuity of if(t) in the above necessary

conditions is not in conflict with the jumps in adjoint variables which appear in
some sets of necessary conditions (see, e.g., [9]). In fact, the jumps occur in the
multiplier (t) 2(t)gx(z(t), t) because of discontinuities in 2(0. If 2 is piecewise
differentiable and proper allowances for notation and problem differences are
made, the substitutions - and - + 2g will yield a set of conditions
which, while not equivalent to the sufficient conditions of Mangasarian and
Schumaker [6], may be identified with them.

3. The sutlieient conditions. First the sufficiency theorem will be stated and
proved. Then some general remarks will be made. In the next section several
corollaries which are of interest in applications are given.

TOREM 3.1 (Sufficient conditions). Let w and z denote respectively a
control and corresponding solution of the equations of motion such that z(t) satisfies
the constraints (2.2), (2.3) and (2.4) when z replaces x. Further assume that there exist, 2, a_ u, ..., a (as in Theorem 2.1) such that conditions (S1)-($9) given below hold.
Then w(t) is optimal.

(S1) Same as (N1) except the requirement that (t) :/: 2(t)g(z(t), t) is omitted.
($2) Same as (N2) except the requirement of continuity of 2(t) from the right is

omitted.
($3) Same as (N3) except requirements (2.8), (2.9) and (2.10) are omitted.
($4) Same as (N4).
(S5) o < 0.
($6) For all x G, x2 G such that Zi(Xl,X2) =< 0for -, -1 and

Zi(X x2) 0for 1, m,

Z0(X1,X2) Z0(Z(tl),Z(t2)) - Z0x,(Z(tl),Z(t2))(X1 Z(tl)
(3.1) + Zo(z(t), z(tz))(x2 z(t2)).

($7) For all x G, x2 G such that Zi(xl, X2) - 0 for -la,

Zi(x x2) 0for 1, m,
1 and

(3.2) aiEixl(Z(tl), z(t2))(X1 Z(tl)) -- ,ix2(Z(11), z(t2))(X2 z(t2))] 0.
i:/:0

($8) For all I and x G such that g(z(t), t) 0 and g(x, t) =< 0,

(3.3) g(z(t), t)(x + z(t)) <= O.
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($9) For all I, u U and x G such that g(x, t) <_ O,

(3.4) [O(t) 2(t)gx(z(t), t)] [f(z(t), w(t), t)(x z(t)) f(x, u, t) + f(z(t), u, t)] _>_ 0.

Proqf. Let u(t) e and x(t) be any control-solution pair such that x(t) satisfies
(2.2), (2.3) and (2.4). It must be shown that AZo Zo(x(tl), x(t2)) Zo(z(tl), z(t2))
_>_ 0. Begin by using ($6) to obtain

(3.5) aZO ZOxl(Z(tl),Z(t2))(X(tl)- Z(tl) -+- )Oxz(Z(tl),Z(t2))(X(t2)- z(t2)).

From ($3) and ($5) this is equivalent to
t"

AZo --0 l(tl)(X(tl)- z(tl))- t(tz)(X(t2)- z(t2))

-[- E (Zi[Zix,(Z(tl)’ z(t2))(X(tl) z(t)) + Zixz(Z(tl), z(t2))(x(t2) z(t2))](3.6) i: -"i:/:0

2(tl)gx(Z(tx), tl)(X(tl)- Z(tl))/.
Now application of ($7) gives a stronger inequality which through (2.7) of ($2) can
be written

(3.7) AZ _>_ 1 d[(O(t)- 2(t)gx(z(t), t))(x(t)- z(t))].

Because , x and z are absolutely continuous and 2 is nonincreasing the integral
exists and may be expanded to give

AZo >= o-1 (t)(x(t) z(t)) + O(t)(2(t) (t))
(3.8)

2(t) (g(z(t), t)(x(t) z(t)) dt o g(z(t), t)(x(t) z(t)) d2(t).

Expressing by (S1), 2 and by the equations of motion, and noting that
(d/dOg(z(t), t) p(z(t), t) g(z(t), t)f(z(t), w(t), t) yields

(3.9)
+ f(z(t, w(t, f(x(O, u(t, t] g(z(O, O(x(O z((.

From ($5), ($2) and ($8) it is clear that the second integral in (3.9) is nonnegative.
By ($5), ($4) and ($9) the same can be said for the first integral. Thus the desired
result A2o 0 is obtained.

It is perhaps worthwhile to emphasize the following facts. Conditions
(S1($4) are necessary conditions. Thus if ($5($9) are satisfied automatically
through further impositions on the problem data, (S1($4) are necessary and
sucient for optimality. As will be seen in the next section, ($6($9) are satisfied
automatically if certain convexity conditions are satisfied. To have ($5) hold auto-
matically, it is necessary to impose a normality" condition such as" (S1($4)
imply ($5). The question of normality in the present context is a dicult one and
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will not be pursued further here. In those problems where (2.4) is missing or in-
active, 2(t) 0 on I, and the resulting simplification of Theorem 3.1 leads easily
to generalizations of results obtained by Lee [3].

A number of variations of Theorem 3.1 are apparent. First of all it is clear
from (3.9) that ($4) and ($9) may be replaced by the single condition

((t) 2(t)gx(z(t), t)[fx(z(t), w(t), t)(x z(t)) + f(z(t), w(t), t) f(x, u, t)] >= 0
for all e I, u e Ut, and x e G such that g(x, t) =< 0.

Perhaps of greater interest is the fact the proof remains unchanged if Ut is
replaced by Ut(x), where Ut(x) c U for all e I, x e G. It is only necessary to sub-
stitute Ut(x) for Ut in conditions ($4) and ($9) and generalize appropriately the
set of admissible control functions //. For state-dependent control constraints of
this form it is not clear that the corresponding generalization ofTheorem 2.1 is valid.
For control constraints of the form h(x, u, t) __< 0, a new derivation based on a
different set of necessary conditions appears to be needed (see [7, p. 136] and
[1], [2]).

It is also possible to obtain sufficient conditions for a strong relative minimum
in the following sense. Let Gt c G for all ! be a neighborhood of z(t), where
z(t) is a solution corresponding to w(t) m ’. Then (definition) the pair w, z is a strong
relative minimum if for any control-solution pair u(t) ll, x(t) satisfying x(t) Gt
for all e I and (2.2), (2.3) and (2.4), it follows that Zo(X(t),x(t2))- Zo(Z(t),
z(t2) >= 0. Sufficient conditions for a strong relative minimum are obtained by
replacing x e G, x2 e G in ($6) and ($7) by x Gt, x2 G and replacing x e G
in ($8) and ($9) by x e G.

The conditions (S1)-($9) are quite simple to apply because they do not involve
comparing w(t), z(t) with other admissible control-solution pairs u(t), x(t). If such
comparisons can be carried out, it is possible to weaken ($4), ($8) and ($9) to
corresponding conditions on (2.13) and the integrals of the left-hand members of
(3.3) and (3.4) (make the following substitutions" x x(t),Xl x(t) and x2

x(t)).

4. Some corollaries of Theorem 3.1. In this section additional hypotheses are
imposed on the problem data so that conditions ($6)-($9) need not be verified
explicitly.

COROLLARY 4.1. Let G, gi, g andfsatisfy the following conditions"
(C1) G is convex.
(C2) gi is a convex function on G x G for -#,..., O.
(C3) gi is an affine function on G x G for 1,..., m.

(C4) g(., t)is convex on G jbr each e I.
(C5) f is affine in x, i.e.,

(4.1) f(x, u, t) A(t)x + F(u, t).

Then Theorem 3.1 is true/f(S1)-(S9) are replaced by (S1), ($2), ($3’), ($4) and ($5),
where ($3’) is (N3) with requirements (2.8) and (2.10) omitted.

Proof Conditions ($6)-($8) follow directly from the convexity conditions
(C1)-(C4) (for ($7) condition (2.9) must be noted). Condition (C5) implies ($9)
holds with (3.4) as an equality.
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It is also possible to prove a sufficiency theorem similar to Corollary 4.1, where
the (convex) terminal set X {(xl,x2)G x G’zi(xl,x2) =< 0, -#,..., -1;
Z(x, x2)= 0, i= 1, ..., m} and (convex) state set G, {x G" g(x, t) _<_ 0} are
replaced by quite arbitrary convex sets. To do this many of the arguments used in
the proof of Theorem 3.1 are repeated, with (Zxl, Zx2) and g playing the role of
normals to support planes of X and G,. Lee and Markus [4, p. 346] have obtained
sufficiency conditions for a minimum-time problem under similar circumstances.

The corollary is also valid if (C5) is replaced by two conditions" f(x, u, t)
Fl(x, t) + Fz(U t), where FI(., t) is convex on G, and if(t) 2(t)g(z(t), t) =< 0

for all I. These conditions are more in the nature of those proposed by Man-
gasarian [5], [6]. However, the condition if(t)- 2(t)gx(z(t), t)<_ 0 limits greatly
the applicability of the corollary and the sufficient conditions are no longer
"nearly" necessary.

For problems with integral cost terms it is possible to let the cost function be
convex rather than affine in x. For this purpose the following notation is intro-
duced" x (2, ), where 92 R 1, R,- and f (f, f) where f is into R andf
is into R 1.

COROLLARY 4.2. Let G, , g andfsatisfy the following additional conditions"
(C1) G R x C,, where GR- is convex.
(C2) Zi(Xl,X2)= 2.i(1,), where i is a convex function on G x G for

-#,..., -1, and Z0(Xl,Xe)= 2e 21 + )o(l,e), where o is a
convex function on G x G.

(C3) Zi(X) 2i(), where 2.i is an affine function on G x G for 1,..., m.
(C4) g(x, t) g(, t), where g(., t) is convex on G for each e I.
(C5) f is affine in , i.e.,

f A(t) + F(u, t)

(C6) f f(, t) + P(u, t), where f(. ,t) is convex on for each e I.
Then Theorem 3.1 is true if(S1)-(S9) are replaced by (S1), ($2), ($3’), ($4) and ($5),
where ($3’) is (N3) with requirements (2.8) and (2.10) omitted.

Proof. The proof is the same as Corollary 4.1 except (C6) and ($5) must be
added to (C5) to obtain ($9).

Suitably modified, the remarks following Corollary 4.1 concerning X, Gt
and./ apply in the present context.

L. W. Neustadt has shown the authors results similar to those of Corollaries
4.1 and 4.2. These results were obtained by considering sufficient conditions for
optimality in the abstract optimization problem treated in [8].
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ASYMPTOTIC KUHN-TUCKER CONDITIONS FOR MATHEMATICAL
PROGRAMMING PROBLEMS IN A BANACH SPACE*

SANJO ZLOBEC

1. Introduction. The Kuhn-Tucker optimality conditions were recently
formulated by Guignard 3 for mathematical programming problems in a Banach
space. The purpose of this paper is to give the asymptotic extensions of Theorems 2
and 3 in 3]. These asymptotic extensions can be applied in some situations where
Guignard’s theorems are not applicable, e.g., Example 1. Guignard’s necessity
conditions are already asymptotic in nature and will not be treated in this paper,
which is restricted to sufficiency conditions.

2. Notations and preliminaries. The following notations will be used"
R" is the n-dimensional real Euclidean space,
R"" the space ofrn n real matrices.

For any Z R ",
ZT is the transpose of Z,
R{Z} the range space of Z,
N{Z} the null space of Z,
Z the Moore-Penrose generalized inverse of Z, e.g., 8],
X, Y real Banach spaces,

"X Y a mappingfrom X into Y,
V(ff) the FrOchet derivative of at Y,
l(x) (1, x) the value of at x, if 1" X Y is a continuous linear mapping from

X into Y,
(V2(2), (x, w)) the value ofthe second Frchet derivative VZz() at (x, w)X X,
M the closure of the set M,
fl(2, r) a closed ball with the center at and radius r > O,
M\N {x X x 6 m, x q N},
X* the dual space of X, e.g., [6, p. 106].

A set C is a cone if x C and 2 _> 0 imply 2x C. If C X is a cone, then

C- {u X*’(u, x) __< 0 for all x C},
C + {u X*’(u, x) >= 0 for all xe C}.

The following concepts from 3] will also be used"
Let e M X. Then the vector w is tangent to M at if there exist a sequence

{xk} in M converging to and a sequence {2k} on nonnegative numbers such
that the sequence {2k(Xk )) converges to w. The set T(M, Y.) of all the vectors
tangent to M at ff is the cone tangent to M at . The set P(M, Y), the closure of the
convex hull of T(M, ), is the cone pseudotangent to M at . M is pseudoconvex at
ff if x P(M, ) for all x M.
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Let (x) be a real function of x X. Then is pseudoconcave over M at if
is Fr6chet-differentiable at ff and if xM, (V(ff),x- if)_< 0 implies

(x) (X) =< 0. is quasiconcave if the set {x X :(x) >= 2} is convex for all
2R1.

We are concerned with the mathematical programming problem

maximize {(x)’a(x) B, x C}
where , is a real function of x e X and B and C are nonempty subsets in Y and X,
respectively. We denote by A and A,

A {x e C’a(x)e B}, a {x x’(x) B}.
The subset A is assumed to be nonempty. All our results will be of a local character
and stated at an arbitrary but fixed point ff e A.

3. Results.
THEOREM 1. Assumptions.

(i) 6 is continuous.
(ii) G is a closed convex cone in X such that x G for all x A.

(iii) A or A is pseudoconvex at .
(iv) is pseudoconcave over A at or quasiconcave with V6(:) # 0.
(v) There exist a sequence {ui} u P+[B, (ff)], and some g- G- such that

lim (V6(X) + ui. Va(ff), p) (g-, p) for all p P(A, ).

Conclusion. maximizes d over A.
Proof The parts of the proof which are the same as in 3] will be omitted.

Take an x e A. Then x ff e P(A, if) by (iii). Since (Vz(ff), y) P[B, a(ff)] for
all y eP(A, ), e.g., [3, p. 234, proof of Lemma], and u e P+B, a()], we have

Ui" V(), X ) O.

Therefore,

<vq,() + u’. w(), x ) <v0(), x ) <u’. w(), x ) >= 0,

Since

(vo(x) + u’. w(), x ) __> (vo(), x ).

by (v) and (ii), we conclude that {VO(2), x ) =< 0. This implies 0(x) =< 0(), by
the sufficiency proof of Theorem 2 in [3.

COROLLARY 1 (Sufficiency part of Theorem 2 in [3).
Assumptions.
Assumptions (i), (ii), (iii) and (iv) are as in Theorem 1.
(v’) There exists u e P+ [B, e()] such that

V(ff) + u. Va(ff)e G-.
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Conclusion. maximizes /over A.
In order to get an idea of why Theorem 1 is more general than Corollary 1,

we are going to characterize the assumptions (v) and (v’) in the finite-dimensional
case with G X. The Fr6.chet derivative V(2) is now the Jacobian matrix.

LEMMA 1. Let Va(ff) Rmxn, Vt() R" and P+[B, a(ff)] c R be as above.
Then the following are equivalent."

(a) There exists a sequence {ui} u P+ [Ba()], such that

lim [V() + vTa() u’] O.

(b) Va(ff). ye P[B, a(ff)] implies vTo(ff).y __< O.

(c) V(ff) e R{VTa(ff)} and [VT0ff2)]tVO(ff)e N{VTa(:)} + P+[B, a(ff)].
Proof We use the fact that P+[B, a()] is a closed convex cone and

P[B, a(ff)] P+ +[B, a(ff)]. Now apply Theorem 2.2 from [1].
LEMMA 2. Let Va(ff)e R"", V(ff)e R" and P+[B, a(ff)] R" be as above.

Then the following are equivalent"
(a’) The system

VO(X) + vWa(ff) u O, u
is consistent.

(c’) V0(ff) e R{VTa()} and -[vTa(ff)]*V()
Proof This is Lemma 2.3 in [1].
By comparison of (c) and (c’) we conclude that Theorem 1, even with the

uniform limit in (v), is more general than Corollary 1, if N{vTa(ff)} / P+[B, a(2)]
is not a closed cone.

In order to formulate the asymptotic second order optimality conditions we
assume that X is finite-dimensional. This assures the compactness of the unit
sphere, which is needed in the proof.

THEOREM 2. Assumptions.
(i) and are twice continuously differentiable at

(ii) G is a closed convex cone in X.
(iii) Ifx A f’) (, r), then x G.
(iv) If y B f3 fl[(), r], then y () P[B, ()].
(v) There exists a sequence {ui} u P+ [B, (ff)], and some g- G-, such that

lim (Vk(ff) + ui. V(), g) (g-, g) for all g G.

(vi) For every (ff, r) the set {A f’l (, r)}\ff is nonempty. For every w -,
where

ZmX

for some fl(X, r), it follows that

lim (V2ff(X) + u’-V2(), (w, w)) L(w)

exists. Further, if limk_w= h, where w W, then lim_L(w) L(h). The
sequence {ui} here is the one used in (v).
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(vii) For every nontrivial h X such that

lim (ui. Vz(X), h) 0 and (Vcz(), h) P[B, e(ff)]\ P[B, e(X)],

andfor every nontrivial h X such that

(VO(ff), h) 0 and (Vz(ff), h) P[B, (2)] fl P[B, (),

itfollows that

lim (vZ(x) + ui. VZe(ff), (h, h)) < O.

The sequence {ui} here is the one used in (v).
Conclusion. is an isolated local maximumfor / over A.
Proof Let us suppose that ff is not an isolated local maximum for over A.

Then there exists a sequence {xk} Xk A, x :/: for all k, such that limk_.ooXk ,
O(Xk) _>_ O(ff) for all k. Since X is finite-dimensional, the unit sphere in X is compact
and therefore we may assume that

X
lim h # 0- I[x

For xk close to ff we have xk G, by (iii). Therefore,

by (v), and

lim (VO(X) + u’. Va(ff), xk ) (g-, xk- ) <= O,

lim (VO(ff) + u’. Vz(ff), h) (g-, h) _< O,

by continuity ofg-. Also (VC,(ff), h) __> 0 and (Ve(ff), h) e PEB, e(ff)], e.g., [3, p. 236].
We will consider two possible cases and show that a contradiction arises from each
of them.

(a) Suppose that

<Va(ff), h> e PEB, a(ff)]\ P[B, a()].

If limi_,oo (u. Ve(), h) # O, then it is positive and

<VO(ff), h> < -lim <Ui" VZ(X), h> < O.

This is impossible. Therefore a contradiction must be obtained only for

(b) Suppose that

lim (ui. Va(.), h) 0.

<Va(X), h) e -P[B, a()] f-I P[B, ()].
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If (VO(), h) - 0, then it is positive. Since (uiVe(ff), h) 0, we have

0 __> lim (VO(ff) + ui- Ve(ff), h) (VO(ff), h).

This is impossible. Therefore we have to contradict only (VO(2), h) 0, in this
case.

Let us define

’(x) O(x) + u’. (x).
We have

for all i. Now lim(V(), x ) N O, by (v).

im V2()’
Ixk t1’ x

exists for all k ko, where ko is some positive integer, by (vi),

x
x (A (, r))N and

tlx li
w W.

lim lim V(ff), lim ( (ff), (h h)),
IIx- 11’ IIx- 11 *

by the continuity assumption in (vi) and h e W. limi_.oo(V2{i(2), (h, h)) < 0, by
(vii). Therefore,

lim lim
i(xk) -.i()

< O.
-oo i-oo x 112

This implies

lim [i(x) ’()] < 0

for all k >= ko, where ko is some positive integer. But

lim (ui, () a(xk)) <= O,

by (iv) and continuity of Ui. Thus O(xk) < (), which contradicts the assumption

COROLLARY 2 (Theorem 3 in [3]).
Assumptions.

(i), (ii), (iii) and (iv) are as in Theorem 2.
(v) There exists u P+ [B, e(ff)] such that

VO(ff) + u. V0(ff) e G-.

(vi) For all nontrivial h X such that

(VO(), h) 0 and (V0(), h) e -P[B, e()] f) P[B, e()],
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it follows that

(V20() + u. V2a(), (h, h)) < 0.

Conclusion. is an isolated maximumfor over A.

4. Examples.
Example 1. Maximize -xl x subject to

where

X B,

X2

Yl

Y2

Y3

"2yly3 > y, y > 0, Y3 > 0

B is an "ice cream" cone in R3, which consists of all vectors forming an angle
_< 45 with the vector

1

Let ff 0 and C G R2. Therefore G- {0}. -xl x is pseudo-
concave over

"X2 0
X2

at ft. A A is pseudoconvex at ft. Here B+= B, and therefore P+[B,(ff)]
P+[B, 0] P[B, 0] B. Further,

v0()

Note that N{VTe(ff)} + B is not closed.

0 0

V()-- 1 0

0 1

First order sufficiency conditions. There exists no u satisfying

() v0(x) + v() u o
and lying in B. The vectors u which satisfy (1) are of the form

ux
u 1 ua arbitrary,

0
and obviously are not in B. Therefore Corollary 1 cannot be applied here.
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Since the sequence

(2) u

1/(2i)

i= 1,2,...

is in B, and

lim [Vq(ff)+ VZa(ff) ui] lim
0 )/! 0.
1/(2i

Theorem 1 is applicable and we conclude that ff 0 is a maximizing point.
Second order sufficiency conditions. Since there exists no u in B satisfying (1),

the assumption (v) in Corollary 2 is not satisfied. Therefore Corollary 2 cannot be
applied here.

Take the sequence {ui}, defined by (2). Then (v), in Theorem 2, is satisfied.
For the closed ball fl (0, 1), the set W consists of the single point

The limit

lim (VZO(X) + ui. Vze(x), (w, w))

exists. Thus (vi) in Theorem 2 is satisfied, too.
All h e Re, such that

lim (ui. Va(),h) 0 and

are of the form

Since

(Ve(), h) e PEB, ()3\ PEB, ()],

o)h2 h2 > O.

lim (VZO(ff) + u’. V2a(ff), (h, h)) -2h,

and the second requirement in (vii) is here redundant, we have all the assumptions
in Theorem 2 satisfied. Theorem 2 is therefore applicable, and we conclude that
ff 0 is an isolated maximizing point.

Example 2. The purpose of this example is to show that one can have V()
with closed range and H {h X*’h u. V(), u P-[B, ()]} not closed.
This is a counterexample to Remark 3 in [3, p. 234].



512 SANJO ZLOBEC

Consider again the programming problem from Example 1. The Fr6chet
derivative V0(ff) at the point ff 0 is

and it has closed range. Take

w()

0 0

1 0

0 1

ui= i= 1,2,....

1/(2i)

Since here P[B, 0(ff)] P[B, 0] B, and u B-, we conclude that u P-[B, 0(ff)].
The sequence

is in H, but its limit

0 1 Ol
i= 1,2,...

0 0 1 -1/(2i)
1/(2i)

is not in H. Therefore H is not closed.

Acknowledgment. The author is indebted to Professor A. Ben-Israel for
suggestions and helpful discussions. This paper is part of the author’s doctoral
dissertation at Northwestern University.
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THE MINIMAL BOUND ON THE ESTIMATION ERROR
COVARIANCE MATRIX IN THE PRESENCE OF

CORRELATED DRIVING NOISE*

JAMES E. POTTER’ AND JAMES C. DECKERT{

Abstract. The application of optimal linear filter theory to situations in which the state forcing
function is correlated with the state in an unknown way can present serious problems. In many
instances, the cross-correlation and forcing function must be modeled, for if they are ignored the filter
gains tend to sink below their optimal levels and useful measurement information is discarded. This
paper presents a conservative and minimal formula for bounding cross-correlation between a random
forcing function and the state error when this correlation is unknown. The bound is conservative in the
sense that its use always results in overestimating the estimation error covariance, and it is minimal
in the sense that given any conservative cross-correlation estimate, a bound of the minimal form can
always be found which is no more conservative than the given estimate.

When this minimal bound is used to approximate the differential equation for the estimation error
covariance matrix, there remains the problem offinding the free parameter associated with the minimal
bound. This paper presents a noniterative expression for this parameter as the solution to an optimal
control problem in which the cost function is a linear combination of the elements of the covariance
matrix at a final time of interest. Simulation results are given for a satellite in orbit around a model
earth.

Introduction. Because of its computational simplicity, it is of considerable
practical interest to apply recursive filtering with the same form as the Kalman
filter 2] to problems in which the random forcing function driving the state is
not white, but has correlation between its values at different times. In many situa-
tions, the mean square value of the forcing function can be estimated with some
accuracy, but its frequency spectrum is poorly known. For example, although the
spatial distribution of the deflection of the vertical at the earth’s surface is not
known, the range of deflections is well documented. Thus, in the absence of more
accurate information, its seems feasible to conservatively approximate the co-
variance of the forcing function with a diagonal matrix whose elements are the
squares of the bounds of the individual elements of the forcing function. Attention
is focused in this paper on the problem of approximating between discrete
measurements the increase in estimation error covariance due to uncertainty
introduced by the random forcing function under these conditions.

1. Problem formulation. The problem is as follows: Given the n-dimensional
state equation

Fx + f,
where f is a random forcing function. The estimate of the state, , is extrapolated
in the usual way:

x F:.
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Thus the error in the state estimate, e x :, propagates by

6=Fe+f.

Forming the covariance matrix of state estimation errors yields

P eeT,
/6=e6r +6er =Fp +PFr +ef--+fer,

where the overbar indicates ensemble average. Since the cross-correlations of e and
f are often unavailable in practice, it is desired to choose some matrix upper bound
M _> (efr + fer), i.e., M- (efr + fer) is positive semidefinite, and propagate
the covariance matrix using the equation

P FP + PFr + M.

This will ensure that the approximated covariance matrix will be greater than the
actual covariance matrix, resulting in a conservative error analysis and high filter
gains corresponding to the actual system errors. It is also desirable that it be
demonstrated that there is no other matrix M’ which satisfies the equations

M’= (efT + feT), M’ M,

for this would indicate that the approximated covariance matrix is overly large.
Further___more, the only information to be employed in calculating M is the covari-
ance ffr of f, it being assumed that the cross-correlation of e and f is completely
unknown.

This paper demonstrates that in order to satisfy the above conditions M must
have the form

M(2) 2P + ffT/2
with 2 > 0 and lying between the square roots of the maximum and minimum
eigenvalues of the matrix P-ffr. Pertinent definitions and conventions will now
be presented, followed by the theorem statements and a discussion of their
importance. Two final sections describe a method of choosing 2 and simulation
results.

2. Conventions. The shorthand matrix equation for n n matrices A and B

A>_B

will be used to indicate that A B is positive semidefinite, i.e., that the scalar
equation

xtAx > xrBx

holds for all n-vectors x. The n n identity matrix will be denoted by I.

3. Definitions.
DEFINITION 1. The covariance of the state estimation error, ee, will be

denoted by P, P >= 0, P 0.
DEFINITION 2. The covariance of the driving noise, ffr, will be denoted by Q,

>_- 0,2 0.
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DEFINITION 3. The matrix 2P + Q/2 will be called M(2).
DEFINITION 4. A symmetric matrix C will be called conservative if C >= efT

+ feT for all random.variables e and f satisfying eeT P and ffT Q with P
and Q given.

DEFINITION 5. A symmetric matrix M will be called minimal if it is conservative
and if there is no other conservative matrix M’ such that M’ < M.

DEFINITION 6. L(C, x) is defined as the scalar quantity

xTCx
L(C, x) 2((xPx)(xQx))/2.

DEFINITION 7. L(C) is defined as the infimum or greatest lower bound of
L(C, x) given C, over the values of x for which the denominator is nonzero.

DEFINITION 8. T is the set of n-vectors defined by

T {xIxTpx > 0, xTQx > 0}.
Thus T is the set of vectors for which the denominator of L(C, x) is nonzero.
T is nonempty because P and Q are nonzero.

DEFINITION 9. R is the subset of the real line satisfying

R {212 w/xTQx/xTpx, X T.
Unfortunatel because the relation " used to define minimality is a

partial orderin (i.e. there are symmetric matrices U and V such that neither
U > V nor V => U holds) the minimal bound is not unique. However a formula
for all minimal bounds can be determined so that the one most appropriate to
the iven problem objective may be employed. In view of Theorem 2, however, a
minimal bound can always be found which is at least as ood as a iven conserva-
tive bound so that the use of a conservative but nonminimal bound is never
justified. (It is possible that a nononservative cross-correlation bound might lead
to a conservative estimation error ovariance estimate, but this is a much more
complex problem.)

THEOREM 1. The symmetric matrix C is minimal if and only/f C M(2)for
some 2 in R.

THEOREM 2. If the symmetric matrix C is conservative, then there exists a 2
in R such that C >= M(2).

If both P and Q are singular matrices, the determination of the set R, while
straightforward, is somewhat complicated by the enumeration of special cases,
e.g., if P and Q have common null vectors. However, ifP is nonsingular, the follow-
ing simple determination of R results.

THEOREM 3. If P is nonsingular, it follows that:
(a) The eigenvalues of P-1Q are nonnegative.
(b) Let a and b be the minimum and maximum eigenvalues ofP- 1Q respectively.

If a is nonzero, R is the closed interval [x/, x//] and if a is zero, R is the half-open
interval (0, w/-].

These theorems will be proved as a series of lemmas which are listed below
so that the reader can visualize the structure of the argument.

LEMMA 1. M(2)is conservative if 2 > O.
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This lemma serves to introduce M(2) and demonstrate its conservative nature.
LEMMA 2. A symmetric matrix C is conservative if and only if L(C) >= 1.
This lemma presents a nonprobabilistic condition which any conservative

matrix must satisfy.
LEMMA 3. For any conservative matrix C there exists an Xo in T such that

L(C, Xo) L(C).
This lemma demonstrates that L(C) is a true minimum and not just an

infimum on the set T, a result required to assure applicability of Lemma 4.
LEMMA 4. If C is conservative with L(C, Xo) L(C), then C >= M(2) with

2 w/xQxo/xPxo
This lemma together with Lemma 3 implies Theorem 2 as well as showing

that only matrices of the form M(2) with 2 in R can be minimal. This is a key
result.

LEMMA 5. M(2) is minimal if 2 is in R.
This lemma is the "if" portion of Theorem 1. The "only if" portion is proved

by Lemmas 3 and 4.
The five lemmas will now be proved, together with Theorem 3. Theorems 1

and 2 follow as indicated above.
LEMMA 1. M(2) is conservative if 2 > O.
Proof The proof rests on the fact that the covariance matrix of any random

vector is positive semidefinite.

_-> 0,

2eer fer efr + ff/2 >= 0,
(1)

2ee" + ff---/2 __> ef + fer,
M(2) 2P + Q/2 >= efr + fer.

LEMMA 2. A symmetric matrix C is conservative if and only if L(C) >= 1.
Proof. Sufficiency (assume L(C) => 1). Define the scalars

xre, r/= xrf.

Then by assumption it follows that

(2) xrCx >- 2.
Substituting the Schwarz inequality

(3) v/- >=
into (2) yields

xrCx _>_ 2r/ 2xrefrx xr(ef + fe)x.
This yields by definition C => efz + fe.

Necessity (assume C is conservative). Construct e and f as follows. Let
u be a random n-vector with covariance given by uur= I, and let e x//Pu,
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f= v/-Wu, where x/ is a square matrix with the property that x/(x/)r P
(Halmos [1]) and W is an orthogonal matrix (i.e., WWr I) which will be chosen
below. Then for an arbitrary n-vector x,

(4)

The proof will be completed by choosing W such that

(5)

since by assumption

(6)

xrx/Wr(x)x JixPx)(xQx),

xrCx >= xr(efr + fer)x

and the result that L(C) => 1 follows from (4), (5) and (6).
Construction of W. In terms of the vectors y (X/)Tx, Z (X//)Tx, (5)

requires that zTWy IZ[ [Yl which will in turn be satisfied if

Wy z
(7)

lYl Iz"
Thus (7) is a sufficient condition on W to ensure the proof of Lemma 2.

Define the unit vectors ul Y/]Yl, U2 Z/]Z]. NOW let x l, x2, "’", x, be an
orthonormal set of n-vectors with xl Ul, and let Yl, Y2, "’", Yn be an ortho-
normal set of n-vectors with yl u2. Then the matrix X, whose columns are the
column vectors x to x, (i.e., X [x, x2,"-, x,]), and the matrix Y, whose
columns are the column vectors Yl to y, (i.e., Y [y, Y2, Yn]), are orthogonal.
If W YXr, W is orthogonal and transforms ul into u2, satisfying (7).

LEMMA 3. For any conservative matrix C there exists an Xo in T such that
L(C, Xo) L(C).

Proof Define an infinite sequence of vectors in T, {x,}, such that

(8) L(C, x,) --, L(C) as n

Let Vo be the orthogonal complement of the intersection of the null spaces of P,
Q and C. Vo is a linear subspace of Euclidean n-space and is therefore a closed set.
Define y, as the unit vector parallel to the orthogonal projection of x, into Vo.
Then

Xn /nYn + J,,,

where j, is a null vector of the matrices P, Q and C, and

7.2(y.rCy.)
L(C y.)L(C x.)

2w/7. (y. py.)(y.rQy.)4 T

By (8) it follows that

(9) L(C, y.)

Let S be the intersection of the unit sphere in Euclidean n-space with Vo. S is
closed since the intersection of two closed sets ig itself closed, and S is bounded
because it is a subset of the unit sphere. Therefore, S is a compact set, and by the
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Bolzano-Weierstrass theorem the sequence {y,} lying in S has a limit point Xo.
Xo Vo and since L(C, x) is continuous on T, the theorem will follow by (9) if it
can be shown that Xo T.

Define xSPxo a, xoQxo b, xCxo c. Now, Xo T if and only if

(10) a > 0, b > 0.

Inequality (10) will be proved by contradiction. Assume a 0. By the definition
of L(C, y.),

T T2L(C, y.)x//(y. Py.)(y. Qy.) yrCy.,
and taking the limit over the subsequence of {y,} which approaches Xo yields

2L(C)x/ c.

Since L(C) is finite, c O, and because P, C >= O, it follows that Xo is a null vector
of both P and C. Now Xo lies on the unit sphere and is thus nonzero and Xo also
lies in Vo and cannot be a null vector of all three of the matrices P, Q and C.
Thus b 4: O. Since P # O, a vector v may be chosen such that vPv > O. Then
for s sufficiently small, (Xo + ev)s T and

syTc
L(C, xo +ev)= 0 as sO.

2w/vrPv(xo + ev)rQ(xo + ev)

This contradicts the assumption that C is conservative and the same result ensues
if b is assumed to be zero at the outset. Thus (10) is verified and the lemma follows.

LEMMA 4. If C is conservative and L(C, Xo) L(C), then C >= M(2) with

2 w/xQxo/xPxo

Proof Define D C/L(C). Since L(C) >= 1, it is sufficient for the proof to
show that xrDx >__ xrM(2)x for any n-vector x. Define a xoPxo, b xoQxo,
g x’Dxo. Then by the definition of D,

(11) g 2x,
and by the definition of T, the quantities a, b and g are greater than zero. Let x
be any n-vector in T and define

(12) y x- rxo,

where r xDx/g. Then xDy 0. Define

D [Xo, y]TD[xo, y],
g6

P a [xo, y]re[xo, y],
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Let a vector z be defined by z 7Xo +/*y. By the definitions of L(C, x) and L(C)
it follows that

(13)
zTCz >= 2L(C)v/(zTPz)(zTQz) or

zrDz >= 2x/(zrPz) (zrQz).

The following lemma is merely stated here and will be proven subsequently.
LEMMA. The validity of(13)for all # and 7 implies that thefollowing relationships

hold:

(14) f -e,

(15) 26 => o + ft.
Now, rewriting (12) yields x y + rxo and thus

(16) xTDx g(r2 -4- 6).

By definition, 2 v/-ff/a and
xT(2P + Q/2)x x/-/a (r2 + 2er + a)a + x/-d/b (r2 + 2rf + fl)b.

By (11) and (14) this becomes

XT 2P +-)
and by (15) and (16) there results

X +/)gr2+ 2

xTDx >= xr(2P + Q/2)x.

_proof of lemma. Substitution of the definitions of P, Q, D, y and z into (13)
yields

72xDxo + 7#(xoTDy + yrDxo)+/*2yrDy __> 2x//,
where

or

q [72xPxo + 7#(xPY + yTpx0)+ /*2yTpy]

[72xQxo + 7/*(xoTQy -4- yTQxo)+ /*2yTQy]

g(7 +/*26)->_ 2x/-v/(7 + 27/*e + #)(7 + 27/*f +/*eft).
Substitution of (11) yields

72 -1
t" /*26 ’-- %/(72 -1

t- 27/*e +/.2a)(72 -- 27/*f +/.2).

Squaring both sides and collecting terms yields

(17) /*4(62 aft)- 27/.3(f + eft) + 72/,2(26 4ef- a fl)- 273/*(e + f) => 0.

As a function of/*, the left-hand side of(17) must have a local minimum at the point
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Setting the first derivative to zero at the point/ 0 yields

(14) f -e.

Substitution of (14) into (17) and division by/2 yields

(18) 2(62 aft) + 2#7e( fl) + 72(26 4e2 fl) >= 0.

Define

(19) s 26- - /.

Since 6 y’Dy/xoDxo implies that 6 _> 0,

s >_ -( +/).(20)

Define

(21)

(22)

(23)

ml(s) s + 4e2,

mz(s) 2e( +/),

m3(s) [(-/3)2 + 2( +//)s + s2]/4.

Inequality (18) may be rewritten

(24) 72ml(s) + mz(s)7# + m3(s)#2 >= O.

In order for (24) to hold for all/ and y the following must be true"

(25) m(s) => 0,

(26) m3(s) >= O,

(27) 4m(s)m3(s) >= m(s).

Substitution of (21), (22) and (23) into (27) yields

(28) 4sm,(s) >= O,

where

(29) m,,(s) m3(s) + e212( +/) + s].

By (20) and (26) it follows that m4(s) >= e2( + fl). Since ,/ >= 0, it follows that
m4(s) >- 0, and by (28), either

(30) s >= 0

or m4(s) 0, which implies that

(31) eZ( +/) O.

If (30) holds, then by (19) there follows

(15) 26 _>_ + /.

If e 0, m(s) s by (21), s >= 0 by (25), and (15) holds by (19). If +/3 0,
then (15) holds since 6 >_ 0. Thus (15) always holds and the lemma is proved.

LEMMA 5. M(2) is minimal if 2 is in R.
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Proof Let C be a conservative matrix such that C _<_ M(2). Since 2 is in R
there is an Xo in T such that

2 x//xQxO/XPXo

By the definition of M(2), xoM(2)Xo 2v/(xPxo)(XQXo). Also, by Lemma 2,
L(C, Xo) _>- 1 and hence

xCxo >= 2v/(xPxo)(XQXo).
Thus xCxo >= xoM(2)Xo Since, by assumption, C =< M(2) it must be true that

xCxo xoM(2)Xo, which yields xoCxo 2xoPxo)(XQXo). Thus L(C, Xo) 1
and since L(C) >= 1 and L(C) is the infimum of L(C,x) over T, it follows that
L(C, Xo)= L(C). By Lemma 4, C _>_ M(2)with 2 v/xoQXo/XPXo Thus M(2)
=< C __< M(2) or C M(2), which implies that M(2) is minimal.

THEOREM 3. If P is nonsingular, it follows that"
(a) The eigenvalues ofP-XQ are nonnegative.
(b) Let a and b be the minimum and maximum ej_genvalues of P-tQ respec-

tively. If a is nonzero, R is the closed interval [x/, w/b] and, if a is zero, R is the
half-open interval (0, /-].

Proof Let E P-1Q, and define the inner product for n-vectors x and y,
<x, y>, to be xrPy. Thus the inner product (x, Ey> is equal to xQy. The operator
E*, adjoint to E relative to the inner product given above, is defined by the identity
<E’x, y> (x, Ey>. Thus the equation xrE*Py xQy holds for all x and y.
Since P and Q are symmetric, it follows that E* P-1Q E and E represents
a positive semidefinite self-adjoint operator relative to the given inner product.

Now (a) follows since the eigenvalues of a positive semidefinite self-adjoint
operator are nonnegative. Let

{212 x//xQx/xPx, Ix] # 0}.

The definition of/ is the same as that of the set R above, except that x e T for the
set R. This condition prevents x from being a null vector of Q, and hence R equals
/ with the point 2 0 deleted if present. In terms of the inner product,/ equals
the set of 2 such that

x/<u, eu>, <u, u>
Since the unit sphere determined by the inner product is closed and connected,
and/ is a continuous image of the unit sphere,/ is a closed interval. Applied to the
maximum and minimum eigenvalues of E, b and a, the minimax principle [3]
states that

b= max <u, Eu>,
<u,u>=

a= min <u, Eu>.
<u,u)

Thus/ [x/, x/] and the theorem is proved.
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4. A technique for choosing 2. With the minimal approximation to the co-
variance between the estimation error and the forcing function, the differential
equation for the estimation error covariance matrix takes the form

(32) P= FP + PFr + 2P + Q/2.

There remains the problem of choosing 2 in some logical way. In this section an
optimal control problem is formulated with 2 as the control variable, the elements
of P as the state variables, and the cost function given by some linear combination
of the elements ofP at a final time of interest T. This optimization problem may be
solved without iteration.

The optimization problem is to choose the bounded measurable function
2(0 to minimize the cost function

(33) J trace [LP(T)],

where L is a given positive semidefinite symmetric matrix and P(t) is the absolutely
continuous solution of (32) with the given initial condition P(to) Po >-_ O. In
(32), the scalar function 2 is required to be positive and the matrices F(t) and Q(t)
are given continuously differentiable functions of time with Q(t) >_ O. (Note that
J eTLe if e is the estimation error and P eer.) The solution for 2 is expressed
in terms of the state transition matrix from to T, (T, t), which is defined by

(34)
.c(T, t)
& (T, t)F(t), (T, T) I.

The form of the optimal 2 function and a proof of its minimality will be pre-
sented as two theorems. The theorems are listed together without proof, followed
by the individual proofs.

THEOREM 4. In order that the function 2(0 minimize the cost functional J given
by (33), it is necessary and sufficient that

trace [K(t)Q(t)] 1/2

(35) (t) ltace [K(t)P(t)]J
where K(t)= T(T, t)L(T, t) and (T, t) is the state transition matrix defined
abol)e.

(Note that an optimum solution does not exist if trace [K(t)Q(t)] or trace
[K(t)P(t)] vanishes on a set of positive measure. However if both traces vanish
simultaneously on a set of positive measure, an optimum solution does exist and
any control may be used.)

THEOREM 5. If the minimizing function 2(0 exists, then for almost every for
which the denominator of (35) is nonzero, 2 R, where R is the time varying region
defined abovefor which M(2) is minimal.

ProofofTheorem 4. Necessity. Employing the Pontryagin maximum principle
[4] with the costate variables Cij for Pji, the Hamiltonian function becomes

H trace {C[FP + PFT + 2P + Q/23}.
The costate differential equation, (j -3H/cPi in matrix form yields

( --FTC- CF- 2C,
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and the terminal condition, Cij(T) cJ/cqPji(T) Li, in matrix form becomes

C(T) L.

It may be verified by direct substitution that the solution of the costate equation is

C(t) h(t)K(t),

where h(t) exp 2(s) ds Note that h(t) > O, K(t) >= O.

It may also be verified by direct substitution that the state is given by

P(t) g(t, to)(t, to)Por(t, to)

+ [g(t, s)(t, s)O(s)*r(t, s)/2(s)] ds,

where

g(t, s) exp 2(u) du

(t, s)
c3t

F(t)(t, s), (s, s) I.

Since g(t, s) > O, Po, Q(t) >__ O, it follows that P(t) >= O.
Since C(t), P(t), Q(t) >_ 0 and the trace of the product of two positive semi-

definite matrices is nonnegative, it follows that trace[C(t)P(t)] 0 and
trace[C(t)Q(t)] >_ O. With 2 >= 0, the Hamiltonian may be written

H trace [C(FP + pFT)] + 2w/trace (CP) trace (CQ)’

+ [x/2 trace (C- w/trace (CQ)/,]2.

Since the radicands are nonnegative, the Hamiltonian is minimized with respect
to 2 > 0 when the last term vanishes, i.e.,

2 w/trace (CQ)/trace (CP)’ x/trace (KQ)/trace (KP)’.
Sufficiency. Let 2(0 be a control program satisfying (35), let 21(0 > 0 be

another control program, and define P(t) and P1 (t) as the corresponding solutions
of (32) with the given initial condition. Defining AP Px P and A2 2 2,
we have that

AP FAP + APFT + 2lAP + A2P + (2.

Defining l= trace [KAP], we have that l(to)= 0 and l(T) is the difference in
cost resulting from the use of control program 21(t) rather than 2(t).

From the definition of K(t) and (34) it follows that K(t) satisfies

I:((t) KF FTK,



524 JAMES E. POTTER AND JAMES C. DECKERT

and thus

[= 21/+ trace {K[A2P
and

(36) I(T) j2(t) exp 2(u) du dt,

where

(37) j(t) x//2, trace (KP)’ x/trace (KQ)/)c

Since it was shown in the proof of necessity that K, P _> 0, and the trace of
the product of two positive semidefinite matrices is nonnegative; the radicands
above are nonnegative andj(t) is real. Inspection of (37) indicates thatj(t) is nonzero
whenever 2 is unequal to 2. Thus by (36), the difference in cost resulting from the
use of the two control programs, l(T), is positive if 2 differs from 2 on a set of
positive measure and 2(0 is the global optimum solution.

Proof of Theorem 5. By Theorem 2, it is possible to choose 21(0 such that
2(t) 6 R(t) for all and

(38) M(2,) _<_ M(2),

where the P(t) matrix used in the calculation of R(t), M(2) and M(21) is the P(t)
matrix determined by the 2(0 program.

Let Pl(t) be the solution of

(39) Pl FP + PFT + 21P + Q/2x

with the program 21(t) and the initial condition Pa(to)= Po. Then by defining
AP P P, AP satisfies

Ap F AP + APFT + M(2)- M(2) + )llkP

with the initial condition AP(to) 0. It may be verified by direct substitution that

AP(t) f,’
to

(t, s)[M(21) M(2)](s)r(t, s)h(t, s)ds,

where

h(t, s) exp 2(u) du

Thus by (38), AP(t) _<_ 0.
Let J1 trace [LPI(T)] be the cost functional evaluated with the control

program 2 (t). Since L >__ 0 and the trace of the product of two positive semidefinite
matrices is nonnegative, it follows that J __< J, where J is the cost functional
evaluated with the control program 2(t). Since 2(t) is the global optimum by
Theorem 4, it is also true that J _< J, and thus J J. By (36),

0 J1 J l(T) j2(t) exp 21(u) du dr.
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Thus j(t) 0 almost everywhere and by (37),

21 v/trace (KQ)/trace (KP)’ 2

almost everywhere. Since 21 e R by definition, 2 e R almost everywhere.

5;. Simulation results. Figures and 2 illustrate the application of the method
described above to the estimation of uncertainties in the orbit of an earth satellite
caused by uncertainties in the earth’s gravitational field. It was assumed that the
inverse square component of the earth’s gravitational field was known exactly
while the other terms in the spherical harmonic expansion of the earth’s gravita-
tional field were unknown perturbations driving the satellite’s equations ofmotion.

Each figure contains two plots, one of which is the RMS position deviation
from the nominal conic orbit predicted by the covariance matrix, while the other
is the actual magnitude of the position deviation computed using a tenth order
spherical harmonic model of the earth’s gravitational field with a zero J2 term.
Figure 1 represents a nominal 500,000 ft circular polar orbit starting near Vanden-
berg Air Force Base while Fig. 2 represents a nominal elliptical orbit, with an
eccentricity of 0.8 starting at pericenter 500,000 ft over the North Pole.

Because (32) is essentially a worst case approximation, the state vector chosen
must constrain the energy of the orbit, as reflected by the estimated covariance
matrix, to lie within the physically realizable bounds dictated by the conservative
force field. To this end the energy equation was used to eliminate the component of
the deviation from the nominal velocity vector parallel to the nominal velocity
vector, and the state vector was defined to consist of the deviation from the nominal
energy, the remaining two components of the deviation from the nominal velocity
vector, and the three components ofthe deviation from the nominal position vector.
In this case, the forcing function f was given by Gd, where G was a 6 x 3 matrix
determined from the nominal trajectory and d was a 3-vector consisting of the
cross track components of the perturbing gravity acceleration and the perturbation
in the massless potential energy at the satellite’s present location in space. For the
nominal circular orbit, D ddr was approximated by a diagonal matrix whose
nonzero elements consisted of the mean square values of the elements of d, com-
puted from the gravity model along the actual trajectory and averaged over three
orbit periods. For the nominal elliptical orbit, the D matrix was scaled for radial
dependence as though all the components of d arose from the J3 term in the
spherical harmonic model.

The matrix L was chosen such that trace [LP(t)] was the estimated mean
square error in the satellite position. Both trajectories began with zero position
and velocity errors, and all elements of the initial P matrix were zero except the
diagonal element corresponding to the energy deviation, which was equal to the
diagonal element ofD corresponding to the initial uncertainty in massless potential
energy.
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NECESSARY CONDITIONS FOR OPTIMIZATION PROBLEMS
WITH OPERATORIAL CONSTRAINTS*

C. VIRSAN]-

Abstract. In this paper, we extend some results of H. Halkin and L. W. Neustadt [1] and [2] to

optimization problems in which there is an equality constraint defined in terms of an operator whose
range is infinite-dimensional.

We obtain abstract multiplier rules (Theorems 2 and 3) which make it possible to obtain necessary
conditions in the form of a maximum principle (Theorem 4) for optimal control problems with

equality-type phase constraints.

Introduction. In the last few years it has become clear that the necessary
conditions for optimality in control theory, known as the maximum principle,
may be obtained by using abstract multiplier rules. Such abstract multiplier rules
which make it possible to obtain the maximum principle were given in [1] and [2]
by H. Halkin and L. W. Neustadt. The results in [1] and [2] were well-adapted to
problems that contain constraints which are given by a finite number offunctionals.
In order to study optimal control problems with equality-type phase constraints,
we need abstract multiplier rules for general optimization problems with equality
constraints defined by an operator with infinite-dimensional range. It is the purpose
of this paper to obtain such abstract results and to apply them to optimal control
problems with equality-type phase constraints.

We begin 1 with the usual case of a finite number of equality constraints,
for which we prove an alternate form of the Halkin-Neustadt result; in fact, we
replace the explicit condition obtained by Halkin and Neustadt with the aid of
a fixed-point theorem by another one (condition II in Theorem 1) in which we
require the existence of a map A with certain properties, and then show, with the
use of Lemma 1, that under the assumptions made by Halkin, such a map A can
be constructed. Then, in 2, we strengthen condition II in a way which allows us
to obtain the corresponding result for operatorial constraints. In this more general
case, it does not seem possible to obtain, with the use of fixed-point theorems,
explicit conditions for the existence of such a map A which is convenient in all
situations. Nevertheless, in specific optimal control problems, such as the one
with equality-type phase constraints, the construction of the map A is possible,
as we show in 3, which makes up the main part of the paper. Our final result is
Theorem 4, where we obtain the necessary conditions from the abstract multiplier
rule in the form of a maximum principle.

The most difficult parts of our proofs are the constructions of all the elements
which appear in the abstract Theorem 3, and the verification that the hypotheses
of this theorem hold. In this verification, we make use of some general properties
of ordinary differential equations and of implicit function theorems, which are
of course essentially equivalent to fixed-point theorems.

Our final result has much in common with that of Gamkrelidze [3] and the
ones of Guinn 4] and Berkovitz [5]. We point out, however, that Gamkrelidze
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did not consider equality-type phase constraints and that our result cannot be
obtained by using the same kind of variations that he used, and that Guinn made
stronger regularity assumptions than we do.

1. The case of a finite number of equality constraints. Let f be a real linear
space, let L c 0j. be arbitrary, and let Pi, for 0, 1, ..., m + k, be real-valued
functions defined on L. Further, let q (qm+l,’", qm+k), let 0 be the zero
element in Rk, let {xeL" q(x)= 0} and let L- {xe L" qi(x)=< 0, i= 1,
.., m}. We shall say that an element 2 e , fl L- is optimal if q)o(2) -<_ q)o(X) for

all elements x e E gl L-.
We assume that an optimal element exists and, without loss of generality,

that2 0, that q)i(0) 0for/= 0,..., p, andthat q0i(0) < 0for/= p + 1,..., m.
THEORFM 1. Let 0 be an optimal element. Suppose that there exists a convex set

M c such that 0 M and that there exist functions hi’M --+ R for O, 1,...,
m + k, such that:

I. the hi,for O, 1,..., m, are convex, hi(O) q)i(O) for O, 1,..., m,
and h (hm+a, "", hm+)" f R is linear;

II. either 0 int h(M), or, whenever x,..., x+ are linearly independent
elements of m with the property that 0eintco {h(x), ..., h(x+a)}, there exist

functions 6 :(0, 1) --+ (0, 1) and A’6(O, 1) -+ such that
o,(A(()))- h(())

lim <0 for O, 1, m
-+o+ a()

lim 6(e)= 0,
e0

where is the unique element in co {x l, ..., xk+l} such that h() O. Then there
exist constants i, O, 1,..., m + k, such that

m+k m+k

(a) eih,(x) <= ihi(O) O for all x e M,
0 0

m+k

(b) I1 > o, g __< o, .for O, 1,..., m,
0

(Ziq)i(O) 0 for 1,..., m.

Proof Let g (ho,hl,
+ k+ where

h,,,h), and let ag denote the set g(M)+ P

P= {(eo, e,’",em+)’ei >0 fori=O, 1,.... m

ei=Ofori=m+ 1,...,m+ k}.
The set s’ is convex. Indeed, let a, a2 e s#’ so that there exist elements x, x2 e M
and e’, e"e P such that g(xl) + e’ a and g(X2) q- " a2. Let 0 < e < 1.
Since the functions hi for 0, 1, ..., m are convex, it follows that

O{R(X1) + (1 oOg(x2)- R(O{X "t- (1 O)X2) P.

Since M is convex, we have that x ax + (1 00X2 ff M and

oal + (1 oOa2 g(x) + oe’ + (1 oOe" g-’.

If A is a set in a linear vector space, then co A will denote the convex hull of A" if the space is
also topological, then int A will denote the interior of A.
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It is clear that ee’ + (1 )e" + e P, and therefore s is convex.
We shall first consider the case where int s’ - .Consider the set

B= {(o,"’,p,p+l,’",m,0)’i<0fori=0,1,"’,P} cRre+k+

Recall that qoi(0) 0 for 0, 1, ..., p and that q)i(0) < 0 for p + 1, ..., m.
It is easy to see that the set B is convex. Since a is convex, it follows that int
is convex. We shall show that (int s’) f) B . Suppose that (int sO’) f-) B
Then there exist real numbers ’, 0, 1, m, such that .*, < 0 for 0, 1, p,
and an open ball V c R centered at 0 such that

(, "’", m*) X V cint .
Let M* {x M" hi(x) <-_ .*, for O, 1, ..., m, h(x) V}. Since the hi are con-
vex and h is linear, it follows that the set M* is convex. Because

(g, "’", m*) x V int ,
it follows that h(M*) V R. Therefore, there exist elements xl, .", x+ e M*
such that h(xl),..., h(x+ 1) are in general position2 and such that

0 e int co {h(xl), h(x+ 1)}.
It follows from the linearity of h that x l, "’, x/ are in general position and
that

co {h(xl),..., h(xk + 1)} h(co {x l, .--, x+l }).
Since hi(0) 0 > for 0, 1, ..., p, 0 q M*. We shall show that xl, "’",

are linearly independent. Suppose that x 1,.", x/l are linearly dependent.
Since they are in general position, there exist real numbers czi such that,] +

i
and + 10(iX O. Therefore,

k_l k+

0 h oixi oih(x 1)

with+ , 1. Since 0 int co {h(x),..., h(x,+ )}, i > 0 for 1,..., k + 1.
Hence 0 co (x , ..., x+ }, contradicting the fact that 0 M*.

Let co {x x, ".’, x+ } be such that h()= O. Since the functions h for
O, 1, ..-, m are convex and satisfy condition II, we have that

p,(A(b())) -< (1 6())h,(0)+ g(e)h,() +
where lim_o/ si 0. Since hi(O) < 0 for p + 1, ..., m and lim_o+ b() 0,
we conclude that there exists an d (0, 1) such that

pi(A(b()))<0 fori-p-4- 1,...,m for all(0, d).

Since hi() =< ’ < 0 and hi(O) 0 for 0, 1,..., p, there exists an " (0, d)
such that

qi(A(b())) < 0 for 0, 1,..., m and (0, d’).

Hence A(b()) VI L- and qgo(A(b()) < 0 for all (0, "), contradicting the

The elements h(x), h(x, ) are said to be in general position if the elements [h(x0 h(x, )]
for 1, .-., k are linearly independent.
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optimality of the zero element. This shows that

(int )f) B .
Hence, there exist constants c, i, 0, 1,..., m + k, such that

m+k m+k

Z I,1 > 0 and Z z,a, <= c <__ ,,
0 0 0

for all a (ao,..., am+k) and all (o,’", m, 0)B (the closure of B).
Since 0M and hi(0) _-< 0, the zero element of Rre+k+ is in s’. Since B contains
the zero element, c 0. By definition of the sets and B, we see that

m+k

(1) , ihi(x)+aieiO wheneverxm and ei0,
0 0

(2) ,, 0
0

whenever 0 for 0, 1,..., p and R for p + 1,..., m. From rela-
tion (2), we obtain that ai g 0 for 0, l, ..., p and that 0 for p + l,.., m. Setting e 0 for 0, l, ..., m, we conclude that

(l’) h(x) 0 for all x M,
0

(2’) ii(O) O, i 0 for 0, 1,..., m,

and we have obtained the desired conclusions of our theorem.
Now suppose that int !Z/. Since is convex, it follows that there exist

constants i, 0, 1, ..-, m + k, and c such that
m+k m+k

(3) [0i[ > 0, iai C for all a (ao, a,,+k) /.
0 0

Since hi(O)= i(0) 0 for i= 0, 1,..., m (see assumption I) and h(0)= 0, we
obtain, after setting ei -h(0), that the zero element of R+k+ is in . Hence,

It follows from the definition of that

(3’) ih(x)+ge=O wheneverxM and ei0.
0 0

Set -hi(O) for i= 0, 1,..., m; it then follows from (3’), since 0 M, that
ie’i 0, where e’i ei + hi(O) O. Hence, i 0 for 0, 1, m, and we

see, by virtue of (3’), that
m+k

Z ihi(x) 0 for all x M, Z Iil > 0.
m+l

If we set a 0 for i= 0, 1, ..., m, we have again obtained our desired conclusion.
Remark 1. The basic element in the proof of Theorem 1 is the construction

of comparison elements, starting with elements of M as first approximations.
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The role of the maps in A and 6 is to make these elements satisfy the equality
constraints in L. If X is a normed linear space, L is the kernel of an operator T.
and (o, T) has a Fr6chet derivative at x 0 which is equal to (h, To), then we
may choose M to be the kernel of T, and the maps A and in hypothesis II allow
us to construct, starting with elements in the kernel of (h, To) as first approxima-
tions, elements in the kernel of (q), T).

LEMMA 1. Let there be given subsets L and M of SE, a function q L - Rk,
a linear map h: --. Rk, and linearly independent elements x, ..., Xk+ M such
that

0 int co {h(x 1), h(xk + )}.
Suppose that there exists a map (:co {O,x,..., Xk+I} L such that

(i) the map O:co{xl,..., Xk+ I} Rk defined by

0(x) 0((x))

is continuous3 for every 8 e (0, 1), and

(ii) lim
i6(x)- 6h(x)[= 0

6--.0

uniformly with respect to x co {x 1,..., Xk+l}. Then there exist maps 6: (0, 1)
--, (0, 1)and x: (0, 1) --, co {xl, xk+ 1} such that (6(e)x()) L, q((6(e)x(e))) 0
for all (0, 1) and

lim 6(e)= 0, lira x()= X
eO eO

in co {x l, xk+l}, where is the unique element such that h() O.
Proof Our aim is to construct a map which satisfies the hypotheses of the

Brouwer fixed-point theorem.
Since x 1,’", xk+l are linearly independent, they are in general position.

Because 0int co {h(xl), ..., h(xk+l)}, it follows from the linearity of h that
h(xl),..., h(xk+ 1) are in general position. For each es(0, 1), let S(e) {xl(e),...,
xk+ l(e)}, where xi(e) (1 e)ff + exi for 1, ..., k + 1. Since h(X) 0,

h(co S(e)) h(co S(1)) e co h(S(1)).

Hence, there exist an % > 0 and a closed ball V(O, co) centered at 0 such that
V(O, 0) c h(co S(1)). Since h(co S(e)) e co h(S(1)),

V(O, e%) c h(co S(e)) for all e (0, 1).

To each z e h(co S(e)), we correspond the element x(e; z)e co S() whose bary-
centric coordinates coincide with those of z, so that h(x(e; z))= z. The map
x(e,. ): h(co S(e,)) --, co S(e) is continuous, and

(co S(e) co S(1) co {x 1, "", Xk + 1}) for all e e (0, 1).

Let (: co {0, x l, ..’, Xk / 1} L be the function whose existence was assumed.
For each 6 e (0, 1), we define the map (z): h(co S(e)) --, Rk through the relation

?(x(; z))
O(z) z-

On the set co {xl, -", Xk+ 1}, we take the ordinary Euclidean finite-dimensional topology.
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By property (i) of , (I) is continuous, and it follows from (ii) that

]qS(x(e; z)) 6h(x(e; z))l
lim ](I)g(z)l lim 0
60 60 (

uniformly over h(co ()), for all (0 1).
Since V(O, eo) h(co S(e)), there exists, for each (0, 1), a number 6(e),

with 0 < 6(e) <= e, such that (I)](,) maps V(O, eeo) into itself. It is a consequence of
the Brouwer fixed-point theorem that, for each e e (0, 1), there exists an element
z(e) V(O, eeo) such that (I)()(z(e))= z(e). Hence, (p((b(e)x(e); z(e)))= 0 for all
e e (0, 1). We denote x(e; z(e)) by x(e). Then, by (i), we have that [(6(e)x(e)) L for
all e e (0, 1). Since 0 < 6(e) <= e, lim_.o+ 6(e) 0. Since x(e; z(e)) co S(e) (1 e)ff
+ e co {x, ..., x+ }, we conclude that lim x(e)= if, completing the proof of
the lemma.

The conclusions of Theorem 1 are the same as those of Theorem II in [1].
Using the preceding lemma, we can show that the hypotheses of Theorem 1

are satisfied under the assumption stated in [1]. The following assumptions were
made in [1].

ASSUMPTION H.
1. H is a normed linear space, and the functions f (Cpo, ..-, cp,,+) and

g (ho,’", hm+,) are continuous.

2. lim
If(x) g(x)[

0.

3. The functions h are convex for 0, 1, ..., m, and linear for m + 1,
...,m+k.

ASSUMPTION H2.
1. The set M is convex, and 0 e M.
2. For every set S {x l, "’, x+ a} M made up of k + 1 linearly inde-

pendent elements, there exists a function " co {0, x, ..., x+ } --. L such that:
(i) for every 6 e [0, 1], (6. x)is continuous in x over co S,

(ii) lim_.o+ ((6. x)/cS) x uniformly in x over co S.
The following theorem was stated in [1].
THEOREM. If 0 is an optimal element and assumptions Ha and H2 hold, then

there exists a vector (o, %+) Rm++ , with [[ - 0, such that"
(i) g(x) _< eg(0) 0 for all x e M,
(ii) ei <- O for O, 1,..., m,

(iii) eh(0) 0for i= 1,..., m.
Conclusion (i) is identical with conclusion (a) of Theorem 1, and conclusions (ii) and
(iii), together with [el 4= 0, are conclusions (b) of Theorem 1.

POeOSITIO. IfAssumptions H and H2 hold, then the hypotheses of Theorem 1
also hold.

Proof Hypothesis I is obviously satisfied. (See (2) and (3).) We have to verify
that hypothesis II holds.

If 0 e int h(M), let x , ..., x/ e M be linearly independent and such that

0eintco {h(x), ..., h(x+)} c R,
where h (h,,+ ,..., h,,+,)" --, R*. The map qS" co {x, ..., x,+ } --, R,
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defined by q56(x) q)((6x)), where q) (m+ 1, q)m+k) and is the function
in Assumption H2, is continuous for each 6 e [0, 1] inasmuch as q and are con-
tinuous. We see that satisfies condition (i) of Lemma 1. By Assumptions Ha
and H2 we further conclude that

lim
Iq3a(x)- 6h(x)l

lim
Iqg(6x + o(6)) h(6x)[

_< lim
I(p(6x + 0(6))- h(6x + o(6))[

+ lim
Ih(o(6))]

-o+ 6 -,o+ 6

uniformly in x over co {xl, "", Xk+ 1). Hence, condition (ii) is also satisfied.
By Lemma 1 there exist functions 6 :(0, 1) --, (0, 1) and x :(0, 1) -, co {Xl,

xk + 1) such that lim_o 8(e) 0 and lim_.o x(e) X, where ff e co {xl, "’", xk
is such that h() 0.
We denote (8(e)x(e)) by A(6(e)). By Lemma 1, A(6(e)) for all e e (0, 1). Let

where

go,(A(5(e)))
for 0,1,...,m,

go,(A(b(e)))- h,(A(6(e)))
5(e) A(b(e))

h,(A(b(e)))- hi(b(e)x(e))

and

hi(6(e)x(e))

It follows from Assumptions H and H2 that lim E 0 for i--0, 1,..., m,
and from Lemma 2.1 in [1] that IEI <= N1 x(e) if] whenever 0 < e =< el, where
N1 is some constant. Since lim_.o x(e) in co {x l, "’, xk+ 1}, lim_o Ix(g) 11

0. Hence, lim_.o+ lEVI 0. By Assumption H2, there exists an 2 (0, 1) such
that A(b(e)) is arbitrarily small for all e (0, e2). By Lemma 2.1 in [1] we conclude
that

IE21-< N2 A(b(e))/b(e)- x(e) for e (0, e2).

It follows from Assumption H2 that lim,o E2 0. Hence,

goi(A(b(e)))- hi(b(e))
limo+ O,

and the proposition is proved.

2. The case of operatorial constraints. If we change the problem described in
1 by requiring that the equality constraints, instead of being defined by a finite

number of real-valued functions, are defined by an operator from L into an
infinite-dimensional linear space, then we can obtain a result comparable to
Theorem 1 only if we strengthen condition II.
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Let Y" be a real linear space, let L be an arbitrary subset of , let q)i (for
0, 1, ..., m) be real-valued functions defined on L, and let T be a map from

L into , where o# is some linear topological vector space. Let (R) denote the zero
element in , and let Lo {xL:Tx (R)}, L-= {xL:q)i(x)<= 0 for

1, ..., m}. We shall say that an element )? e Lo fl L- is optimal if q)o(2) _-< qoo(x)
for all x e Lo f’l L-.

We shall suppose that an optimal element 2 exists and, without loss of
generality, shall suppose that 2 0, that q0i(0) 0 for 0, 1, ..., p, and that
oi(0) < 0 for p + 1, ..., m.

TI-mORM 2. Let 0 be an optimal element. Suppose that there exist a convex set
M f such that 0 e M, convex functions hi:M -- R such that hi(O) qoi(O) for

O, 1,..., m, and a linear operator To:f Y4 with the following properties:
I. There exists a set M M such that (R) int ToM and a number # > 0

such that hi(x) <= lfor all x e M1 and each O, 1, ..., m.
II. For each e {x e M Tox (R)}, there exist functions :(0, 1) (0, 1) and

A :(0, 1) Lo such that

lim
qi(A(6(e))) hi(6(e)ff) _< 0 for 0 1 ..., m,

-.o+ ()

lim 6(e) 0.
0

Then there exist constants ei <= 0 and afunctionalf f* such that
tit

(a) aih(x) + f(Tox) <= aihi(O) 0 for all x M,
0 0

(b) ai<0, eiq)i(O) O, i= 1, m.
0

Proof Consider the sets Mo {x e M: Tox (R)},
s {(ho(x) + Co,’", hm(x) + em):xemo, ei >= 0 for 0,..., m} = Rm+,
B {(o,’", ,, ,+,’", m): < 0 for i= 0, 1,..., p} Rm+.
Since Mo is convex, we can show that s is convex by straightforward arguments
similar to those used in the proof of Theorem 1. The set B is obviously convex.
Let us show that f’l B . Indeed, if fl B- , then there exist an
element xoemo, numbers e _>_ 0 for i= 0, 1, ..., m and a vector (,...
op+l, m) B such that h,(xo) + e for 0, 1, m. For the element
Xo, by condition II, there exist functions 6:(0, 1) --, (0, 1) and A :6(0, 1) Lo such
that

lim
go(A(b(e)))- hi(6(e)Xo)

-.o 8(e) =2 <0 for i= 0,1,... rn

lim 6(e) O.
eO

Hence,

q)i(A(b(e))) <-_ hi(6(e)Xo) + i6(e)
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with i 0 (e ---, 0 +). Since hi(O) qSi(0) for 0, 1, ..., p and the hi are convex,

qoi(A(6(1;))) _<_ 6(1;)(hi(xo) + f.i) for 0, 1,..., p.

We have that hi(xo) o 1; < 0 for 0, 1,..., p, and there exists an 1;1 e (0, 1)
such that q)i(A(6(1;))) < 0 for 0, 1, ..., p for all 1; e (0, 1;1). Further,

qh(A(6(1;))) <-_ (1 6(1;))h(0) + 6(1;)h(xo) + gzi(5(1;) for/= p + 1,..., m,

and since

lim (5(1;)= 0
---0

it follows that

and hi(0) < 0 for p + 1,..., m,

q,(A(6(1;))) < 0

for p + 1, ..., m for all 1; e (0, 1;2), where I;2 f (0, 1;1)" Therefore,

A(6(e)) 6 Lo L-

for all 1; (0, 1;2) and

qo(A(,())) < 0 qo(0).

This contradicts the assumption that 0 is an optimal element. Hence, sV’ VI B .
Consequently, there exists a hyperplane which separates s’ and B and hence

also separates s’ and the closure of B; i.e., there exist constants , 0, 1, , m,
such that ’[i[ > 0 and such that

(4) Z oqhi(x) + Z q1;i < 0 < oq
0 0 0

whenever x e Mo, 1;i >_- 0 and (o, "’", ,,)e B. It follows from the inequality

ei_>-0 for alleB
0

that ei =< 0 for 0, 1,..., p, and that czi 0 for p + 1,..., m. Setting
1; 0 for 0, 1,..., m, we obtain that

(5) E qhi(x) <= 0 for all x e mo,
0

(6) ei<O, eqi(O)=O fori= 1,...,m,
o

i=<O fori-O, 1,...,m.

Let c(x)= ’oqhi(x). Since ei-<_ 0 for i= O, 1,..., m and the hi are convex,
c(x) is a concave function. Let

K {(c(x)- e, Tox)’xe M, 1; > 0} c R x .
The set K is convex. Indeed, let kl (c(xl) 1;1, Toxl) and k2 (c(x2) 1;2, Tox2)
belong to K. If 0 =< e __< 1, then

([C(Xl)- 1;1] hI" (1 )[c(x2) 82] c(ox -!t- (1 00x2)- 1;,
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where
/3 0 (1 )e2 ’ ->- O.

Since the set M is convex and the operator To is linear,

0dCl + (1 oOk2 (c(x)- , To(x)),
where

x=,x +(1-,)x2eM and e>0.

Hence, K is convex.
We shall show that int K # . Since the functions h are bounded from above

on the set M (see condition I), then if we set m infx, c(x), m > -. Since
(R) e int ToM (see condition I), there exists a neighborhood U of (R) such that
U ToM. Let o > 0. For each

(z,y) 6(--,m-- 3o) U,

there exists an x M1 such that Tox y and such that c(x) (m o) > O.
Hence (-, rn o) U c K, and int K -# .

We shall show that (0, (R)) 6 K. Indeed, if (0, (R)) K, then there exist an Xo M
and an eo > 0 such that C(Xo) eo and such that Toxo (R), contradicting relation
(5). It follows that there exists a nonzero functional F (R )* (see [4]) such that

F(k)<=O for allkK.

Since F (R )*, there exist a constant and a functional f* such that

oc(x)- oe + f(Tox <_ 0

whenever x M and e > 0. Since 0e M, -0e =< 0, which implies that e >= 0.
Letting e -0 0 +, we obtain

(7) oc(x) + f(Tox) <= 0 for all x e M.

If, 0, then f(Tox) <= 0 for all Tox with x M1, and this implies that f 0,
contradicting the fact that F (0, f) 4: 0. Hence, z > 0. Dividing by in relation
(7), we obtain, by virtue of (5), the desired conclusions (a) and (b) of Theorem 2.

If, in addition to the inequality constraints and the operatorial constraints,
there exists a finite number of equality constraints defined in terms of real-valued
functions o,,+ 1, "’", q,+k, then we can state the following theorem.

THEOREM 3. With the same notation as in Theorems 1 and 2, suppose that 0 is
an optimal element, and suppose that there exist a convex set M Y" such thai
0 M, convex functions hi :M--. R such that hi(O)= qi(O)for i= 0, 1, ..., m, a
linear map h (h,,+l, "-, h,,+k) from into R, and a linear operator To from
W into with the Jbllowing properties:

I. There exist a set M1 c M such that (R) int ToM and a number # > 0
such that hi(x) <= la for 0, 1,..., m and [hi(x)[ _-</ for rn + 1,..., m + k
for every x M

II. Let Mo {x M Tox (R)} then either 0 int h(Mo) or, for every subset
{x l, "", x+l} of Mo consisting of k + 1 linearly independent elements such that

0 int co {h(x1) "’’, h(Xk+ 1)},
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there exist functions fi "(0, 1) (0, 1) and A’6(O, 1) Lo fq such that

lim 6(e)-- O,
0

lim
q),(A(b(e)))- h,(b(e))

-o+ 8() <=0 fori=O, 1,...,m,

where is the unique element in co{x1, Xk+ 1} such that h() O. Then there
exist numbers ai, O, 1, ..., rn + k, and a functionalf * such that

m+k m+k

(a) zihi(x) + f(Tox) <= , aihi(O) 0 for all x M,
0 o

m+k

(b) [ai[ >0, a <- O, for i=O, 1, m,
0

oqq)i(O 0 for 1,..., m.

Proof. In order to derive relations (a) and (b), we use the same method as in
the proof of Theorem 2. Consider the set

s’= {(ho(x)+eo,...,hm(x)+em, h(x))’xMo, ei>-0 fori=0,1,...,m}.

Arguing as in Theorem 1, we conclude that there exist constants ai for i= 0,
1,..., m + k such that

m+k

(8) c(x) oqhi(x) <= 0 for all x Mo,
0

m+k

(9)
]ai] > 0, ziq)i(O 0 for/= 1,..., m,

0

i=<0 fori=0,1,...,m.

Further, considering the convex xet K as in Theorem 2, we obtain the conclusions
(a) and (b).

3. An application. Theorem 3, together with Lemma 1, have applications in
control theory in the case of equality-type phase constraints. In these applications,
the most difficult step is the verification of condition II. We shall show that, in the
presence of the regularity conditions given by Gamkrelidze in [3], this condition is
satisfied.

To begin, let us state the problem and some fundamental assumptions.
(a) Letf:J x G1 x G2 -- R" be continuous and of class Cl in (z, u) G x G2,

where G1 R", G2 Rp, J R are open sets, and J = [0, 1].
Let g’G R be of class C2, and let

qi’[t, 2] G x G2 R for/= 1, r < p

be continuous functions of class C in (z,u)e G x G2, where and 2 are fixed
numbers such that 0 < < 2 <_ 1.
Let U be some subset of G2, and let, for each (t, z) e It, 2] G,

Q(t, z) {v G2 "qi(t, z, v) 0 for 1, r}.
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Let ’ denote the class of all piecewise-continuous functions from [0, 1] into

G2. Let Zi:G R for 0, 1, ..., k 1 be given functions which are of class
C and let zo R".

(b) Let L’ denote the set of all pairs (z, u) such that z is an absolutely continuous
function from [0, 1] into R", u , and such that

z(t) Zo + f(s, z(s), u(s)) ds for all e [03].

(c) A pair (z, u) will be called admissible if (z, u)e L’, if u(t)e U for all
e [0, 1) U (t2, 1], if u(t) e Q(t, z(t)) for all e It 1, t2], if g(z(t)) 0 for all e It 1, t2,

and if Zi(z(1)) 0 for 1, ..., k 1. A pair (2, ) will be said to be optimal if it
is admissible and if Zo(z(1)) _>- Zo((1)) whenever (z, u) is admissible.

Our aim is to find conditions which optimal pairs must satisfy.
Let us denote Vg(z).f(t, z, u) by p(t, z, u). For any admissible pair (z, u),

g(z(t)) 0 for all e It 2] if and only if g(z(t,)) 0 and Vg(z(t)). f(t, z(t), u(t)) 0
for all e It, t2]. Hence, an optimal pair (2, ) satisfies the relations g((t)) 0
and p(t, (t), fi(t)) 0 for all e It 1, t2].

DEFINITION. A point v Q(t, (t)) will be said to be regular with respect to
(t, 2(t)) R"+ if p(t, (t), v) 0 and if the vectors4 V,q(t, (t), v),..., V,q(t, (t), v),
V,p(t, 2(t), v) are linearly independent.

HYPOTHESIS A. The vectors VZi((1)) for i= 0, 1, ..., k- 1 are linearly
independent.

HYPOTHESIS B. Let R(t) Q(t, f(t)) be the set of points which are regular with
respect to (t, (t)). We suppose that fi(t + 0), fi(t 0)6 R(t) for all t6 (t, t2), and
that fi(t + 0) .R(t) and fi(t2 0) R(t2).

In order to obtain necessary conditions for optimality, we shall appeal to
Theorem 3. In order to verify that the hypotheses of Theorem 3 hold, we shall
make use of the following lemmas from the general theory of differential equations
which are analogous to the ones used by Pallu de la Barri6re in [6] and by Gam-
krelidze in [3, Chap. VII. We shall state these lemmas without proofs.

LEMMA 2. Let (zi, ui) for i= 1,..., k + 1 be such that, for each i, zi is an
absolutely continuous function from It , 2] into R", ui is a piecewise-continuous
functionfrom It, 2] into R, and

dz Oz cf 2(t) O(t))u(t)() ct (t, (t), O(t))z,(t) / -u(t,
6 [t, t2], for i= 1, k + 1,

Vq(t, ,(t), (t))zi(t + Vuq l(t, (t), O(t))u,(t)

Vzq(t, (t), O(t))zi(t) + V,q,(t, (t), O(t))ui(t)

Vp(t, (t), (t))zi(t) + V,p(t, (t), O(t))ui(t), e It 2]
fori=l,...,k+ l,

4 V,qi(t, (t), v) denotes the vector

Oq--i (t, 2(t), v)
3qi

(t
ou,

(t),
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where (2, 2) is an admissible pair which satisfies Hypothesis B and f, g and the
are as previously indicated. Let Zo be some element in (0, 1]. We shall denote
{(ill, "", flk+l)’fli >= O, f+lfli 1} by pk+l. Also, we shall denote by o(.,.)
anyfunctionfrom [0, Zo] x pk+ into R" such that

() o(, )" pk+ R is continuous for each

(6) lim
Io(e,/3)1

0 uniformly in fle pk+ 1.
e0 8

We denote Ekx + liz by za and Ek + l,u by u for each pk+ 1. Then there is

an o (0, Zo] such that, for each (e, fl) [0, eo] pk+ 1, there exist absolutely con-
tinuous functions a,a’t 1, 2] R, and piecewise-continuous jhnctions s
Rp with the following properties"

(a) The fimctions y,a and u,a defined by the relations

y, + az + a,, u, t + u + s,
satisfy the relations

(i) y,(t)-- (t 1) -[- 8Z/(t 1) + 0(8, fl) + f(s, ye,B(S), Ue,/(S))ds,

(ii) ql(t, y,(t), u,(t)) q(t, y,(t), u,(t))
p(t, y,(t), u,(t)) 0 for all tl, t2];

(b) a,.(t)" pk+ __. R" is continuous for all (, t) [0, eo] tl, t2], and

lim [a,(t)[ 0 uniformly in (t, fl) 6 [t
e-*O 8

LEMMA 3. Let p, qi, 1,..., r, be the functions defined previously, and let
(2, 2) be an admissible pair which satisfies Hypothesis B. Let s (t 1, 2] be a point of
continuity of 2, and let v R(s). Then there exist a number 8o (0, 1), a closed ball
S((s)) G centered at 2(s), and a function u’[s 8o,S] x S(2(s)) G2 such that
(a) ql(t,z,u(t,z)) q(t,z,u(t,z)) p(t,z,u(t,z))= 0

for all (t, z) e [s eo, s]x S(2(s));
(b) the function u is of class C in z, and u(s, (s)) v.

LMMA 4. Let the sets G1 R" and Gz R and thefunctionfbe as previously
indicated, and let (, t) be an admissible pair. Let s e(t 1, ] be a point of continuity
for the function 2, and let ui (for i= 1,..., l) be continuous functions from
[s- zo,s] x S((s)) into G2 which are of class C in z e S((s)), where ro > O,
s Zo > and S((s)) c G is a closed ball centered at (s) For each e e [0, Zo]
let s s2, s_ be such that s e <= sl <= <= st- <= s. We define thefunction

u. Es 8, s]x s((s)) G2

in such a way that u(t, z)= ui+ l(t, Z)for every (t, z)e (si, si+ 1) x S((s)) and each
0, 1,..., 1, where so s e and Sl s. Then there are numbers

and Po > 0 with the property that, for every 8e [0,8o] and every y satisfying
[y (s e)[ <- P o, there .exists a function

z,,(. )’Is , s]- s(e(s))
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such that

(a) z,,(t) y + f(, z,,(), u(, z,,())) dfor all e Is , s],

(b) z,(. depends continuously on so,’", s_ , y in the topology of uniform
convergence and

lim Iz,,(t)- (s)l O.
0
y-}z(s)

LMM 5. Let (, if) be an admissible pair. Let s (t, 2] be a point ofcontinuity
for if, let Zo > 0 with s Zo > 1, and let

ui" Is "c o ,s] x S((s)) -+ a2, 1,..., l,

be continuous functions of class C in z S((s)), where S G is a closed ball
centered at (s).

Let
pk+l {(ill, ilk+l) fl’fli >= O, Zfli 1},

let Ci’ >= O for j= 1,...,l+ 1 and for r= 1,...,k+ 1, and let C +L O.
Further, let

/+1 k+l

s(,,/) - y y/c,
j=i+l

for all i= 1,..., l, fl pk+ 1, and e (0, Z’o], where

z min {Zo, Zo/ cJ’r)
Let

L/e,/?(/? Z) U +l(t, Z)

for all (si(e, fl), si+ (e, fl)], O, 1,..- 1. Let thefunctions
h" s Zo,S] x vk+ ___} R

and

o(e,.,.)" Is Zo,S] x pk+ R

be such that h and o(e, .,. are continuous and

lim
[Ox(e, t, fl)[

0 uniformly in (t, fl) s Zo, s] x vk+ 1.
e-}0

Then there is an o (0, Zo such that, for all (, fl) E0, o x P+ 1, there exists a

.function
z," [So, s] - S((s))

with the property that

(a) z,t(t (So) + eh(so, fl) + o(, So, fl)

+ f(, z,(a), u,()) d for all e [so,
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(b) z.,a(s)= (s) + eh(s, fl)
k+l

+ c. , , flC’ If(s, .(s), u(s, .(s)))f(s, .(s), 0(s))] + o(c., fl),
j=l

where o(e,. is continuous from pk+l into R and

lim
Io(, fl)l

0 uniformly in fl pk + 1.
eO

Let 5f denote the linear space of all pairs of piecewise-continuous functions
(z, u) x, where z:[O, 1] R" and u:[O, 1] R’. Let L L’ (, ), where the
set L’ is defined as before, and (, 7) is an optimal pair. Let

Oo(X) Zo((1)+ z(1))- Xo((1)),

q(x) ;((1) + z(1)) for 1,..., k 1,

%(x) g((t 1) + z(t)) for x 6 L,

where g and the for O, 1,..., k are defined as before. Let denote
the normed linear space of all piecewise-continuous functions y: It
with the norm defined by

Ilyll ly(t)l dr.

Define the operator T: as follows:

(Tox)(t) (Vzq,(t, Z(t), O(t))z(t) + V,ql(t, (t), (t))u(t), Vp(t, Z(t), O(t))z(t)

Let h(x) VZi(.(1))" z(1)for 0, 1, ..., k 1 andlet h(x) Vg(.(t’)).z(t).
Define the operator To: f - o# as follows:

(Tox)(t) (Vql(t, .(t), O(t))z(t) + V,q,(t, (t), O(t))u(t), Vzp(t, (t), gt(t))z(t)

+ Vp(t, (t), gt(t))u(t)), It , t2].
We shall now define the set M.
(i) Let I (0, ) denote the set of all points of continuity of the function

Let s 11 and v U. Define the piecewise-continuous function z,: [0, ] - R" by
the formula

0 forO=<t<s,
z,(t)

O(t, s) [f(s, 2(s), v)- f(s, 2(s), 0(t))] for s _<_ _<_

where O(t, s) is the resolvent of the equation

dz cf (t, (t), O(t))z.
dt

For any v >= 1, let P {fi (fl, riO: fl >= 0, fl 1}. Let N denote the
set of all functions x (z, 0) f for which z is of the form
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where fle P, v >__ 1, si e I1, vi e U. It is easy to see that the set N1 is convex and
that 0 e N1.

(ii) Let R(t), for each e It 1, t2], be the set introduced in Hypothesis B. For
each piecewise-continuous function u" It 1, t2]--+ Rp and each e R", let z,, be
the absolutely continuous solution of the equation

(10)
dz ?f(t (t) (t))z + ?f(t (t) (t))u(t), It, 2] z(t)
dt z

Let I2 (t , 2] be the set of all points of continuity of ft. For each s I2, Rn,
r R(s), and piecewise-continuous function u" It, 2] Rn, we define the function
Zs,r,u,’[t, 2] R by the formula

z,, for < s,

z,,,,e(t) z,,(s) + (t, s)If(s, (s), r) f(s, (s), fi(s))]

+ (t, )f (), ())d for s N N .
Let P be determined as above for each v 1. Let N denote the set of all functions
x (z, u) of the form

where fl P, v 1, i R", ri R(si), and si I2. Setting 0, r (s) and
u 0, we observe that the function which vanishes identically on It, 2] is in the
set N2. It is easily seen that

where u flu, and Z fl, for any fle pv. We shall show that the set N2
is convex. Let (zl, ul) and (z2, u2)e N2, and let 0 _<_ 2 __< 1. We have

Let us introduce the notations

We have that

where

/1 -lt- (1 /]’)2, t/ 2Ul + (1 )U2,

2fl fli, S Si, rl ri fori= 1,...,v l,

2fl2i =fi,+i, s2 =s,+i, r/2=rv,+, for/= 1,

z 2z + (1 -/],)z2 2 fliZsi,ri,ui,
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(iii) Suppose that 2 < 1. Let 13 (t2, 1] be the set of points of continuity
of the function . Let s 13, v U, R". We define the piecewise-continuous
function zs,v," It2, 1] -- R by the formula

O(t, t2) for 2 <- <- S,
z,,e(t)

O(t, t2) + O(t, s)[f(s, (s), v) f(s, (s), (s))] for s _<_ _<_ 1.

Let P be as above. We define N3 as the set of all functions x (z, 0) for which
z has the form

where sic 13, V U, i R", v _>_ 1. Setting v fi(s) and 0, we observe that
the function which vanishes identically on It2, 1] is in N3.

It is easily seen that the set N3 is convex.
Finally, we define the set M to be the set of all elements x (z, u) e , which

satisfy the relations

(z(t),u(t))N for t[O,t),
(z(t), U(t)) N2 for It 1, t2],

(z(t), u(t)) N3 for ff (t2, 1],

and for which z is continuous at the points and 2.
The set M is convex because the sets Ni, for i= 1,2, 3, are. Also, 0e M

because each Ni contains the function which vanishes identically on the corre-
sponding interval. The functions hi(x)= V)fi((1))z(1) for i= 0,1, ..., k- 1,
hk(s) Vg((tl))z(tt), and the operator To are linear.

We shall show that there exists a set M = M such that (R) e int ToM and
such that the hi, 0, 1, ..., k, are bounded on M1. It follows from Hypothesis
B that there is a partition < t <... < t < 2 of It 1, 2] which contains all of
the points of discontinuity of the function and which has the property that, on
[ti, ti+ 1] (for each i), the same minor of rank k + 1 of the matrix (Vuq V,qrV,p)
K is different from zero (the derivatives are evaluated at the point (t, (t)A(t)) ).
Let y e Yg. We consider the system

Vqt(t, (t), gt(t))z + V,qx(t, (t), a(t))u yx(t),

()
Vzqr(t, (t), (t))z + V,q,(t, (t), fi(t))u y,(t),

Vzp(t, 2(0, (t))z + V,p(t, 2(t), (t))u y+ l(t), It 1, t2.

On each interval Its, ti+ 1], we can solve for r + 1 components of the vector
u (ua, up as linear functions of z,y(.), and the other p- r- 1 com-
ponents of u. We shall set these p r 1 components of the vector u equal to
zero. The functions ui(t, z) obtained in this way are piecewise-continuous with
respect to and linear with respect to z and y(. ). We substitute these functions
into the system (10), which will then remain a nonhomogeneous linear system.
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Let z2:[t 1, 2] --+ R" be the absolutely continuous solution of the system
obtained in this way, with z(t 1) 0. Then

(12) [Zz(t2)[ _<_ const. IlYlI.
We substitute the function z2 into ui(t, z) for each 1, ..., r + 1, and we

obtain a piecewise-continuous function Uz(t --(ul(t, Zz(t)), ..., Ur+l(t, Zz(t)),O,
", 0). Obviously, for each y e o-#, we obtain in this manner that (z2, u2)e N2

(z2 zs,(,),,2,o). Let y e , and let (z, u)y be defined by

0) for e [0, ),

(z, u)(t) (Zz(t), u2(t)) for e It, t2],

((t, tZ)zz(t2), 0) for e (t2, 1] (if 2 < 1).

Since Zz(t 1) 0, it follows that the function z in (z, u)y is continuous at the point
it is also continuous at the point 2 from its definition on (t2, 1]. Hence,

(z, u) e M and To((Z, u)) y (see (2)). Let eo > 0, and let

V {y e o. Ilyll o}, M, {(z, u),’y v}.
Therefore, by relations (11), we have that (R) int ToM int V, and by relation
(12), we have that

Ih,(x)l IVz,((1))z(1)l IVz,((1))(1, t2)z2(t2)l <= const, eo
for each 0, 1, ..., k 1 and all x e M1.

Similarly, hk(X) Vg((ta)) z2(t 1) --0 for all (z, u)e M1. Hence, the hi, i--O, 1,
.-, k, are bounded on the set M1 c M.

Let mo {x" x e m, Tox (R)}, and let xl (Zl Ua), Xk+ (Zk+
Uk+ 1) be linearly independent elements in Mo such that

0e int co {h(x), h(Xk+ a)},
where h (ha, ..., hk). The points of discontinuity of the functions zi are points
of continuity of the function .

Let 0 < s <... <Sm _--< 1 be the points of discontinuity of the functions
za, "’", Zk + a. Let

{,, ..., ,} {,, ..., m} [0, t’).
On [0, tl], the set co {za, ..., Zk+ a} is described by

0

z(t)

forO__< < sa,
ll

(I)(t, sl) Z
j=l

flrC{’ If(s1, (sa), vJ) f(sa, (sa), R(sl))]

z(,., o) + (t, m,) Y
j=l

E fl,C];, If(sin,, (Sm,),

f(sm, e(Sm,),

for S < $2,

<t<tfors,,,=
where zt Z]+1 flz,, vj U, C{’r>= 0 and fle P"+ a.
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It follows from the theorems on the continuous dependence with respect to
initial conditions that there is an el e(O, 1) with the property that, for every
(e, fl) e [0, el] x pk+ 1, there exist an absolutely continuous function z,a’[O, 1]

G1 and piecewise-continuous functions u,a" [O,t 1) - U such that (see [3,
Chap. I3)

dz t(13)
dt

f(t z,At), u’,At)), [0, 3, z,A0) Zo,

(14) z,(t1) (t 1) + z(t1) + o(, fl),

where o(,. )" P R is continuous and

lim
]o(, fl)]

0 uniformly in fl P .
e0

Let

{Sin,+ 1,’’’, Sin2} {$1, "’", Sin} [’1 It 23
We shall show that there is an e2 (0, eli with the property that, for every
(e, /) [0, e2] X Pk + 1, there exist an absolutely continuous function z,a2, it 1, 2]

G1 and a piecewise-continuous function u2 "It 2] -- G2 such that

(15) z2,(t) z,(t1) + f(a, z2,(a), u2,(a)) da, . It 1, t23,

(16) ql(t, z2,(t), uZ,(t)) q(t, z2,(t),u2,(t))
p(t, z2,(t), u2,(t)) 0, It 1, t2],

(17) z2,(si) 2(si) + ez(si) + oi(e, fl),

where oi(:," )"P +
_

R" is continuous and

lim
]oi(e, fl)]

0 uniformly in fle P* +
eO 8

for 0,...,ml + 1,...,m2 + 1,

where So and sl 2. We may suppose that O(t2 0) fi(t2).
Our proof will proceed by induction. Let 0. If we choose Oo(6:, fl) o(e, fl)

(from relation (14)), then relations (15) and (17) are satisfied on [tl, Sol, i.e., at
Therefore, relation (16) is satisfied. Since relations (16) are satisfied at
O(t + 0)), and O(t + 0) satisfies Hypothesis B, it follows from the implicit
function theorem that there is an e2 (0, 81] with the property that, for every

2(e, /) [0, ’2) X P+ 1, there exists a point u,a G2 such that relation (16) is satisfied
at the point (t 2z,At ), u,).

Now suppose that relations (15) and (16) hold on It 1, s], and that (17) holds
for some i. The functions z, r 1,..., k + 1, are continuous on the interval
[s, si+ 1), and, since z Mo M, it follows that

(18) dzr (t, .(t), O(t))z(t) + ---(t, (t), t(t))u(t),
dt cz
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(19)

Vzq,(t, (t), O(t))zr(t + V,q, (t, (t), O(t))ur(t)

Vzq(t, (t), O(t))z(t) + V.q(t, (t), O(t))u(t)

Vzp(t, (t), O(t))zr(t) + Vu(t, (t), O(t))u(t) for all [si, Si+ 1]"

have been determined.By the induction hypothesis, ei > 0, o(/3, fl) and z,0
We choose 0(/3, fl) o(/3, fl) and o =/3. The optimal pair (2, 0) satisfies Hypothesis
B. Relations (18) and (19) coincide with relations (a) and (fl) of Lemma 2 except
that the interval It 1, 2] has been replaced by the interval [si, si+ 1]. The function oi
in relation (17) satisfies conditions (7) and () of Lemma 2. Thus, the hypotheses
of Lemma 2 are satisfied and it follows that there is an/3"6 (0,/3] such that, for
every (/3, fl)e [0,/3*] x pk+ 1, there exist an absolutely continuous function y,:
[s, s+ 1) G1 and a piecewise-continuous function u,: [si, s+ 1) --’ G2 with the
following properties:

(20)

(21)

(22)

y,(t) z,(si) + f(a, y,(a), u,a(6)) da for all e [si, si+ 1),

ql(t, y,t(t), u,(t)) q(t, y,(t), u,(t))
p(t, y,(t), u,(t)) 0 for all [si, si+ 1),

y,. (t)" pk+ R" is continuous for

lim lY’t(t) (t) -/3zt(t)[ 0 uniformly in (t, fl)e [si, si+ 1) x Pk+ 1.
e-+O

i+1 and-i+1We define the functions z, u, as follows"

i+1 Iz,(t) frt[tlsi]"
u,+l u:,(t)z,e (t)= , (t)=

(y,t(t) for [si, si+ 1), [.u,t(t)
for It Si
for e [si, s+ 1).

zi+ ui+ from the interval It si+ 1) onto theWe shall extend the functions , and ,
closed interval It 1, s+ 1] in such a way that relations (15), (16) and (17) hold. For
each fle P+ 1, the function ze ]+ flz, may have a jump discontinuity at

s+l of the following form"

(23)
Z(Si+ 1) ZB(Si+ O) + rCj

j=l
If(s/+ 1, (s,+ 1), v’+ 1)

f(s,+ 1, ,(s,+ 1), O(s,+ 1))],

where C >= O, li+ 1, and v{+ R(si+ 1). Since si+ is a point of continuity
of the function 0, and vJi+le R(si+ 1) for each j 1,..., li+l, it follows from
Lemma 3 that there exist a number /3’e(0, e*], a closed ball S((si+l)), and
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functions

Ui+ 1" [Si+l ’, Si+ 1] S(Z(si+ 1)) --* G2 for j 1, ..., 1+ ,

which are continuous and of class C in z S((si+ 1)) such that"

(24)
u4+,(s+ , (s+,)) v+,

ql(t, z, u+ l(t, z)) qr(t, z, u+ l(t, z)) p(t, z, u+ l(t, z)) 0

for all (t, z) e [si+ e’, si+ 1] S((s+ 1)), for each j 1, li+ 1. We choose
s s+ 1, Zo e’, l+ 1, h(t, ) z(t) (where h(s+ 1) is defined as z(s+ 0)),

zm(t)- (t)+ z(t)(where o(e, si+,fl)is defined as
o(, si+ 0, fl)), and C’ C.

It follows from relation (22) and from the definition of the functions h and o
that condition (i) of Lemma 5 is satisfied. By Lemma 5, we now conclude that there
exists an e+, e (0, e’] such that, for each (e, fl)e [0, eg+ ] x P+ , there exist functions

Ze,3" Si+ " #rC-1, Si+ S((Si+ l))
j=l

and

s+ e #.C’ , s+ S((s+ )) G:
j=l

such that

(25) zm(t)= i+1Ze,fl (Si+ 1(1)) -[- f(a, zm(a), um(a)) da for all te[si+ (),sg+ ],

where

li+ k+

j=l

such that

(26)

z,(si+ ) e(s+ ) + ez(s+ o)
li+l

+
j=l

fl,.C{’ rf( _(s, ,) v{+,)..s+,, +

f(Si+l, 2(S,+ 1), (Si+ 1))] + Oi+ 1(;, fl),

where oi+ 1(, )" pk + R" is continuous and

lim
Io,+,(, #)1

0
5--*0

uniformly in fl pk+ 1,
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and such that

(27)

q l(t, z,(t), u,(t, z,(t))) q,(t, z,(t), u,(t))
p(t, z,(t), u,(t, z,(t))) 0

for all e [si+ e firCi_ l, si+

Let

u,(t)

y,(t)

uil(t) for t It’ ,Si+l 82Z,.C{fl

u’t(t’ z’t(t)) frtEsg+l-g’22rC{-l’Si+ll’j
for Si+l 2 2 flrC{51

flrCi+ , si+

i+, satisfy (15) (16) and (17) for all e It’ si+,) theSince the functions z, and u,
induction argument is complete (see (25), (26) and (27)). Hence, there is an

e2 e (0, e] such that, for each (e, fi) e [0, e] x P+ 1, there exist an absolutely
continuous function z,:[O,t2] ---, G, and a piecewise-continuous function
u, :[0, 2] G2 with the following properties (see (13)-(17)):

(28) z,(t) zo + f(a, z,(a), u,o(a)) da for all e [0, t2],

(29) u,(t) e U for all e [0, 1),

(30)
q, (t, z,(t), u,(t)) q,(t, z,(t), u,(t))

p(t, z,(t), u,(t)) 0 for all e It, t2],

(31) z,(t) e(t) + Mt) + o(, ),

where 0(:, )" pk + _. R" is continuous and

lim
10(,/)l o uniformly in fie pk+ 1.

e-,O 8

If 2 < 1, let {Sm2+ 1,’’’, Sm} {S1, Sm} r] (t 2, 1]. On the interval t2, 1],
the set co {z, ..., zk+} is given by

k+l

z= flz for allflee+,
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where

z(t)
lm

z(t) + (t, /,)
j=l

for 2 < sin2 + ,

flrCr2+ [f(Sm2+ (Sm2+ 1) Uj
m2+l

f(s + 1, ’(Sm2 +1), l(Sm2 + 1))] for Sm2 + < Sm2 + 2,

z(s o) + (t,.s) , tsc If(sin, (Sm), l)Jm) f(Sm, (Sm), l(Sm))]

fOrSm l,

where vj e U and Ci’r _>_ 0 for each m2 4- 1,..- m and each r 1, ..., k + 1.
It follows from the theorems on the continuous dependence with respect to

initial conditions that there is an e3 e (0, e2] such that, for each (e, fl) e [0, e2] x P/ ,
there exist an absolutely continuous function ,a’[t2, 1] G1 and a piecewise-
continuous function o,,a’[t2, 1] U such that (see [3, Chap. I ])"

(32)

(33)

(34)

z,#(t) z,#(t2) + f(a, ,a(a), O,a(a)) da for all e It 1, 1],

,() ()+ z()+ o(, ),

6(e, )’P+ R is continuous,

lira
lO(e, fl)]

0 uniformly in fle PU + ,
eO

where z,’[0, 2] -- G satisfies relations (17), (19) and (20).
Let

ye,(t) ze,(t) for (t, ;)e [0, 2] [0, t3],
(5,(t) for

fu,(t) for (t, e) [0, 2] [0, 3],
vt,a(O

[O,#(t) for (t, e)6 (t2, 1] x [0, e3].

It follows from (17), (18), (19) and (21) that

[(y,, v,) (, )] e L,

and it follows from (19) that

T(y,a, v,a) 0

for each (e, fl) [0, e3] x P+ . Hence

[(y,,,, v,,,) (, )] e Lo.
Let the function

:co{0, x,.-.,x+,}Lo= {xL:Wx=O}
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be defined as follows"

v,) (, )
(6. x) 0

where

for all 6 e [0, g3,
for 6 e (g3, 1],

k+l

xa= flrXr for allfleVk+l.

Let (p ((Pl, "’", (Pk). Then,

(p((6. xa)) (2:(y,a(1)), g(y,,#(tx))),
where X (X1,’", Xk-1). Since y,.(1)’Pk+l G1 and y,.(tl)’Pk+l G1 are
continuous (see (33), (34) and (17)), and z’GI -- Rk- and g’G1 R are continu-
ous, it follows that

o((6(. )))’co {xl, xk+ } - Rk

is continuous (x --* Xo is into CO{X1, X,k+ 1} if fl - flo is into pk+ 1). Since

X and g are of class C and

Z,((1)) g((tl))= O,

it follows that

Z,(Y6,(1)) Zi(Y6,(1)) Z,((1))

(35)

Vz(2(1))y6,(1 (1)
+ ,(6),

g(Y,a(t1)) g(Y6,a(t 1)) g((t1))

where

Vg((tl))Y6.(tl) _(t 1)
_[_ k((),

lim ei(6 0 for O, 1,..., k.
6-.0

(Z(y6,fl(1))- SVz((1))zfl(1)6 g(Y6’fl(1))- SVg((tl))zfl(tl))6
Vz(_(1))y6.(1 .(1)- 6z(1) + e(6) Vg((1))

y6’(tl) (tl) (z(tl) +

where

E(()-- (EI((), k-l(()).
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From relations (33) and (34), we have that

lim
ly,(1)- e(1)- 6z(1)1 0

60 ( uniformly in fl pk +

and from relation (17) we have

lim lYo’a(tl)- (tl) 6z(tl)l
60

=0 uniformly in fl P+

Hence,

Iq((6x))- 6h(x)l
lim 0 uniformly in x co {xl, Xk+ }
60 t

Let (, ) e co {x1, Xk+ 1} be such that h(2) 0. The hypotheses of Lemma
1 are satisfied, so that there exist functions 6 :(0, 1) (0, 1) and x :(0, 1) co {x,
", Xk+l} such that

(36) limx(e)=eco{xl,...,xk+l} and lim (e)=0
e-O eO

(37) qg((f)e(x(e))) o for each e e (0, 1).

Let us denote (6(e)x(e)) by A(f(e)).
Since x(e) e co {xl, "", xk+ 1}, it follows that z(e)e co {z1, Zk+ 1), where

x(e) (z(e), u(e)). Hence,
k+l

z()= y fl()z= z,,

and it follows from relation (36) that

(38) lim Ize,(1)- (1)[ 0.
e-.0

From relation (35), we have that

(po(A(6(e)))- ho(6()) Zo(ya(),a()(1))- Zo(Z(1))- 6()VZo((1))(1)

V;o((1))y6(),e()(1) ,- (1)- 6(e)(1)
6() + eo(6(e)).

Since

lim
eO

lya(),a()(1) (1) 5(e)(1)1

< lim
e.-.O

+ lim Iz(e)(1)- (1)1,
6(e) o+

it follows from (23), (25) and (27) that

lim [Ya()’a()(1) (1) 5(e)2(1)1
-o 6(e)
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Taking into account the relation

lim eo(6(e)) O,
e0

we see that condition II of Theorem 3 is satisfied.
Since all of the hypotheses of Theorem 3 are satisfied, it follows that there

exist constants0i, 0, 1, ..., k, and a functional fe o#, such that

(39) , eihi(x) + f(Tox) <= 0 for all x e M,

(40) I1 > 0, o =< 0.
0

Since Lt([t 1, t2], R) x LX([t, tZ], R) (algebraically and topologi-
cally), there exist functions v, ..., v,, 2 e L([t 1, 2], R) such that

f(y) yi(t)vi(t) dt y,+ l(t)2(t) dt for all y e .
By definition of the functionals hi and of the operator To, relations (29) and (30)
yield that

k-1

aiVzi((1))z(1) + aVg((tl))z(t1)
i=0

(41) vi(t [Vzqi(t (t), (t))z(t) -t- Vuqi(t, (t), (t))u(t)] dt

2(t)[Vp(t, (t), (t))z(t) + V,p(t, Y.(t), Yt(t))u(t)] dt <= 0

for all x (z, u) M,
k

(42) Iil > 0, o --< 0.
0

Let I//3 "It2, 1] R" be the solution of the system

(43)
dt 8/ (t, .(t), a(t)),

k-1

0() Y ,vz,(()),
0

let 2 "[tl, t2] R" be the solution of the system

(44)
dt 0 (t, (t), O(t)) + 2(t)Vp(t, 2(t), O(t)) + vi(t)Vqi(t, (t), O(t)),

O(t2) O(t2),

and let 1"[0, 1] R" be the solution of the system

dO(45)
dt 0 8o-of(t, 2(t), O(t)), O(t 1) 02(t 1) nt- kVg((tl)),

where the ai and the functions vi, 2 satisfy (41) and (42).
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For each s e (t2, 1] which is a point of continuity for 0 and each v e U, let
xs,v (zs,v, 0) e M, where

0 for 0 __< < s,
z,,(t)

(t,s)[f(s,(s), v)- f(s,(s), 0(s))] for s __< =< 1.

By virtue of (43) and (41), we obtain that

(46) O3(1)z,,(1) <= 0 for all v e U

and for all s e (t2, 1] which are points of continuity for 0. Since

3(s) 3(1)(I)(1, s) for all s e It2, 1],

we obtain that

/3(1)(I)(1, s)[f(s, 2(S), V) f(s, (S),
(47)

IP3(s)[f(s .(S), V) f(s, (S), 0(S))3 =< 0 for all v U

and for all s (t2, 1] which are points of continuity of 0.
Therefore, from (47), we conclude that

(48) /3(t)f(t, (t), 0(0) max 3(t)f(t, (t), v)
vU

for all (t2, 1] which are points of continuity of 0.
For each point of continuity s (t 1, 2] of 0 and each r R(s), let the function

z,r be defined as follows"

0 for 0 =< < s,
z,(t)

(t, s)[f(s, (s), r) f(s, (s), (s))] for s =< =< 1.

Because z,r is continuous at and at 2, Xs,, (zs,, 0) M. By virtue of
(43) and (44), relation (41)yields

0 >= /3(t2)z,,(t2) [2(t)Vp(t, .(t), O(t)) + vi(t)Vzqi(t, (t), O(t))]z,(t) dt

t3(t2)z’(t2)
[_ dt

+ 02 (t, 2(t), O(t)) Zs,,(t dt

(49)
(t2)z,(t2) 2(t2)z,(t2) + /2(s)[f(s, (s), r) f(s, 2(s), 0(s))]

t2(S If(s, 2(S), r) f(s, .(S), 0(S))].

Hence,

(50) 2(t)f(t, .(t), 0(t)) max d/2(t)f(t, (t), r)
rR(t)

for all (t, 2] which are points of continuity of 0. If 0(t + 0)--0(t), then
relation (50) holds also for . Hence,

(51) /2(t)f(t, (t), 0(t)) max /2(t)f(t, (t), r)
rR(t)

for all t, 2] which are points of continuity of 0. For each point of continuity
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s (0, 1) of fi and each v U, let us define the function zs,v as follows"

0 for 0 _< < s,
z,,(t)

(t,s)[f(s,(s), v)- f(s,g(s),(s))] for s =< =< 1.

Since zs,v is continuous at and at 2, it follows that x, (z,, 0) M.
By virtue of (43) and (45), relation (41) yields

ftt2 d2 Of(t, (t) a(t))]z (t) dto >__ (t)z,(t) L at + 2z

(52)

Hence,

(53)

+ akVg(5(tl))z,v(t 1)

02(tl)z,v(t 1) + akVg(2(tl))z,o(t 1)

[@2(t 1) + akVg((tl))](I)(t 1, s)[f(s, 5(s), v) f(s, 2(s),

01(s)If(s, (s), v) f(s, (s), O(s))].

d/l(t)f(t, .(t), (t)) max 01(t)f(t, 2(t), v)

for all e (0, 1) which are points of continuity of ft. It is obvious that if (0)
(0 + 0), the relation (53) holds also for 0. Therefore,

(54) l(t)f(t, (t), (t)) max d/l(t)f(t, (t), v)
vU

for all which are points of continuity of .
LEMMA 6. Let

Ol(t) for te[0, tl],
O(t)= 02(t) for 6 (t 1,t2],

t3(t for e [t2,1],
where 1, 2 and 13 satisfy systems (45), (44) and (43), respectively. Then the
function 0"[0, 1] --, R" is not identically equal to zero.

Proof Suppose that O(t) 0 for all e [0, 1]. Then
k-1

0(1) ,Vz,(2(1))= 0,
0

and it follows from Hypothesis A that a 0 for i= 0, 1,..., k- 1. Since
ff(t 1) ff(t + 0) 0, akVg((tl)) 0. Further, because [Vg((t))l 4:0 for all

It 1, 2] (see Hypothesis B), it follows that ak 0. Hence a 0 for 0, 1, ..., k,
contradicting relation (31).

LMMA 7. Let q2: tl, t2] R" be the solution ofsystem (44). Then thefunctions
2 and v, 1, ..., r, are piecewise-continuous, and

02(t)V.f(t, (t), a(t)) 2(t)V.p(t, (t), a(t)) + v,(t)V.qi(t, 2(t), O(t))

for all e It 1, t2].
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Proof Let u’[t 1, 2] Rv be piecewise-continuous, and let

0 for 0 _< -< ,
z(t) (t, s)V,f(s, (s), gt(s))u(s) ds for =< __< ,

[(t, t)z(t) for _<_ _<_ 1,

so that the function z’[0, 1] R" is absolutely continuous. Further, define x as
follows"

(0, 0) for 0 <_ __< 1,
x=(z,u)= (z(t),u(t)) fort <t<=t2,

(z(t), 0) for 2 < __< 1.

Obviously, x e M, and relation (30) yields that

g/z(tZ)z(tz) 2(t)Vzp(t, (t), (t)) + vi(t)Vzqi(t, 2(t), (t)) z(t) dt

(55)
2(t)V,p(t, e(t), a(t)) + vi(t)V,q,(t, e(t), a(t)) u(t) dt <= 0

for all x (z, u). By virtue of (44), relation (55) implies that

’ O2(t)Vuf(t, g(t), fi(t)) 2(t)V.p(t, (t))
k

(56)
v(t)V.qi(t, (t), (t))lu(t)dt <= 0

for all piecewise-continuous functions u" It x, ] R. Since (56) holds for both
+u(t), we have that

(57) F(t)u(t) dt 0

for all piecewise-continuous functions u" It 1, ] Rv, where

V(t) 02(t)V,f(t, (t), a(t)) 2(t)V,p(t, 3(t), a(t)) vi(t)Vuqi(t, 3(t), O(t)).

Each component U, i= 1,..., p, of the function F defines a continuous,
linear functional qh on the space C([t t2], R) through the relation

q)i(c) U(t)c(t) dr.

Now relation (57) implies that q 0 for 1, ..., p, so that

’2

IU(t){- 1, ..., p,dt 0 for i=

and we deduce that F(t) 0 a.e. in It, t2].
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On the other hand, by Hypothesis B, the vectors

V.p(t, (t), O(t)), V.q(t, (t), (t)), V.q,(t, (t), O(t))

are linearly independent for all It a, 2] which are points of continuity of
Hence, there exists a unique system of piecewise-continuous functions 7,

0, 1, ..., r, such that

2(t)V,f(t, (t), O(t)) 7o(t)V,p(t, (t), O(t)) + 7i(t)V,qi(t, (t), O(t))

for all It 1, t2].

Since 2, Vl,’", vr L([t, t2], R) and F(t) 0 a.e. in It 1, t2], it follows that
2, vi, i= 1,..., r, may be identified with 7o, 7i, i= 1,..., r, respectively, and
the proof of Lemma 7 is complete.

TI-mOREM 4. Let 0 < < 2 <= 1, let (2, 0) be an optimal pair, and suppose that
Hypotheses A and B hold. Then there exist absolutely continuous functions
[0, -- Rn, 2 "[tl, t2] Rn, and 3 "[t2, 1] -- Rn, piecewise-continuousfunctions 2,
v, v "It 1, 2] R, and constants , O, 1, k, such that"

(a)
d3(t)

dt
-9(t) (t, (t), O(t)) for It2, 1],

k-1

(1)-- iVzi((1)),

/(t)f(t, (t), 0(t)) max /(t)f(t, (t), v)
vU

for all (t2, 1] which are points of continuity of 0;

(b)
dt2(t)

dt
-t2(t) (t, (t), O(t)) + 2(t)Vp(t, 2(t),

+ vi(t)Vqi(t, (t), O(t))

for It’, t2], 2(t2) (t2),
2(t)f(t, (t), 0(t)) max /2(t)f(t, (t), r)

reR(t)

for all t, t2], which are points of continuity of , where R(t) is as defined in
Hypothesis B,

(c)

t2(t)V,f(t, 2(t), (t)) 2(t)V,p(t, (t), O(t)) + vi(t)V,qi(t, (t),

dt -i(t)z(t, 2(t), O(t)) for [0, tl],

l(t’) 2(tl) + aVg(F(t)),

Ox(t)f(t, (t), 0(t)) max Ol(t)f(t, 2(t), v)

for e Vt’ t]
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for all [0, 1) which are points of continuity of fi;

(d) the function 0 defined by

Ip(t) 102(t
[3(t)

is nonzero, and

forO <= <= ,
for < 2,

for 2 <_ <= 1

lil >o, % O.
0

Proof Relations (a) follow from (43) and (48). System (44), Lemma 7 and
relation (51) give rise to the relations (b). System (45) and relation (54) yield the
relations (c). Relation (d) follows from Lemma 6 and from relation (42).

TI-mOREM 5. Let 2 1, and let (2, ) be an optimal pair which satisfies Hypothesis
B. If the vectors VZo((1)), "", VZk-((1)), Vg((1)) are linearly independent, then
there exist an absolutely continuous function :[0, 1]--. R,, piecewise-continuous
functions 2, vi (i 1,..., r):[t 1, 1]- R, and constants , i= O, 1,..., k, with
o 0 such that:

dt -O (t, (t), (t)) + 2(t)Vzp(t, (t), (t)) + v(t)Vzq(t, (t), (t))

for e [t’, 1],
k-1

0(i) a,VZ,(Z(1)) + akVg(Z(1)),
0

@(t)f(t, (t), (t)) max @(t)f(t, (t), r)
reR(t)

for all [t’, 2] which are points of continuity of fi,

O(t)V,f(t, (t), a(t)) 2(t)V,p(t, (t), O(t)) + Z v,(t)V,q,(t, (t), /(t));

(c)
dt --0 (t, 2(t), (t)) for e [O, tl],

(t)f(t, (t),/(t)) max d/(t)f(t, 2(t), v)
tU

for all [0, 1) which are points of continuity of fi;

(d) I’(t)l # 0 for [0, 1].
The theorem follows in a straightforward way from Theorem 4.
Remark 2. In [3] Gamkrelidze considered an optimal control problem with

inequality-type phase coordinate restrictions (g(z)_<_ 0). The method used by
Gamkrelidze in order to obtain his jump condition at (the same as relations
(b) and (c) in Theorem 4) was based on the possibility of considering variations of
the form 2(t) + e6o, where Vg((t)) 6o < 0. In our case, where the phase
restriction is of the form g(z) 0, the method used in [3] cannot be applied to
obtain the relations (b) and (c) in Theorem 4.
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Remark 3. In order to consider restrictions of the type qi(t,z,u)= O,
i= 0, 1,..., r, Hypothesis B must be strengthened by requiring that for every
triple (t, z, u) which satisfies qi(t, z, u) 0 for 0, 1, ..., r, the vectors V,qo(t, z, u),
.., V,qr(t, z, u) must be linearly independent. This assumption was made in [4]
and [5].

Acknowledgment. The author is indebted to Professor L. W. Neustadt for
pointing out the problem and for his many valuable comments and corrections to
early versions of this paper.
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NECESSARY AND SUFFICIENT DYNAMIC PROGRAMMING
CONDITIONS FOR CONTINUOUS TIME STOCHASTIC

OPTIMAL CONTROL*

RAYMOND RISHEL-

1. Introduction. The purpose of this paper is to extend methods of dynamic
programming to very general types of continuous time stochastic control systems.
The controlled processes involved are not required to be Markovian and the
control laws are allowed to be functionals on incomplete measurements of the
system. The processes are assumed to stop at a random time which may depend
on the control.

For each control u a value function V,(t) is constructed. This function at time
is the essential infimum, over the class of controls which agree with u up to t,

of the conditional expectation of the remaining contribution to the performance,
given the past measurements of the process. For each control u two spaces of
functionals on the past measurements of the processes are constructed and semi-
groups of operators on each are defined.

A concept called relative completeness of the class of controls is defined.
Under this condition an analogue of Bellman’s principle of optimality is estab-
lished. This principle and further weak conditions imply that the value function
V is in the domain of the weak infinitesimal generator Au of the appropriate
semigroup. Then necessary conditions for optimality are phrased in terms of in-
equalities involving A,V, and conditional expectations of the performance rates.
It is shown that the existence of a function W,(t) with properties similar to the
necessary conditions for V,(t) is a sufficient condition for optimality.

Dynamic programming type conditions for optimality of stochastic control
systems have been given by a number of authors. Only a few of these which are
closely related to this paper will be mentioned. Necessary and sufficient conditions
for optimality of discrete time finite state systems with incomplete measurements
have been given by Dynkin in [4]. Fleming in a series of papers [6], [7, [8] has
given necessary and sufficient conditions for optimality of diffusion type systems.
Kushner in [11] gave a sufficient condition for optimality phrased in terms of the
infinitesimal generator of a semigroup. Krasovskii and Lidskii [10] gave a similar
type of sufficient condition in a different setting. For deterministic optimal control
problems, Boltyanskii [1] showed that dynamic programming conditions gave a
sufficient condition for optimality. The stochastic optimality conditions of this
paper are expressed in a form analogous to those of [1]. A recent survey by
Fleming [9] gives a very complete exposition of the stochastic optimal control
field with a very extensive list of references.

2. Controlled systems and the optimal control problem. Let (R, M, A) denote
the real half-line 0 _< < with the usual Borel field M, and Lebesgue mea-

* Received by the editors July 14, 1969.

"f Department of Mathematics, Washington State University, Pullman, Washington, and The
Boeing Company, Seattle, Washington. Now at Bell Telephone Laboratories, Inc., Whippany, New
Jersey 07981.
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sure A. Let (f, fl, P) denote a triple of a probability space f, Borel field fl and
probability measure P. Let (X, B) be a measure space and x(t) a measurable sto-
chastic process with values in X. For a stochastic process y(t), let the notation
F{y(t)’O < <= T) denote the Borel subfield of fl generated by the random
variables y(t) for 0 __< =< T. Let Nt F{x(s)’O =< s __< t}. A finite stopping time
t/for x(t) is a nonnegative real-valued random variable on f such that

(1) {co’r/(co) =< t} Nt and IIr/I P-ess sup

For a stopping time r/, let X(t) be the stochastic process defined by

(2) Z(t)
if r/ < t.

Recall that if F is an increasing collection of Borel fields and x(t) a stochastic
process, x(t) is said to be adapted to Ft, if x(t) is Fcmeasurable for each fixed t.
Notice that (1) and (2) imply 2(t) is a measurable stochastic process adapted to N.

A nonnegative real-valued measurable stochastic process k(t) will be called a
performance rate of the stochastic process x(t), if k(t) is adapted to N. Notice, by
[12, p. 502], assuming that k(t) is adapted to N implies that k(t) is a functional on
the past of x(t). This remark justifies the terminology k(t) is a performance rate
of x(t)." A performance rate will be called dominated if there is a q > 1 and a
random variable b such that k(tco) <_ b(co) and E{b} <

Let the measure space (X, B) be the Cartesian product of measure spaces
(Y, B)and (Z, B2). Then the process x(t) (y(t), z(t))is a vector of two-component
processes. Consider y(t) as a component that is observable, and z(t) as a component
that is unobservable. For each let At denote a set of times less than such that
A, c At2 if tl < t2. Let

(3) H, F{y(s), s A,, and Z(s), 0 =< s < t}.

The fields H will be called the information fields of the process x(t) corresponding
to observations made at times of At. Recall that Z(s) is one until the stopping time
r/is reached and zero afterwards. Thus, knowledge of y(s), s A,, and Z(s), 0 __< s < t,
is equivalent to knowledge of measurements of y(s) for times s in At and whether
the process has stopped or not. This is assumed to be the information available at
time about the process x(t).

Let (U, B3) be a measure space. A measurable stochastic process u(t) with
values in U will be called a "feedback control on observations made at times of

At on the components y(t) of the process x(t)" if u(t) is adapted to Hr. Recall again
by 12, p. 502] that if u(t) is adapted to Ht, u(t) is a functional on {y(s), s At, and
Z(s), 0 <= s < t}.

A controlled system will be defined to consist of a class U of controls u(t)
such that corresponding to each control of the class there are"

(A) a stochastic process x,(t) representing the trajectory of the system,
(B) a finite stopping time
(C) a dominated performance rate k,(t);

and each control u(t) is a feedback control on observations made at times At on the
components y,(t) of the process x,(t). In addition it will be assumed that the
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processes of the system have the following property which can be summarized
intuitively by saying that the future does not influence the past. If u(t) and u*(t)
are controls such that u(s) u*(s) for 0 =< s < t, then

x,(s)=x,.(s) and k,(s)=k,.(s) for 0__<s< t,

{o "r/,(o) > t} {o’r/,,(co) > t}, and q,(o) r/,.(o)on this set.
Consider the optimal control problem of finding the control u in the class U

of the controlled system for which

is a minimum.

3. Spaces of functionals on the information fields of the system. Optimality
conditions for the controlled system will be defined in terms of spaces of stochastic
processes adapted to the information fields of the system. For a fixed control
u in U consider real-valued stochastic processes bu(t) and the equivalence relation
among the processes qSu(t) given by

b, b2. if :,(t, o)b,(t, o) ,(t, o)b2"(t, o),

A x P almost everywhere. Let Hut 0 < < t3, denote the information fields
corresponding to the control u. For a real number p > 1 define L,(u) to be the space
of equivalence classes of measurable real-valued stochastic processes bu(t), each
equivalence class containing an element b,(t) such that

(A) q,(t)is adapted to H,,, and

(g) 114.ll E 14,(t)l dt < .
For q p(p- 1)-1 define Lq(u) to be a similar space of equivalence classes
,(t) satisfying the above conditions (A) and (B) with p replaced by q in con-
dition (B).

The standard abuse of using equivalence classes and representative elements
of equivalence classes interchangeably will be followed. This will cause no con-
fusion if every statement that an element of Lp(tt) or Lq(u) has a property P is
interpreted to mean there is at least one member in the equivalence class that
has the property P.

In the remainder of the paper, in certain instances to save repeticious writing
of the symbol u, the dependence of spaces, functions, stopping times, trajectory
process, and fields on the control u will not be indicated. The reader should keep in
mind that each of these are defined with respect to some control u and depend on
which control is being used.

Remark 1. The spaces Lp(u) and L(u) are Banach spaces under their respective
norms.

Proof. To show they are complete spaces, notice that Cauchy convergence of a
sequence in either L(u) or Lq(u) is equivalent to Cauchy convergence of Z,
in either L(A x P) or Lq(A x P). Since the latter are complete spaces, complete-
ness of Lp(u)or L(u) will follow if the limit lies in these spaces. For a sequence
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XO, converging in either Lp(A x P) or Lq(A x P) there is a subsequence XO,j con-
verging A x P almost everywhere. Define

lim )(t, co)qt.j(t, co) if the limit exists,
(5) (t, co) -oo

0 otherwise.

Then 0(t, co)= X(t, co)0(t, co), and either the Lp(u) and Lp(A x P) or Lq(u) and
Lq(A x P) norms of 0(t, co) agree. From (5) it is seen that 0(t) is measurable and
adapted to Ht since the 0,j(t) are.

Remark 2. If h(t) is a measurable real-valued stochastic process such that

E [h(t)l q dt < oe, then E{z(t)h(t)lHt} e Lq(u).

Proof It follows from [2, p. 439] that there is a sequence of essentially bounded
stochastic step functions h,(t) converging in Lq(A x P) to 7.(t)h(t). Since
if tl < t2, it follows by combining Theorem 4.3 of [2, p. 355] and Theorem 2.5 of
[2, p. 60] that the remark is true for stochastic step functions. Since

IE{z(t)h,(t)lHt} E{z(t)h(t)iHt}[ <= E{Z(t)lh,(t)- h(t)[qHt},

e{z(t)h,(t)lH,} converges to E{z(t)h(t)lH,} in Lq(u). Since Lq(u)is complete this
establishes the remark.

Remark 3. The space Lq(u) is the dual space ofLp(u). Each linearfunctional on
Lp(u) has theform
(6) L[qS] E c(s)O(s) ds

for some element of L(u).
Proof Since the mapping taking b(s) into )(s)c(s) maps Lp(u) isomorphically

as a Banach space into Lp(A x P), every linear functional on Lp(u) has the form

(7) E )(s)O(s)c/)(s) ds

for some element of Lq(A x P). Now interchanging the order of integration,
using the fact that X(t)4(t) is adapted to Ht, and the formula for iterated expecta-
tions gives

(8) L(c/)) E Z(s)c/)(s)E{x(s)O(s)[Hs} ds E dp(s)E{x(s)O(s)lHs} ds.

By Remark 2, E{x(s)g/(s)lHs} is an element of Lo(u).
In the remainder of the paper the abbreviated notation (b, k) will be used for

(9)

4. The operators R and Th. Define operators Rh on Lp (u) by

Rh[dp](t)= {o(t-h)ift<h.ift>=h’
It is easily seen that Rh forms a norm decreasing semigroup of operators on
Lp(U).
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THEOREM 1. The operators Rh satisfy

(10) lim Rn[qb] 46 0.
h+0

Proof This proof is an argument which is similar to [2, pp. 440-441]. Since
the theorem is very important for later work this argument is carried out below.

It is not a loss of generality to assume 4b is bounded. To see this define

(11) 4b"(t’ co)= {0q$(t’ c)ififl(t’ co). =<n,ldp(t,co). > n.

Since 05 is in Lp(u), ll4b,- 11 approaches zero. Since R, is norm decreasing,
]]Rh 0511 =< 211, q]l + ]]Rhn tnl[ SO the theorem will follow if it has been
established for bounded elements of Lp(u). For bounded qS(t, co), since I111 < ,
by Lusin’s theorem [13, p. 72] there is a continuous function f(t) so that for
P--almost every fixed 09,

(12) I(s, ) f(s)l p d < e.
vO

For such a fixed 09, applying Minkowski’s inequality gives

(13)

I rl(oo) I lip

lim sup [Rh()(s, 09) (s, co)l p ds
hO ,10

__< lim osup Icib(s h, co) f(s h)l p ds
h- L,h

+ Jn f(s h) f(s)l pds

+ If(s) (s, co)l" ds + I(s, co)l p ds
*h

Since e was arbitrary, the pth power of the quantity inside the lim sup on the left-
hand side of (13) must approach zero as h approaches zero. Applying Lebesgue’s
dominated convergence theorem to the expected value of this quantity then
implies (10).

THEOREM 2. Let Th be the adjoint operator ofR Then Th has the representation

(14) Th[0](t) g{z(t + h)tp(t +

Proof. Since Th is the adjoint of Rh,

(15) (dp, Thg/) E Rh[qb](s)O(s)ds E X(s)qb(s- h)g/(s) ds
h

Now Z(t + h)x(t) Z(t + h); hence by interchanging the order of integration and
changing the variable of integration, we have that (15) equals

(16) E{z(t)(t)Z(t + h)O(t + h)} dr.

Since X(t) and b(t) are Ht-measurable, by the formula for iterated conditional
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expectations the integrand in (16) equals

(17) E{x(t)dp(t)E{7(t + h)O(t + h)lHt}}
Using this and interchanging the order of integration once more gives

(18) (c, ThO) E dp(t)E{z(t + h)O(t + h)iHt} dr,

which establishes the theorem.
Let X be a Banach space and Rh a norm decreasing semigroup of operators

on X. Let Ybe the dual space ofX and Th the adjoint semigroup of operators on Y.
Recall [5, p. 37] that an element y in Y is in the domain DA of the weak infinitesimal
generator A of Th if there is an element Ay in Y such that

(19) lim h-l[(x, Thy) (x, y)] (x, Ay)
h+0

for all x in X. Recall [5, p. 40] that if y is in DA, the formula

(20) (x, Thy) (x, y) (x, TAy) ds

holds.
THEOREM 3. Let X be a Banach space, Y its dual, Rh a semigroup of norm

decreasing operators on X, Th the adjoint semigroup of operators on Y. For each
x in X, let

(21) lim IlRhx xll O.
hl, O

Then a necessary and sufficient condition that an element y of Y be in DA, the domain
of the weak infinitesimal generator A of Th, is that there exist a real number K such
that

(22)

(23)

(24)

Thy- Yll <= Kh.

Proof Necessity. If y e DA for each x in X,

(x, h-l(Thy y)) _-< h -x I(x, TAy)I ds

h -x I(esx, A.y)I ds <- Ayll x l.

Sufficiency.

I(x, T+,y- Ty)I IIR,xll IIThy- Yll Khllxl].

Hence (x, Ty) is a Lipschitzian real-valued function of for fixed x and y. There-
fore, it has a derivative everywhere on R except at a set zx of Lebesgue measure
zero. For each s in the complement of Zx,

(25) lim (Rx, h-a(Thy y)) lim (x, h- l(Ts+hY Ty))
h,0 h,0
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exists. Now (21) implies that the elements Rsx for s in R rx and x in X are dense
in X. Thus (25), by the characterization of weak convergence, implies that
h-l(Ty y) converges weakly to an element Ay of Y.

5. The value function. For a given control u let the notation u* u(t) mean
that u*(s) and u(s) agree on 0 =< s < t. For u* u(t), if the control u* is used after
time t, consider the conditional expectation of the remaining performance given
the field Hu, of measurements; that is,

In subsequent formulas to shorten the notation the symbol will be used to mean

n
It will be always understood that if the limit of integral isupper an a stopping

time the lower limit is the minimum of this stopping time and the time indicated.
Since performance rates are nonnegative, the random variables (26) are

bounded below by zero. For fixed define V,(t) to be the essential infimum of these
random variables;that is,

(27) V(t) P-ess inf E k,(s) dslH,
u*u(t)

Since L(P) is a complete lattice [3, p. 302], V,(t) is a random variable for each
fixed t, in fact, an Hut-measurable random variable.

Remark 4. V,(O) is independent of u and gives the infimum of the values of the
performance indices (4) of the optimal control problem.

Proof The set u* u(0) includes the entire class of controls U because the set
0 <_ s < 0 is empty. Similarly from (3), Hu0 is the field consisting of the empty
space and the whole space f. Therefore, (27) implies that V,(0) is the infimum of the
quantities (4).

The next objective will be to establish a stochastic analogue of Bellman’s
principle of optimality. The intuitive idea behind the principle of optimality is that
it is always better to use immediately an optimal control than to use some other
control for a short while and then use an optimal control.

The validity of inequality (28) with probability one for each will be called the
principle of optimality.

Zu(s)ku(s) dslHutt + e{z(t + h)V.(t + h)lHu,}.

Before establishing (28) under certain conditions, it will be shown that (28) does
not always hold by giving a counterexample.

The following is a rather naive feedback control system for which (28) is false.
Let f be the space of the two points f {0, 4} with respective probabilities p and
1 p, where 0 < p < 1/2. Let

-1co if t=<2+u(t),
(29) x.(t, oo)

if 2 + u(t) < <_ 4.
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Suppose the entire process X,(t, 09) is observable but that A is empty except for
A2 {1}. Let the class U of controls consist of two controls ul(t, oo) and u2(t,
given by

Ul(t, oo) u2(t, oo) O if t<=2,
(30)

u(t, o) x,(1, o), u2(t, o)) 1 x,(1, o) if 2 < __< 4.

Let the stopping time r/,(o) equal the first time x,(t, o) equals four. Consider then
the problem of minimizing

It is easily seen that r/(0) 2, r/l(4 3, (0) 3, and r/(4) 2. Hence,
E{ V,(2)) 0 which implies that

(31) 2p + 3(1 p)= V,,(0) dt + V,,(2) 2.

In the example above it happened at a certain time that there was no control
whose remaining performance approximated the value function at that time.
To avoid this type of situation the following concept will be introduced.

The class of controls will be called relatively complete if for each control u,
time t, and e > 0, there is a control u* u(t) such that

(32) V,(t) >= E k,,(s)

with probability one. Following [4, pp. 9-10], such a control will be called
(u(t), e)-optimal.

THEOREM 4. If the class U of controls is relatively complete, the principle of
optimality is valid.

Proof The controls u’ u(t + h) all belong to u(t); so, with probability one,

(33) r(t) <= E Z(s)k,(s) dslIt / P-ess inf E k,,(s) dslItt
u’e u(t + h) +

Let u* u(t + h) be a (u(t + h), e)-optimal control. Then

(34) K(t + h) E k,,(s)ds[H,(,+a) .
+h

The definition (27) of G(t) implies that Z,(t + h)V,(t + h) G(t + h). Therefore,
(34) implies

(35) E{Z,(t + h)(t + h)lH,} P-ess inf E k,(s) dslH, .
u’e u(t + h) +

Since e is arbitrary, and a reverse inequality follows directly from the properties
of conditional expectations and (27), it follows that

(36) E{Z,(t + h)(t + h)H,} P-ess inf E k,,(s)dsH,
u’e u(t + h) + h

Substituting (36) in (33) gives (28) which is the desired conclusion.
A control u will be called value decreasing if for each t,

(37) V(t) E{Z,(t + h)V(t + h)lH,t}
with probability one.



DYNAMIC PROGRAMMING CONDITIONS 567

Not all controls are value decreasing. The reader will have little difficulty in
constructing situations where the control "is in the wrong direction for certain
times" in which the control is not value decreasing. Theorem 6 to be proved below
and the nonnegativity of performance rates show that if the class of controls is
relatively complete then any optimal control is value decreasing.

Notice that the right side of inequality (37) has the same formula as T, operat-
ing on Vu would have, but we do not know that V, is in Lq(u). The notation

(38) Ilkull sup E{lk,(t)l} x/o

will be used for the norm of a performance rate k,(t). Since k.(t) is dominated by
some b,, (38) is finite.

TI-IZOREM 5. If the class U of controls is relatively complete and if u is a value
decreasing control, V,(t) belongs to L(u).

Proof of Theorem 5. The inequality

(39) glVu(t)] q g g k,(s)dslHut <= g{k(s)q} ds Ilq,[[ ku[ q

holds. Let
(4O)

be points of R and let

(41)

0 to < < t2 < < tn rl,

V,(t) V,(ti+ 1) if < < ti+ 1’

Since V",(t) is a stochastic step function, it is jointly measurable on R f. From
(39), (41), the finiteness of q,]l, and Remark 2, E{z,(t)(t)lH,t} is in L(u). Since
u is value decreasing,

0 <= V(t)- E{Z.(t)V(t)]n.t}
(42)

V.(t) E{z,(ti+ 1)V,(ti+ 1)IH,,} if t, __< < t+ 1.

By Theorem 4, the last term of (42) is smaller than

(43) E Z.(s)k,(s) dslH,, if t =< =< t+ 1.

The expected value ofthe qth power ofexpression (43) is bounded by IIk, llq(ti+ t).
This can be made uniformly small by the appropriate choice of {to, 1,’.’, t,}.
Therefore, we conclude that choices can be made for to, 1,’-’, t, so that the
corresponding functions E{Z,(t)V,(t)IH,,} converge to Vu(t) in the L(u)-norm.
Since Lq(u) is complete this completes the proof.

THORWM 6. If the class U of controls is relatively complete and u is an optimal
control,

(44) V.(t) E k.(s) dslH.t

with probability onefor each t.
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Proof From Remark 4, for an optimal control u,

(45) V,(0)= E(f:"k(s)ds} E{fiT.(s)k(s)ds) +

Subtracting (45) from (28) evaluated at 0, h t, and using that Zu(t)V,(t) V,(t)
gives by Theorem 4 that

(46) 0=< E{V,(t)- E{f"k,,(s)dslHt}}
for each t. By definition (27) the quantity within the first expected value sign of
(46) is nonpositive with probability one. Therefore, (46) implies it must equal zero
with probability one, which establishes the theorem.

THFORgM 7. If O(t)- g k(s) dsIH then O eDa and

E{z(t)k(t)lg,}.
Proof Let O(t) denote E{)(t)k(t)lHt}. By the formula for iterated expectations

and interchanging orders of integration,

E { f"k(s) dslH,} E {Z(t + h)E { fhk(s) dslHt+h}lH,}
(47)

E 7.(s)k(s) dslH

Hence, Theorem 2 and (47) imply for any b e Ll(U) that

E{Z(s)k(s)]H,} ds.

(, O) (#, ThP) E Z(s)b(s) E{z(s + v)k(s + v)lHs} dv ds

E{4(t v)z(t)k(t)} dt dv

(48)

f E{ f R[](t)e{X(t)k(t)iH,} dt} dv

(R, 0)dr.

Since (R,4, 0) is continuous at v 0, the difference quotient defining AO converges
to -(R04, 0) -(4, 0). Since this is true for each in L(u) the theorem follows.

Remark 5. If and are in Lq(u) and

(49) (, 0) N (, Oa)

for every nonnegative ofL(u), then

(50) Z(t, o)O(t, ) Z(t, o)O(t, ), A x P almost everywhere.

Proof Let . be the characteristic function of the set on which 2 1 < 0.

Then since E["12(s)lPds<ll] and 2(t)isa measurable stochastic process
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adapted to Ht, 2 is in Lp(u). Substituting 2 in (49) gives

(51) E 7.(t)2(t)(d/2(t) 01(t))dt >-_ O,

which can happen only if Z(t)2(t) vanishes A P almost everywhere since the
integrand is negative. The definition of 2 implies (50).

THOIM 8 (Necessary conditions for optimality). If the class U of controls
is relatively complete,for any value decreasing control u, thefollowing conditions are

satisfied:
There is a constant V(O) independent ofu such that

(52) lim E{ V.(t)} V(0),
t+o

(53) V.(t)e L(u) f’l DA.
and

(54) A.[V.] (t) =<
for A x P almost every (t, co). If u’ is an optimal control, (54) holds for u’ with
equality replacing the inequality.

Proof Since Z.(t + h)V.(t + h)= V.(t + h), taking expectations of (28) for
0 implies

(55) 0 __< E{Vu(0)} E{V.(h)} <_ E )u(s)k.(s) ds <= (1 + Ilk.lJa)h.

Remark 4 implies V,(0) is a constant independent of u. Set V(0) equal to this constant.
Inequality (55) then implies (52).

From (28), for a value decreasing control u, since ku(t) is dominated by some bu,

(56) v ThVll <= E E ;,(s)k,(s) dslH, dt <= Ilrlull 1/qE{bq} I/qh.

Theorem 5 asserts that V, e Lq(u); equation (56) and Theorem 3 imply V, e DAu. If

(57) Ou(t) E Z.(s)k.(s) dslH.,

Theorem 4 implies for any nonnegative b. e Lp(u) that

(58)

Therefore, by dividing by h and passing to the limit using Theorem 7,

(59) 0 <_ (dp.,-A.V.) <_ (dp., E{7..(t)ku(t)lH.t}).
Inequality (54) now follows from (59) and Remark 5.

Theorems 6 and 7 show (54) holds with equality for an optimal control u’.
TI-OREM 9 (Sufficient conditions for optimality). A sufficient condition for a

control u’ to be optimal is that there exist a constant W(O) and for each u in U a
stochastic process W.(t) such that

(60) lim E{ Wu(t)} W(0),
to
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(61)

(62)

(63)

Wu(t Lq(U) ["l DA.,
-A.W. <= E{z.(t)ku(t)[Ht},

A., W., E{z.,(t)k.,(t)lH,t}

A P almost everywhere,

A P almost everywhere.

Proof Again let q.(t)= E k,(s)ds]H,, From Theorem 7, (61)and

(62), O,(t) W.(t)e Dau and

(64) A.(.(t)- W(t)) <= O, A x P almost everywhere.

Then for any nonnegative element 4), of Lp(u),

(65) (q., 0. l/V,)- (., T(0u W,)) _>_ (Rb., A,(0. l/V,))ds >= O.

Note that for any elements 4) of Lv(u and of Lq(u) that

(66) (el), Th/) (RhC/), /) E d(t h)O(t) dt

Recalling the meaning of and that lit/ < oe, it follows that (66) is zero for

large h. This and (65) imply

(67) (b,, ,) >= (b,, W,)

for every nonnegative element of L(u). By Remark 5,

(68)

A similar argument using (63) implies that

(69) ., W.,,

Now

(70)

so

(71)

A P almost everywhere.

A P almost everywhere.

0 _<_ E{O.(O)} E{O.(h)} E Z.(s)k.(s) ds <= (1 + ]lk.I])h,

lim E{$.(h)} E{t.(0)}.
h,0

From (68), (69), (60) and (71) it follows that

(72)

Rewriting (72) as

>__ w(o)=

(73) E k,,(s) ds >= E k,,(s) ds

gives the desired statement of optimality of u’.
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COMMENTS ON THE PAPER "OPTIMAL CONTROL OF PROCESSES
DESCRIBED BY INTEGRAL EQUATIONS. I" BY V. R. VINOKUROV*

L. W. NEUSTADTf AND J. WARGA:I:

A number of statements and arguments in 1] are inaccurate. Theorem 2.1
in [1, p. 327] is not valid. This theorem states that, subject to conditions specified
in [1, 1, pp. 324-325], a couple (x, u) is an optimal solution if and only if it satisfies
the maximum principle [1, pp. 326-327]. It is well known, however, that, in the
special case where equation (1.1) in [1, p. 324] is equivalent to an ordinary differen-
tial equation, a couple (x, u) may satisfy the maximum condition without being
optimal. One such counterexample is due to Bolza and is described by Goursat
[2, p. 599]. A simple case of this general counterexample is provided by the problem
of minimizing x (1) subject to the relations

(Xl(t), X2(t)) X(t) K(t, x(s), u(s), s) ds,

x2(1 --0,

where

K (K1, K2), Kl(t x, u, s) tug 2u3x2, Kz(t x, u, s) u,

and the set U is the real line (or, alternately, U may be a closed interval [-N, N]
for an arbitrary positive N). It can then be verified that the couple (x, u) (0, 0)
satisfies the maximum condition but that it is not optimal; the control u(t)
for e [0, hi, u(t) . (1 t)h/(1 h) for e (h, 1] (with 0 _<_ e =< N and 0 < h < -)
yielding x(1) -1/2e4h2(1 3h)/(1 h)3 < 0, x2(1) 0.

The proof of the sufficiency condition [1, p. 335] is in error because sufficiency
follows from the relation Io(xo, Uo) <= Io(x, u) and not from Io(x, Uo) < Io(x, u).

The proof of "necessity" [1, p. 327] is purely formal and no justification is
provided for introducing the Lagrange coefficients/j[1, 2, p. 3251] or assuming
that the Jacobian determinant (2.13) in [1, p. 328] does not vanish.
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CONTROLABILITE DES SYSTEMES NON LINEAIRES *

CLAUDE LOBRYt

Introduction . Dans cet article on étudie le problème de l'accessibilité pour
des systèmes non linéaires du type :

dx = f(x, t,u),

	

xER n ,

	

uES~ ~ R p ,
d t

et plus particulièrement dans le cas où Q n'est pas un ensemble convexe .
Cette étude repose pour l'essentiel sur un théorème dû à Chow [2] . R . Her-

mann a, le premier, montré dans [7] et [8] comment ce théorème pouvait êtr e
appliqué avec fruit en théorie du contrôle . Depuis H . Hermes [10]--[12], utilisant
le théorème de Chow également, a abordé ce problème en termes de systèmes d e
Pfaff. Parallèlement dans [14] et [15] Kucera fait une étude très fine concernan t
les propriétés géométriques de l'ensemble des états accessibles, pour un système
linéaire particulier . Toutes ces études reposent fondamentalement sur l ' utilisation
de dérivées de Lie de champs de vecteurs . Nous ne proposons pas dans cet article
des résultats nouveaux importants mais plutôt une approche géométriqu e
systématique du problème . Pour cela nous avons partagé l'exposé en deux parties .
Dans la première nous exposons en termes purement mathématiques des résultat s
dus essentiellement à Hermann et Chow ; dans la seconde, nous interprétons ce s
résultats en termes de contrôlabilité . Lorsqu'un résultat est proche d'un résulta t
classique des références sont données, cependant la bibliographie proposée es t
loin d 'être exhaustive, en particulier tous les travaux concernant les équations d u
type :

dx
dt

E r(x, t) ,

tels que ceux de Wajeski, Filippov, Castaing, etc . ont été délibérément omis .
En fait, les méthodes et les résultats proposés ici sont de nature très différente .

Le paragraphe 1.1 est uniquement consacré à l'introduction de définition s
classiques en géométrie différentielle . Il ne contient aucun résultats .

Le paragraphe 1.2 est consacré à l'étude des "variétés intégrales " d'une
famille de champs de vecteurs . C'est en un certain sens une généralisation de
l 'étude de R . Hermann [7] . La proposition 1 .2 .1 est le résultat central de ce para -
graphe . Les exemples qui l 'accompagnent montrent que c 'est le résultat le plus
précis que l'on puisse obtenir dans le contexte choisi. Au point de vue géométrique
il serait plus logique de s'intéresser à l'intégration des "distributions cohérentes "
[22], [23], i .e ., se donner, de manière suffisamment régulière, en chaque point de l a
variété un sous-espace de l'espace tangent en ce point . Beaucoup des résultat s
énoncés ici peuvent se traduire immédiatement sauf, précisément, la proposition

1 .2 .1 . Le point de vue adopté (famille de champs de vecteurs) permet l'utilisation
du language géométrique et s'interprète immédiatement en termes de contrôle .

* Received by the editors November 18, 1969, and in final revised form February 24, 1970 .
t Mathématiques Appliquées, Université de Grenoble, Cedex 53, 38 Grenoble-Gare, France .

(1 )

(2)

573



574

	

CLAUDE LOBR Y

Le paragraphe 1 .3 propose une démonstration du théorème de Chow dont
l ' interpretation en termes de la théorie du contrôle est immédiate .

Le paragraphe 2.1 établit les liens entre le formalisme précédemment dével-
oppé et le formalisme classique de la théorie du contrôle . Les propositions qui y
sont énoncées sont des conséquences immédiates des définitions .

Le paragraphe 2.2 est consacré à l'étude locale de l'ensemble des état s
accessibles d'un système "contrôlé ." Il s'agit de corollaires des résultats de l a
première partie . Ces résultats ne sont pas classiques, et il est possible qu'un e
étude plus précise menée dans la même direction apporte d'autres renseignements .

Le paragraphe 2.3 est consacré à l'étude des systèmes du type :

dt = H(x) • u,

	

x e Rn ,

	

u e R P ,

	

H(x) EY(R P , R n ) .

Ces systèmes ont été introduits dans [10] . Une conjecture raisonnable concernant
la "bang-bang" contrôlabilité est proposée . Cette conjecture fait apparaître l a
possibilité de décrire l'ensemble des états accessibles de certains systèmes comm e
l'ensemble :

{xeR ;g(x)~0,i=1,2, . . .,p} ,

où les applications g ti sont des applications différentiables de Rn dans R .
Les problèmes variationnels issus de problèmes de contrôle, (contrôle op-

timal) n'ont pas étés abordés. Il est clair que l'étude locale du paragraphe 2 .2 peut
être utile dans l'étude de problèmes d 'optimisation.

1 . Intégrabilité des familles de champs de vecteurs .
1 .1 . Notations. Nous introduisons les notations utilisées dans la suite .

Pour la définition du vocabulaire de géométrie différentielle utilisée on pourra s e
reporter aux ouvrages classiques suivants : [1], [9], [18], [19] .

Nous supposons systématiquement que les variétés, champs de vecteurs ,
fonctions que nous utilisons sont de classe C . Cette hypothèse ne sera plu s
mentionnée par la suite . On supposera de plus que toutes les variétés sont séparées .

Soit M une variété, on note :
TM x l ' espace tangent à M en x ;
C°°(M) l ' anneau des fonctions (C°°) définies sur M ;
V(M) le C(M)-module des champs de vecteurs (Cl ") sur M .

Soient M et N deux variétés, 4) : M –> N une application de M dans N. On
note :

0 * la différentielle de / ;
44) la valeur de (/)* au point x . (g ) est alors une application

0*(x) : TM x --> TNo(x )

dont on note

0*(x) • h ,

la valeur en un point h de TMx .

dx
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Soit X un champ de vecteur défini sur M . On note :
Xt() le groupe local à un paramètre engendré par X . On sait qu'en
général Xt(•) n'est défini que pour des valeurs de t suffisamment petites .
Pour simplifier les notations nous omettrons systématiquement l e
"pour t assez petit ." Il est facile de voir qu'aucune difficulté supplé-
mentaire n'est liée à cette question dans ce qui suit . Sous les réserve s
exprimés ci-dessus on peut dire alors que Xt(•) est une application de
R x M dans M :

(x , t) --~ Xt(x ) •

On a de plus les relations :
Xo(x) = x ,

X+(x) = Xt(Xe(x))

Pour t fixé on note : X * la différentielle de l'application

x --p Xt(x ) .

Dans ces conditions X7(x) est une application linéaire inversible de TMx dans
TMx (x) satisfaisant aux relations :

Xt(x) = identité ,

(X*(x)) -1 = X *- t(X t(x))

Soient X et Y deux champs de vecteurs définis sur M, on note :

[X Y] le crochet de Jacobi des champs X et Y.

On sait que si on note Vx (t) le vecteur de TMx défini par

Vx( t ) = (Y * (x) — 1(X(Y(x)) )

on a par définition de [X Y] ,

dt xO

	

( to( ))

	

[XY] ( to( ) )
t=t o

On pourra trouver dans [24] une interprètation géométrique de cette notion .
Pour ce qui nous intéresse la meilleure interprètation que l'on puisse donner es t
le théorème de Chow lui méme tel qu'il est démontré en § 1 .3 .

Si d'autre part (x i , x 2 , • • • , x n ) est un système de coordonnées locales de M,
(ax 1 , • • • , ax n) la base de TM x associée, si on not e

n

	

a
X (x) = E X i(x ,

. . . , xn)

	

,
i=1

	

ax i

on a

[X Y] (x 1 . . . xn) = X* (x 1 . . . xn) . Y(x 1 . . . xn) — Y * (x 1 . . . xn)X(x 1
. . . xn) ,

o~ X *(x 1 • • • x n) est la matrice :

ax.
X*(xi . . . xn) = ax

(x1 . . . xn) )	 j (x i

= ,•••,n, j— 1,

	

,n .
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Rappelons pour terminer une conséquence classique du théorème de s
fonctions implicites . Soit 4) :M -4 N une application de la variété M dans la
variété N. On dit que 4) est une immersion si quel que soit x dans M la valeur en x
de la différentielle

4)*(x) : TMx -4 TNo(x )
est une application linéaire injective .

PROPOSITION 1 .1 .1 . Soit 4) une immersion de M dans N. Quel que soit x dans M
il existe un voisinage 611 de x et un voisinage '//' de 4) (x) tels que :

(i) 4) restreinte à

	

est injective ;
(ii) il existe un système de coordonnées locales sur

	

(y i • • • yn ) tel que (/)(W )
soit défini par

= {(Y1 . . . y n) :Y1 = Y2 = . .=yp = o } ,

où p est égal à m — n, m et n désignant respectivement la dimension de M et de N .

1 .2 . Intégrabilité des familles de champs de vecteurs . Soit M une variété .
Introduisons la définition suivante .

DÉFINITION 1 .2 .1 . Soit D une famille de champs de vecteurs définis sur M .
On dit qu ' une sous-variété N de M est une sous-variété intégrale de D si N es t
connexe et si pour tout x de N on a l'égalit é

TN x = Y(D(x)) ,

où 1(D(x)) est l'espace vectoriel engendré par l'ensembl e

D(x) = {X(x) ;XeD} .

Le résultat essentiel que nous démontrons dans ce paragraphe est la pro-
position suivante .

PROPOSITION 1 .2 .1 . Soit D une famille de champs de vecteurs analytiques défini s
sur la variété analytique M, stable pour l 'opération de crochet, c ' est à dire telle que

(XeD, Ye D)=[XY]eD .

Par tout point x de M il passe une unique sous-variété intégrale de D, maximale pour
l'inclusion .

Nous nous proposerons de plus une description précise de la structure de
variété de la sous-variété de D qui sera interprétée par la suite (§ 2.1) en termes de

y

X

FIG . 1 .
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contrôle. Les idées contenues dans ce paragraphe sont très directement inspirée s
de celles de R . Hermann [8] et plus précisément le point essentiel, le lemme 1 .2 .1 ,
correspond au lemme 2.1 de Hermann .

La difficulté de ce théorème est due à ce que la dimension de l'espace vectoriel
D(x) n'est pas supposée être constante . Lorsqu'elle est constante le classiqu e
théorème de Frobenius (cf. prop . 1 .2 .2) s 'applique. L'exemple qui suit montre ce
qui peut se produire quand la dimension n'est pas constante .

Exemple 1 . Considèrons dans R 2 les deux champs suivants :

I1
;

I 1

1
exp — 2

1

	

x

0

Ces deux champs sont de classe C . On vérifie immédiatement que la famill e
stable par crochet engendrée par les champs +X et + Y est la famille D défini e
par

D= {+X ; +Y ; +Y (n) , neN} ,

où le champ Y (n) est le champ

Y ( x , y ) =

I 1

\(exP (

	

x)
~

(n)
si x>0 ,

0

où (exp (—1 /x 2 )) (n) désigne la dérivée n-ième de exp( — 1/x 2 ) . On a alor s

dim /(D(xy) ) = J2 si x>0 ,

1 si x <—0
(cf. Fig . 1 . )

Supposons que par (0, 0) il passe une sous-variété intégrale de la famille D. L 'espace
tangent en (0, 0) à cette sous-variété est donc la droite {(x, y) ; y = 01 . Il s'ensui t
que cette sous-variéte "pénètre" nécessairement dans le demi-espace {x, y ; x 0} ,
où elle devrait avoir une dimension égale à 2 ce qui est évidemment impossible .

Notons "F .C .V." une famille de champs de vecteurs sur une variété M .
DÉFINITION 1 .2 .2 . Soit D une F .C .V . On dit qu'un arc continu :

a : [ab] —a M

est un chemin intégral de D si a est indéfiniment différentiable par morceaux et s i
pour tout intervalle 1 inclus dans [ab] sur lequel a est différentiable il existe un
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champ X de D tel que

da

dt (t)=
X(a ( t )) ,

Par indéfiniment différentiable par morceaux il faut entendre plus précisémen t
que [ab] est union finie d ' intervalles I 1 • • • I q tels que a restreint à t . ; soit l a
restriction à 1; d'une application indéfiniment différentiable de R dans M . On
obtient donc un chemin intégral de D en "recollant continuement" un nombre
fini de courbes intégrales de champs X de D .

DÉFINITION 1 .2 .3 . Soit D une F .C.V. sur M . On appelle feuille intégrale de D
passant par X et on note : Lx l ' ensemble des points de M qui peuvent être joints à
x par un chemin intégral de D .

On verra qu'à quelques réserves près la feuille intégrale Lx est précisément
la sous-variété intégrale de D passant par x. On déduit immédiatement du classiqu e
théorème de Frobenius sur la complète intégrabilité des systèmes de Pfaff l e
résultat suivant concernant Lx .

PROPOSITION 1 .2 .2. Soit D une F.C.V. définie sur M telle que :
(i) D est un sous-module de V(M) ;
(ii) (X e D, Y e D) = [X Y] e D ;

(iii) la dimension de l'espace vectorie l

D(x) _ {X(x) ; X e DI

est indépendante de x et égale à p .
Alors l 'ensemble Lx peut être muni d 'une structure de variété différentiable S

telle que la sous-variété (Lx , S) soit l'unique sous-variété intégrale maximale de D
passant par x .

Démonstration. On sait d 'après le théorème de Frobenius qu'il existe une
unique sous-variété intégrale maximale de D passant par X. Il suffit donc d e
constater, ce qui est très clair d 'après les définitions, que Lx coïncide avec cett e
sous-variété.

Dans [8] Hermann propose un théorème dans lequel l'hypothèse selon
laquelle la dimension de D(x) est constante est supprimée au profit d'autre s
conditions de régularité. C 'est ce théorème que nous allons montrer après les
lemmes suivants .

DÉFINITION 1 .2.4. On dit qu 'une famille D de champs de vecteurs définis sur
M est localement de type fini si quelque soit x dans M il existe un nombre fini d e
champs de D :

X 1 . . .Xq

tels que pour tout X de D il existe un voisinage 'Yx, x de x sur lequel on ait

[XX'] (y) _ E f 1(Y)X l (y ),

	

Y E , x
i= 1

Cette condition est légèrement plus faible que la condition "locally finitely
generated" de Hermann. On verra qu'elle est réalisée pour des familles de champ s
de vecteurs analytiques . Le lemme 2.1 de Hermann reste vrai sous cette hypothès e
et on a alors le lemme suivant .

tel .
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LEMME 1 .2 .1 . (Hermann) . Soit D une F .C .V. sur M localement de type fini .
Quels que soient x dans M, X dans D et t dans R tels que Xt(x) soit défini, l 'application

X *(x) : TMx --* TMxt(x )

définit un isomorphisme entre les espaces vectoriel s

2(D(x)) et 2(D(Xt(x))) .

Démonstration. Il suffit de prouver que si le vecteur V appartient à l'espac e
1(D(x)), alors le vecteur X;'(x) • V appartient à l 'espace 2(D(Xt(x))) .

D'autre part l'arc :

e --~ Xe( x ),

	

e E [ O, t]

est compact, il suffit donc de montrer la proposition plus faible suivante :
"Pour tout x dans M il existe un réel e(x) strictement positif tel que pour tou t

t en valeur absolue inférieur à e(x) on ai t

V e c,r(D(x)) = X;'(x) • V e £(D(X t (x))) . "

La famille D est localement de type fini, il existe donc q champs de vecteurs :

X1 . . .Xq

et un voisinage de x sur lequel

[XX' ] (y) = E f i(Y)X`(Y),

	

j = 1 , . . . , q .
i =

Notons Vi(t) le vecteur de TMx défini par

V' ( t ) = (X*(x)) -1 . (X'( X t( x))

Par définition du crochet de deux champs on a

-V't = X*x ' XX' X x .

Soit c(x) un réel tel que

I ti < E(x) ~ Xt(x ) E ~,x •

On a alors pour Iti

	

E(x) ,

d

	

q
v i(t) = E f1(x,(x))()O'(x))' xi(x,(x )) ,

dt
q .

i= 1

Soit encore

d

	

_ q
- V' ( t ) -` L f X ( x)) V l(t) ,
dt

	

i =

Les q vecteurs V'(t) sont solution d'un système de q équations différentielle s
linéaires . Il existe donc des fonctions

. .al (t),

	

i= 1,

	

• ~q , j = 1 , . . . , q ,

j— 1 , . . . , q ,
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telles que

Vi(0) = E ai(t)Vi(t) .
i =

Soit encore

e (x )(x) • X'(x) =

	

ai(t)XIXt(x)) .
i =

Le vecteur X *(x) • Xi(x) appartient donc à M(D(X t(x))) . Les vecteurs Xi (x )
constituant un système de générateurs de 2(D(x)) ; le lemme est démontré .

DÉFINITION 1 .2 .5 . Soit D une F.C .V . sur M. On dit que D est symétrique si quel
que soit X dans D le champX appartient à D .

LEMME 1 .2 .2 . Soit D une F .C .V. sur M, symétrique, localement de type fini .
Soient X i , X 2 , • • • , Xp p champs définissant une base de 1(D(x)) . Soit ~x l 'applica-
tion définie pa r

(ti , t2, . . . , t p ) E Rp —* 4)x( t i , . . . , t p ) = Xp
P

o Xn _ i o . . . o X-1 (x) E M .
P

Il existe un voisinage °llx de x tel que & restreinte à Wx ait les propriétés suivantes :

(i) Ox(lix) c Lx

(ii) (P x est une immersion injective ;
(iii) Im (4(t 1 , • • • , t p )) = Y(D(O x(t i , • • • , t p ))), où Im (çx(t i , • • • , tp)) désigne

l'image de l'application

Ox ( t i , . . . , t p)) : Rp -* TMox(t1, . . .,t,) .

En d 'autres termes, ~x définit une sous-variété intégrale de D passant par x .
Démonstration . La définition d 'un chemin intégral impose que l'on parcoure

les courbes intégrales des champs de D dans le sens des t croissants . Comme la
famille D est symétrique on aura

X -t(x) = - X t(x) ,

et par suite : le point (i) est démontré. Démontrons le point (ii) .
L'application (Px est évidemment de classe C°°, d'autre part la dérivée à

l'origine de O x est déterminée par les vecteurs :

(a'.Ôt i

	

( o , . . . , o )
= X i (x) .

(P x est donc de rang p à l'origine ce qui démontre le point (ii) . Le point (iii) est un e
conséquence du lemme 1 .2 .1 . En effet on a vu qu e

80 x
>•i = 1, . . . , p= Y (D (x )) .

	

ôt•

	

. .

	

~

	

(o,• ,o )

On a d'autre part :

(00x

	

! X ~`
x , a~x

l ( )

	

at• )(0,. . .,o )

[ (
Y

âti )(1,o,o,O,)
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par conséquence d'après le lemme 1 .2 .1 :

EY(D(Xt l ( x))) = Y ( D (Ox(t 1 > 0 .
Ôt•

		

)) )
(ti,o,o,o )

En opérant de proche en proche on démontre ainsi le point (iii) .
Démontrons pour terminer un troisième lemme . On considère la situatio n

suivante . Soit D une F.C .V. sur M, symétrique, localement de type fini . Soit

IP--* M

une immersion définie sur un ouvert de Rp telle que l'on ai t

Im (ii*(t)) = ~°(D(fi(t))),

	

t E 3?/ .

Soit x un point de 0(11) . Soit ~x l'application définie pa r

(h(t l ,

	

, tp) = X p ° . . . ° X)'l (x) ,

où les champs X I , • • • , XP définissent une base de '(D(x)) .
On peut alors énoncer le lemme suivant .
LEMME 1 .2 .3 . L'ensemble (4) x ) — 1 (l//(Q1)) est un voisinage de 0 .
Démonstration. Soit (t 1 , • • • , t p ) un point de '1 tel que

Ox(tl,
. . . , tp) E 1/ ( 1 )

L'application tif étant une immersion on pourra toujours par application d e
la proposition 1 .1 .1 se ramener à la situation suivante :

M est un ouvert de R n contenant l'origine .
i/i(11) est l'intersection d'un ouvert ' de R n contenant l'origine avec l a

variété linéaire :

L ,, =
}x1

. . . xn , xp+1 = xp+2 = x n = 0} .

La famille D est telle qu e

x E L p fl V ='(D(x)) = Lp ,

4 (t1,t2, . . .,tp)=0 .

Notons 0 l'application définie par

(0f, . . .,0p)ERp-÷ 0(01, . . .,0p)—(Px(t1 +01, . . .,tp+0p) .

Cette application est définie sur un ouvert de R p . On vérifie d'autre part que

p0(01, . . .,Op)_ Yep° . . . oY 81 (0) ,

où les champs Yi sont définis par

Y p(m) = Xp(m) ,

Yp' (m ) = X:(X p tn ( m) ' X"-1(Xp t p ( m ) )

Yl(m) = X pp
°
Xp

	

. . Xt 1*(X 1tl+ 1
o . . . ° Xp tp(m))

X z(X `—t 1
+ 1 0 . . . ° Xp t p(m))'
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D'après le lemme 1 .2 .1 les champs Y i sont tels qu e

Y i (m) e Y(D(m)) .

Par conséquence sur Y p n

	

on a

Y`(m)ELp ,

	

i= 1,•••, p, meLp n 1V ,

et par suite d'après les théorèmes classiques sur l'intégration des équations différen -
tielles on voit que pour (01 , • • • , 0 p) suffisamment voisins de 0 le point 0(0 1 , • • • , 0p)

= 4(t 1 + 0 1 , • • • , t p + 0p) appartient à Lp n te, donc à /i(W) ce qui démontre
le lemme .

Nous pouvons maintenant démontrer la proposition suivante qui est un e
petite généralisation de la proposition 2 .1 de [8] .

PROPOSITION 1 .2 .3 (Hermann) . Soit D une F .C.V. sur M, symétrique, localement
de type fini. Soit x un point de M . La feuille intégrale Lx de D passant par x peut êtr e
munie d'une structure de variété différentiable S telle que le couple (L x , S) soit un e
sous-variété intégrale de D.

Démonstration. Soit pour chaque y de Lx l 'application :

:

	

-*Lx
définie au lemme 1 .2 .2. Montrons que la famille de "cartes" définie par les (/)y
munit Lx d'une structure de variété différentiable .

(i) Soit p(y) la dimension de l'espace vectoriel sur lequel est défini 'Ky . On
vérifie immédiatement par application du lemme 1 .2 .1 que p(y) est constante su r
tout chemin intégral de D et, par suite, constante sur Lx .

(ii) Les applications i(t)y : d1Cy -* M sont des applications injectives de dlly dans
Lx . Montrons que les changements de cartes sont bien C . Soi t

Oz : 4 M
une autre carte . Si on applique le lemme 1 .2 .3 en prenant pour i/i l'application (/) z
on voit que l 'ensemble

~y 1 ((bz(w z) )
est un ouvert de R". Le théorème des fonctions implicites montre ensuite qu e
l 'application

:

	

10 z0 z) )

est de classe C .
(iii) Soit S = }(a y :

	

Lx ;y e Lx } . L'atlas S définit sur Lx une structure de
variété différentiable . Par construction même de S on a

T (L x , S )y = 4*(0 ) . (R") = Y(D( y) )
Il ne reste donc qu 'à montrer de (Lx , S) est une variété connexe ((L x , S) es t
trivialement séparée) . Pour cela il suffit de montrer qu'un chemin intégral joignan t
x à y est un arc de (Lx , S), donc vérifier que pour tout X dans D et tout y dans Lx
l'application

t -+ X t( y ) e L x

est continue ce qui se vérifie aisément en procédant comme au lemme 1 .2.3 .
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Remarque 1 . La construction d'une structure de variété différentiable su r
Lx qui vient d'être faite diffère sensiblement de celle que propose Hermann dans [8] .

Les cartes que nous proposons constituent un système local de "coordonnée s
curvilignes" de Lx reposant sur la connaissance d'une base de Dx .

Hermann suppose que D est un sous-espace vectoriel et définit une carte au
point y en choisissant un sous-espace Dy de D tel que l'application

Y –~ Y(Y )

soit un isomorphisme de D y sur D(y) . Ensuite à chaque Y de D y il associe le poin t

Yl ( y ) de L x .
A condition de choisir Y suffisamment petit on peut ainsi définir une cart e

au voisinage de y .
D 'un point de vue pratique (numérique) dans la construction que nou s

avons proposé une carte peut être complètement décrite par l ' intégration de p
équations différentielles .

Remarque 2 . L'hypothèse selon laquelle D est localement de type fini est
essentielle comme le montre l'exemple suivant . C'est le même exemple que
l'exemple 1 mais interprèté de façon différente .

Exemple 2 . Soit D la F.C .V. définie sur R 2 dans l'exemple 1 . L'allure des
courbes intégrales du champ X est donnée par Fig. 2. L'allure des courbes in-
tégrales du champ Yest donnée par Fig . 3 . Il est clair que la feuille intégrale de D
passant par l'origine est égale à R2 tout entier alors que la dimension de D à
l'origine est seulement égale à 1 . Ce contre exemple repose sur le fait qu'il exist e
des fonctions C°° nulles sur un ouvert, non identiquement nulles ce qui n'est pas l e
cas pour des fonctions analytiques .

On déduit immédiatement de la proposition 1 .2 .3 et du lemme 1 .2 .3 la propo-
sition suivante .

PROPOSITION 1 .2.4. Soit D une F .C.V. sur M symétrique, localement de typ e
fini . Soit x un point de M. Toute sous-variété intégrale de D passant par x est une
sous-variété de (Lx , S), où S est la structure définie en 1 .2.3.

Supposons maintenant que M soit une variété analytique et V (M) le module
des champs de vecteurs analytiques définis sur M. Rappelons les résultats classiques
d 'algèbre suivants .

FIG . 2 .
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1

FIG . 3 .

DÉFINITION 1 .2 .6 . On dit qu'un A-module E est Noetherien si toute famill e
non vide de sous-modules de E possède un élément maximal . Un anneau A es t
Noetherien si, considéré comme A-module, il est Noetherien .

PROPOSITION 1 .2 .5 . Si A est un anneau Noetherien, l'A-module fl n_ A 1 (A i = A)

est Noetherien [20, p . 55] .
PROPOSITION 1 .2 .6 . L 'anneau des séries entières convergentes à n indéterminée s

réelles, K[[x 1 , • • • , xn]] est un anneau Noetherien [21, p. 149] .
PROPOSITION 1 .2 .7 . Soit D une famille de champs de vecteurs analytique s

définis sur la variété M, close pour l ' opération de crochet, c'est à dire telle qu e

(XED, YED) [XY]ED .

La famille D est alors "localement de type fini . "
Démonstration . La condition étant locale il suffit de démontrer la propositio n

1 .2 .7 pour une famille D d 'applications analytiques de Rn dans R n .

Soit sd(R n, Rn) l'ensemble des applications analytiques de Rn dans R n . Soi t
Sd (Rn, R n) l'ensemble des germes en 0 d 'application analytiques de Rn dans R n.

On sait que Wd(R n, R n) est le quotient de sd(R n, R n) par la relation d'équi -
valence :

"f — g fet g coïncident sur un voisinage de 0" .

Notons 7r la projection canonique :

7r : d(Rn, Rn ) — Wd(R n, R n) .

Le module Wd(R n , R n ) est isomorphe au module : (K[[x 1 , • • • , xn]])n de s
séries entières convergentes à n indéterminées réelles qui est Noetherien (prop .
1 .2 .5 et 1 .2 .6) .

Soit

	

l'ensemble des parties finies de 7r(D) . La famill e

{M ;cxe}}

(Ma = module engendré par a) possède un élément maximal : M(ai . . . ao ; a i e 7r(D) .

Tout élément a de 7r(D) peut donc s'écrire :

P

a = E (Pi ao

	

E K[[x1,
. . . , xn]] •
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Soient X 1 , • • • , X" p éléments de D tels que rc(X i ) = a i . Etant donné un
élément quelconque X de D (en particulier de la forme X = [ YX i] , Y E D) on a

i = 1

Par conséquence il existe un voisinage de l'origine sur lequel on a

p
X (x 1 , . . . , xn) =

	

O i(x 1 ,
. . . , x n )X i(x 1 , . . . , xj

i =

ce qui démontre la proposition 1 .2 .7 .
On déduit des propositions 1 .2 .3 et 1 .2.7 la proposition suivante .
PROPOSITION 1 .2.8 . Soit D une famille de champs de vecteurs analytiques,

symétrique, définie sur la variété analytique M, stable par crochet (i .e., (X E D,

Y E D) = [X Y] E D) . Quel que soit x dans M, l'ensemble Lx peut être muni d ' une
structure de variété S telle que (Lx , S) soit une sous-variété intégrale de D .

Enfin on obtient la proposition 1 .2.1 en appliquant la proposition 1 .2 .4 à l a
famille symétrique engendrée par D .

Remarque . La proposition 1 .2 .3 s'applique à la situation décrite par Kucer a
dans [14] . En effet ce dernier énonce : Soit Olt un sous-espace vectoriel de 1(R n, R n)

tel que

(AE 01t,BE~lt)=AB - BA E

La famille D de champs de vecteurs :

D = { X -*AX ;AE1I }

est stable par crochet et localement de type fini (2(R n, R n) est un espace vectoriel
de dimension finie) .

1 .3 . Le théorème de Chow . Nous énonçons dans ce paragraphe une forme
particulière du théorème de Chow .

Nous donnons sur un exemple une idée de la démonstration . La demon-
stration générale n'est pas plus difficile mais la multiplication des indices la rend
fastidieuse . Elle est rédigée dans [17] .

Soit dans R 3 la famille de champs de vecteurs :

D = {±X 1 ; ± X 2 } .

PROPOSITION 1 .3 .1 . Si les vecteurs

X
1(x0),

X 2 ( x0), [ X 1 X2 ](xo )

sont indépendants, alors la feuille intégrale de D passant par xo est un voisinage d e
xo .

Démonstration. Soit Zr la famille de groupes à un paramètre définis pa r

Zt (x) = X'-

	

X (x) .

Si on note U) le vecteur

V,(/1)

	

â
(Z(X))

t=o
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on a

Vx(2) = X 1*a,(Xl.(x )) X 2 ( X l(x ) )

donc par définition du crochet de deux champs on a

(J/t))

	

= CX 1X 2 x) .x

	

~ (
A= 0

Soit 0 A la famille d'applications de R3 dans R 3 définie par

/A( t 1, t2, t3) — Z3° Xz° X1(x 0 )

Par définition de l'ensemble L x on a l' inclusion

Oa(ae ) C Lx

où QI est un voisinage de 0 dans R3 sur lequel /iA est bien définie. Montrons que
1i A est pour un ), convenable un difféomorphisme local au voisinage de 0 ce qu i

montrera la proposition . Pour cela calculons

	

0, 0) . On a

00A (0, 0 0 =X 1 x
1

00 0 0 0 =X 2 x
2

00A (0 > 0 > 0) = V 2) .t

	

xo (
3

Il est clair que

Vxo(0) = X2(x0) .

Soit L\(2) l'application de R dans R défini par

0(2) = det ( X 1 (xo), X 2 ( xo), Vxo( 2 ) )

On a

d
A (,I)A _ o = det (X 1 (xo), X 2 ( xo), [X 2X 1 ] (xo)) .

d2
-

Par hypothèse les vecteurs

X 1 (x0), X
2(x0),

C X 1X 2 ix 0

sont indépendants .
On a donc

A(0) = 0,

	

0'(0)

	

0 .

Par conséquence pour 2 suffisamment petit on a A(2) 0 .

A(0) = 0,
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Z

A

(0,0,1 )

(0,1,1)

+~• X

i

_ __y

y

FIG . 4 .

Exemple 3 . Sur Fig . 4 on voit comment en utilisant les courbes intégrales des
champs

I 1

		

1 0I
X= 0

	

Y= 1

\0 /

	

\ x

on peut atteindre le point (0, 0, 1) en partant de l'origine .
Afin de généraliser la proposition 1 .3 .1 à un système symétrique quelconque

de vecteurs de R n introduisons la notion de saturée d 'une famille de champs d e
vecteurs .

Soit D une famille de champs de vecteurs sur une variété M . On note AD la
famille :

AD = {[XY] ;X ; Y :XED, YED }

et An (D) la famille définie par

A'(D )1(D) = A(A n(D)) .

DÉFINITION 1 .3 .1 . Soit D une F .C.V. sur la variété M. On appelle saturée de
D et on note D la famille définie pa r

b' = U A n (D) .
nE N

On remarque que si D est symétrique, D l'est également. D'autre part mêm e
si la famille D est finie on peut avoir pour tout n ,

A n (D)

	

An-1 (D) .
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D'autre part, par construction même, D est stable par crochet. On a alors l a
proposition suivante .

PROPOSITION 1 .3 .2 . THÉORÈME DE CHOW . Soit D une F .C .V. sur Rn symétrique
telle que dim (2(D(xo))) -_= n . Alors la feuille intégrale de D passant par xo est u n
voisinage de xo .

Démonstration . On procède comme dans la démonstration de la proposition
1 .3 .1 en utilisant des familles de groupes à un paramètre un peu plus élaborées qu e
la famille Z, (cf. [17]) .

Du théorème de Chow on déduit immédiatement les propositions :
PROPOSITION 1 .3 .3 . Soit D une F.C.V. symétrique définie sur une variété M de

dimension n . Si la dimension de l ' espace vectoriel 1f(13(x 0)) est égale à n, alors la
feuille intégrale Lx0 de D passant par xo est un ouvert de M .

Démonstration. C'est une conséquence immédiate de la proposition 1 .3 .2 .

PROPOSITION 1 .3 .4 . Soit D une F .C.V. symétrique définie sur une variété con-
nexe M de dimension n. Si pour tout x de M on a

dim Y(13 (x)) = n,

alors la feuille intégrale passant par x est égale à M .
Démonstration . C'est une conséquence immédiate de la connexité et de l a

proposition 1 .3 .1 .
PROPOSITION 1 .3 .5 . Soit D une famille de champs de vecteurs analytique ,

symétrique sur la variété M. Notons Lx et L x les feuilles intégrales de D et b' passan t
par x .

Quel que soit x dans M on a l'égalité

L x =Lx .

Démonstration . D'après la proposition 1 .2 .8 appliquée à la famille D on peut
munir Lx d'une structure de variété différentiable. Il suffit ensuite d'appliquer l a
proposition précédente à la restriction de D à L x .

En l 'absence d'hypothèse d 'analyticité on obtiendrait une proposition
analogue en supposant que D est localement de type fini.

En théorie du contrôle il est souvent important de savoir si l'ensemble de s
états accessibles est d'intérieur vide . La réponse à cette question sera donnée par
la proposition suivante .

PROPOSITION 1 .3 .6 . Soit D une famille de champs de vecteurs analytiques sur R n.
Une condition nécessaire pour que la feuille intégrale L x de D passant par x soi t
d'intérieur non vide est que la dimension de l 'espace vectorie l

1f(D(x))

soit égale à n . Si de plus la famille D est symétrique la condition est suffisante .
Démonstration . Supposons qu e

dim (Y(D(x))) = p < n .

Soit D' la famille symétrique engendrée par D . On a évidemment

1f(D(x)) = 1f(D'(x))
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La feuille intégrale Lx de D' passant par x contient L X . D'autre part on peut munir
Lx d'une structure de variété différentiable S telle que (Lx, S) soit une sous-variét é
connexe de Rn de dimension P .

On sait que toute sous-variété connexe et séparée d 'une variété a compact e
est a-compacte [1, p . 97] . La variété Rn est a-compacte, (Lx, S) est donc a-com-
pacte, comme elle est de dimension strictement plus petite que n l'ensemble L x'
est d ' intérieur vide . La condition est donc nécessaire . Si D est symétrique la con-
dition est suffisante d'après la proposition 1 .3 .3 .

2. Critères intrinsèques en théorie du contrôle. Nous allons utiliser les
résultats précédents pour obtenir des critères intrinsèques en théorie du contrôle .
Nous entendons par critère intrinsèque tout critère qui peut se déduire par de s
opérations algébriques sur la fonction f (x, t, u) . Par exemple, le critère de con-
trôlabilité de Kalman [13] : "Le système

= Ax + Bu, xERn ,

	

uERp ,

est contrôlable si

rang [A, AB, . . . , An
— 1 B] = n,"

est un critère intrinsèque . Par contre le critère : "Le système

dx
= A(t)x + B(t)u,

	

x e Rn ,

	

u e R p ,
d t

est contrôlable si

T
rang

	

4) - 1 (tot)B(t)t B(t)t O -1 (tot) dt = n ,
o

où 0 (t o t) est la matrice fondamentale du système," n'est pas un critère intrinsèque
car il s'exprime à l'aide de /(to t) qui s'obtient à partir des données en intégrant
une équation différentielle, ce qui n'est pas toujours possible pratiquement .

Le "principe du maximum" n'est pas non plus un critère intrinsèque puisqu'i l
fait intervenir également la résolvante du système le long d 'une trajectoire présumée
optimale .

2 .1 . Théorie du contrôle et familles de champs de vecteurs . Les problèmes d e
contrôle se formulent classiquement de la manière suivante .

Soit f: R n x R x R" -4 Rn une application suffisamment régulière. Soit e2 un
sous-ensemble de l'ensemble des applications intégrables d 'un intervalle de R
dans une partie U de R". A tout couple :

(xo , (0,1 : [t o t l] -a U ) )

constitué d'une condition initiale xo de Rn et d'un "contrôle" admissible
(/1 : [tot 1 ] - 4 U) on associe l'état final :

(x0 , (l/ : [ t0t1] --> U)) --~ x ( x0, t0 , t i ~ 0/1) E R n

dx

dt
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défini par

d
—x

(

x to, t,

	

= .f (xtu(t ))
dt

	

°~ o> >

	

> t, u(t)) ,

x(to) = xo .

Cette formulation, très générale, rend compte de nombreuses situation s
pratiques . Nous allons diminuer la généralité de cette situation en supposant qu e
fest une fonction C°° ou analytique de tous ses arguments et que 42 est l'ensemble
des fonctions C°° ou analytique par morceaux d 'un intervalle de R dans U . La
perte de généralité entraînée par ces restrictions n'est pas très grave dans l a
pratique .

Donnons maintenant quelques définitions précises .
DÉFINITION 2 .1 .1 . L'expression :
"Soit le systèm e

dx _

dt

	

f (x, t, u),

	

x e R n ,

	

u E U OE R p ,

	

C°° (resp. anal) . "

Sous-entend :
(i) Soit f: Rn x R x R" -* Rn de classe Cl " (resp. analytique) .
(ii) Soit U une partie quelconque de R", 11(U) l'ensemble des applications

C c par morceaux (resp. analytique par morceaux) d 'un intervalle de R dans U .
(iii) Au couple xo e Rn,

	

: [tot 1 ] --* U) de 11(U) on associe l'élémen t

x(xo,to,t 1 ,W ERn ,

défini par

(*)

L'application f étant supposée telle que les solutions de l'équation différ-
entielle (*) soient toujours définies pour t = t 1 .

DÉFINITION 2 .1 .2 . Soit le système

dx
dt = f (x, t , u),

	

x E R n ,

	

u E U OE Rp ,

	

C°° (resp. anal .) .

On appelle ensemble des états (xo, to)-accessibles à l ' instant t 1 (t 1 > to), et
on note A(xo, to, t 1 , U) l'ensemble :

A(xo, to, t 1 , U) = {x(x 0 ,t 0 ,t 1 ,1) : dl1eC([tot 1 ] --~ (1)}

(resp . analM ([tot l ] -* U)) ,

où CM([tot 1 ] — U) (resp. anal M([tot l ] -~ U)) désigne l'ensemble des application s
C°° (resp . analytiques) par morceaux de [tot l ] dans U .

On appelle ensemble des états (xo, to)-accessibles et on note A(xo, to, U )
l'ensemble :

A(xo, to, U) = U A(xo, to, t 1 , U) .
ti >t o

t e t t —xx t t,

	

011)

	

xx to, t 011), t~ t

	

[ o1]
dt

(o' o>>

	

)

	

f((o~ ~

	

~

	

O) ~

x( 01 1)xo, to, to,

	

= xo .
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Pour finir définissons la contrôlabilité "bang-bang " de la manière suivante .
DÉFINITION 2 .1 .3 . Soient les systèmes :

	

i
dx

= x t, u),

	

x e R n

	

u E U Rp

	

C°°

	

anal .) ,() dt

	

.Î(

	

)>

	

(resp .

dx
= x t, u),

	

x e R n

	

u E U c R P ,

	

C" res . anal .) .(ii) dt

	

f( > > )~

	

>

	

>

	

( p

Supposons que U soit inclus dans U . On dit que le système (i) est strictement
"U-bang-bang" contrôlable si quel que soient x 0 , t 0 , t 1 on a l 'égalit é

A(xo , to, t 1 , U) = A(xo , t 0 , t 1 , U) .

On dit que le système (i) est " U-bang-bang" contrôlable (au sens large) s i

A(x0 , t0 , U) = A(x 0 , t 0 , U) .

Il est clair que lorsqu'on s'intéresse à des problèmes de contrôle en temp s
minimum seule la notion de stricte "bang-bang" contrôlabilité est utilisable . Par
contre si dans un problème d'optimisation on étudie un critère sur l'état final o n
pourra utiliser la "bang-bang" contrôlabilité large . Dans la suite nous n'exam-
inerons que la contrôlabilité "bang-bang" au sens large .

Nous relions maintenant la notion de système à celle de famille de champ s
de vecteurs .

DÉFINITION 2 .1 .4 . Soit le système :

dx

=

dt

	

f (x, t, u), x E R n ,

	

u E U c RP ,

	

Cl " (resp . anal) .

Notons I l'ensemble des applications C°° (resp . analytiques) de R dans U .
On appelle famille de champs de vecteurs associée à (f, U) et on note :

	

( Xi)iEl ;

	

I = C°°(R, U) (resp. anal . (R ---~ U)) ,

la famille de champs de vecteurs sur Rn + 1 définie pa r

Xi(x, t)

	

f (x, t, i(t) )
_

		

ie1 .
1

On utilise également la notation :

(X t )iel = D(f, U) .

La proposition suivante est une conséquence immédiate des définitions
1 .2 .2, 2 .1 .2, 2 .1 .4 .

PROPOSITION 2 .1 .1 . Soit le systéme :

dx

	

= f (x, t , u),

	

x E Rn ,

	

u E U c R",

	

C°° (resp. anal . )
dt

et D (f, U) sa famille de champs de vecteurs associée .
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Soit xo un point de R n, to un réel . On a les égalités suivantes :

A ( x o , t o , t i , U) = n( L (xo,to) n {(x, t) ; t = t i { )

A(xo, to, U) = n( L (xo,to) )

où it est la projection de Rn+ 1 sur Rn :

(x,t)—* x

et L ( ,co,to) est la feuille intégrale (déf. 1 .2 .3) de D( f, U) passant par (xo, to) .

Les systèmes autonomes sont susceptibles d 'un traitement différent que nou s
définissons maintenant .

DÉFINITION 2 .1 .5 . On appelle système autonome un système de la forme :

= f (x, u),

	

x E R n ,

	

u E U OE R P ,

	

C" (resp . anal .) .

On dit de plus que le système est dénombrable si l'ensemble U est dénom-
brable .

DÉFINITION 2 .1 .6 . Soit

dx
= f (x, u),

	

x e Rn ,

	

u e U

	

R P,

	

C°° (resp . anal . )
dt

un système autonome dénombrable . On appelle famille de champs de vecteurs
associée à un tel système et on note :

(X u)u e U

la famille de champs de vecteurs sur Rn définie pa r

Xu( x) = .f ( x , u )

On a alors la proposition suivante .
PROPOSITION 2 .1 .2 . Soi t

dx

(*)
	 	 =

dt

	

f `x, u),

	

x e R n ,

	

u e U

	

R p ,

	

(resp . anal .)

un système autonome dénombrable . On a l ' égalité :

A(xo, 0, U) = Lxo ,

où L xo est la feuille intégrale de la famille de champs de vecteur (Xu )u e U associée
à (*) .

Démonstration. Il suffit de remarquer que si U est dénombrable les application s
C°° (resp. analytiques) par morceaux de R dans U sont constantes par morceaux .

2 .2 . Ensemble des états accessibles étude locale . Comme exemples d 'applica-
tion des résultats de §§ 1 .2 et 1 .3 nous donnons les propositions suivantes . Elle s
ne sont pas très fines et il est certain qu'un travail du type de celui de Kucera [14] ,
[15] permettrait d 'obtenir des résultats plus intéressants .

dx
dt
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On considère le système :

dx _
dt

	

f (x, t, u),

	

x e Rn ,

	

u E U c RP (anal .) ,

et sa famille de champs de vecteurs associée D (f, U) (cf. déf. 2 .1 .4) .
On note enfin D(f, U) la saturée (déf. 1 .3 .1) de D(f, U) .
PROPOSITION 2 .2 .1 . Soit dans Rn+ 1 un couple :

(x , t1) ; x e A(xo, to, t 1 , U) .

L'ensemble des points de Rn+ de la forme

(x, t) ;

	

x e A(xo, to, t, U)

est inclus dans une sous-variété de Rn+ 1 dont l'espace tangent au point

(x , t 1 )

est défini par

~(D(f, U)(, t 1 )) .

Démonstration. D 'après la proposition 2 .1 .1 le point (x, t i ) appartient, ainsi
que tous les points (x, t) tels que x e A(xo , to, t, U), à la feuille intégrale L( ,, 0 ,0) de
D(f, U) qui d'après (prop . 1 .2.1) est incluse dans une sous-variété de Rn+ don t
l 'espace tangent en (x, t 1 ) est '(D( f,, U) (x, t 1 )) .

Remarque 1 . Ce résultat concernant le coupl e

(x = x ( xo, to, t 1, ), t 1 )

dans l'espace des (x, t) ne fait intervenir que le couple (x, t1) et pas le contrôl e
û : [to t 1 ] - + U conduisant à x. En principe l'espace 2(D(f, U) (x, t 1 )) peut être
déterminé par des opérations de crochet (pas nécessairement en nombre fini !) .

Remarque 2 . Le résultat est très faible et ne renseigne que très peu sur l e
comportement de l 'ensemble des états accessibles au voisinage de x .

Remarque 3 . On ne peut rien obtenir par ce procédé concernant les état s
accessibles A(xo, to, U) car la projection selon i de la sous-variété L(xo,to) n'est
pas une sous-variété de R n . Par contre concernant l'ensemble des états A(xoto, t 1 , U )
on peut obtenir la proposition suivante .

PROPOSITION 2 .2 .2 . Soit dans R n le point x appartenant à A(xo, to, t 1 , U) .
L'ensemble A(xo, to, t i , U) est inclus dans une sous-variété dont l'espace tangen t
au point x est l'espace vectoriel :

~(D(f, U)(x, t i )) fl {(x, t) ; t = 0} .

Démonstration . L 'ensemble de Rn+ 1

{(x, t i ) ; x e A(xo, to, t i , U) }

est inclus dans la sous-variété de R n :

L(xo,to) nI {(x, t ) ; t = ti} .

Remarque . Ce résultat est un peu plus précis que le précédent . Il reste cepen-
dant très insuffisant comme le montre l'exemple classique suivant, du à Filippov .

(1)
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Exemple 4 .

dx
_ — y 2 + u 2

	

x E R,

dy
= u,

	

yeR ,dt
Dans R 3 la famille de champs de vecteurs associée est :

I_ Y 2 + 1

dt
u E R, lul = 1 .

X '(x, Y, t) _ 1

\

	

1

I __._ y 2 +

X2(x, y, t) =

Calculons les crochets . On a

/0 -2y 0\ 1—y 2 + 1'

-1

'0 -2y 0\ 1-y2 + 11 /4y \

[X 1 X 2 ] (xy) = 0

	

0

	

0

	

-1

	

0

	

0

	

0

	

1

	

= 0

0

	

0/ 1

	

1 ~

	

\0

	

0

	

\

	

1

	

\ 0

' 4\

[[XiX2 ]Xi ] = 0

1 0 /

Les vecteurs Xi , X 2 , [[X iX2]X
i] sont toujours indépendants . L 'ensembl e

A(xo, 0, 1, U) est inclus dans un ouvert de R 2 , ce qui n 'apporte évidemment aucu n
renseignement supplémentaire !

Y

1

FIG . 5 .
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Quelques calculs élémentaires montrent que l'allure de A(xo , 0, 1, U) es t
donnée par Fig . 5 . L'ensemble des états accessibles à l'instant 1 est un ensemble
limité par deux arcs, l'arc passant par le point (1, 0) n'appartenant pas à l'ensemble .
Filippov a montré par cet exemple qu'en l'absence d'hypothèse de convexité su r
l ' ensemble :

{f(x,u) ;ue U} ,

il ne peut pas exister de contrôle en temps minimum . Ceci est très clair lorsqu'on
représente dans R 3 la feuille intégrale du système défini par les deux champs X 1
et X 2. La troisième composante des champs étant constamment égale à 1 l a
troisième coordonnée s'interprète comme le temps écoulé depuis le départ . On
voit facilement que cette feuille intégrale est une partie de R 3 limitée par deux
surfaces, la surface inférieure n'appartenant pas à la partie, ce qui entraine la
non-existence d'un contrôle en temps minimum .

On peut enfin obtenir une condition nécessaire pour que l'ensembl e
A(xo, to, t, , U) soit d ' intérieur non vide.

PROPOSITION 2 .2 .3 . Une condition nécessaire pour que l'ensemble A(xo, to, t, , U )
des états (xo, to)-accessibles à l ' instant t l du système (1) (analytique) soit d'intérieu r
non vide est que

~
Y(D(f, U) . ( xo, t o) )

soit de dimension n + 1 .
Démonstration. Supposons que dim (1(D( f, U) • (xo, to))) n ; alors pour

tout x E A(xo, to, t l , U) on a

dim {(D(f, U) • ()T, t i )) (1 {(x, t) ; t = 0} } < n

car l 'espace 2(D(f, U) • ( --t i )) est toujours transverse à l'hyperplan {(x, t) ; t = 0} .

I

X

y
FIG . 6 .
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La proposition découle alors de la proposition 1 .3 .5 .
Exemple 5 . Appliquons ce résultat au système :

dx
= Ax + Bu,

	

xERn ,

	

uER p ,

	

U = {(u l , • • • , up) ;Iu 1 I = 1} ,
dt

A E 2(Rn , R n ),

	

B E 1(Rp , Rn) ,

x(0) = O .

On sait qu'une condition nécessaire et suffisante (Kalman et Halkin) pour
que l'ensemble des états (0, 0)-accessibles du système ci-dessus soit d 'intérieur non
vide est que

rang [B, AB, • • • , A n- i B] = n ;

en appliquant la proposition 2 .2 .2 on obtient la condition nécessaire . En effet,
la famille de champs de vecteurs associée est :

D(f, U) = {Ax ± V ; i = 1, . . , pl ,

où V1 , VI, représentent les colonnes de B .
On a alors

[Ax+V,Ax+V,]=AVj —AV,=A[Vj — V] .

On obtient donc tous les champs :

AV1 , AV2 , • • • , AVp

(à un facteur multiplicatif près) . Si on recommence on a

[Ax+V,AV;] =A•AV=A 2 V; .

On voit donc que la saturée de la famille D (f, U) contient les champs :

Ax -1- V, +AV,+A2V, •••, +An-i V,

	

i=1, . . ., p .

Le théorème de Hamilton-Caeley montre qu ' il est inutile de continuer (A n
s'exprime à partir des A i , i <= n — 1) et que par conséquence on a obtenu la saturé e
de D (f, U) . D'après la proposition 2.2.3 une condition nécessaire pour que
A (0, 0, tl , U) soit d'intérieur non vide est que l'espace vectoriel engendré par le s
vecteurs

±V,±AV,•••,±An-'V,

	

i=1,•••,p ,

soit de dimension n, ce qui peut également s 'écrire

rang [B, AB, • • • , A n- 'B] = n .

2 .3 . Etats accessibles d 'un système autonome symétrique . Nous étudions
ici les systèmes autonomes particuliers du type suivant .

DÉFINITION 2 .3 .1 . On appelle système symétrique un système de la form e

= H(x) • u, x e Rn ,

	

u E U c RP (anal .) ,
dx

dt
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Introduction . Dans cet article on étudie le problème de l'accessibilité pour
des systèmes non linéaires du type :

dx = f(x, t,u),

	

xER n ,

	

uES~ ~ R p ,
d t

et plus particulièrement dans le cas où Q n'est pas un ensemble convexe .
Cette étude repose pour l'essentiel sur un théorème dû à Chow [2] . R . Her-

mann a, le premier, montré dans [7] et [8] comment ce théorème pouvait êtr e
appliqué avec fruit en théorie du contrôle . Depuis H . Hermes [10]--[12], utilisant
le théorème de Chow également, a abordé ce problème en termes de systèmes d e
Pfaff. Parallèlement dans [14] et [15] Kucera fait une étude très fine concernan t
les propriétés géométriques de l'ensemble des états accessibles, pour un système
linéaire particulier . Toutes ces études reposent fondamentalement sur l ' utilisation
de dérivées de Lie de champs de vecteurs . Nous ne proposons pas dans cet article
des résultats nouveaux importants mais plutôt une approche géométriqu e
systématique du problème . Pour cela nous avons partagé l'exposé en deux parties .
Dans la première nous exposons en termes purement mathématiques des résultat s
dus essentiellement à Hermann et Chow ; dans la seconde, nous interprétons ce s
résultats en termes de contrôlabilité . Lorsqu'un résultat est proche d'un résulta t
classique des références sont données, cependant la bibliographie proposée es t
loin d 'être exhaustive, en particulier tous les travaux concernant les équations d u
type :

dx
dt

E r(x, t) ,

tels que ceux de Wajeski, Filippov, Castaing, etc . ont été délibérément omis .
En fait, les méthodes et les résultats proposés ici sont de nature très différente .

Le paragraphe 1.1 est uniquement consacré à l'introduction de définition s
classiques en géométrie différentielle . Il ne contient aucun résultats .

Le paragraphe 1.2 est consacré à l'étude des "variétés intégrales " d'une
famille de champs de vecteurs . C'est en un certain sens une généralisation de
l 'étude de R . Hermann [7] . La proposition 1 .2 .1 est le résultat central de ce para -
graphe . Les exemples qui l 'accompagnent montrent que c 'est le résultat le plus
précis que l'on puisse obtenir dans le contexte choisi. Au point de vue géométrique
il serait plus logique de s'intéresser à l'intégration des "distributions cohérentes "
[22], [23], i .e ., se donner, de manière suffisamment régulière, en chaque point de l a
variété un sous-espace de l'espace tangent en ce point . Beaucoup des résultat s
énoncés ici peuvent se traduire immédiatement sauf, précisément, la proposition

1 .2 .1 . Le point de vue adopté (famille de champs de vecteurs) permet l'utilisation
du language géométrique et s'interprète immédiatement en termes de contrôle .

* Received by the editors November 18, 1969, and in final revised form February 24, 1970 .
t Mathématiques Appliquées, Université de Grenoble, Cedex 53, 38 Grenoble-Gare, France .

(1 )

(2)

573



574

	

CLAUDE LOBR Y

Le paragraphe 1 .3 propose une démonstration du théorème de Chow dont
l ' interpretation en termes de la théorie du contrôle est immédiate .

Le paragraphe 2.1 établit les liens entre le formalisme précédemment dével-
oppé et le formalisme classique de la théorie du contrôle . Les propositions qui y
sont énoncées sont des conséquences immédiates des définitions .

Le paragraphe 2.2 est consacré à l'étude locale de l'ensemble des état s
accessibles d'un système "contrôlé ." Il s'agit de corollaires des résultats de l a
première partie . Ces résultats ne sont pas classiques, et il est possible qu'un e
étude plus précise menée dans la même direction apporte d'autres renseignements .

Le paragraphe 2.3 est consacré à l'étude des systèmes du type :

dt = H(x) • u,

	

x e Rn ,

	

u e R P ,

	

H(x) EY(R P , R n ) .

Ces systèmes ont été introduits dans [10] . Une conjecture raisonnable concernant
la "bang-bang" contrôlabilité est proposée . Cette conjecture fait apparaître l a
possibilité de décrire l'ensemble des états accessibles de certains systèmes comm e
l'ensemble :

{xeR ;g(x)~0,i=1,2, . . .,p} ,

où les applications g ti sont des applications différentiables de Rn dans R .
Les problèmes variationnels issus de problèmes de contrôle, (contrôle op-

timal) n'ont pas étés abordés. Il est clair que l'étude locale du paragraphe 2 .2 peut
être utile dans l'étude de problèmes d 'optimisation.

1 . Intégrabilité des familles de champs de vecteurs .
1 .1 . Notations. Nous introduisons les notations utilisées dans la suite .

Pour la définition du vocabulaire de géométrie différentielle utilisée on pourra s e
reporter aux ouvrages classiques suivants : [1], [9], [18], [19] .

Nous supposons systématiquement que les variétés, champs de vecteurs ,
fonctions que nous utilisons sont de classe C . Cette hypothèse ne sera plu s
mentionnée par la suite . On supposera de plus que toutes les variétés sont séparées .

Soit M une variété, on note :
TM x l ' espace tangent à M en x ;
C°°(M) l ' anneau des fonctions (C°°) définies sur M ;
V(M) le C(M)-module des champs de vecteurs (Cl ") sur M .

Soient M et N deux variétés, 4) : M –> N une application de M dans N. On
note :

0 * la différentielle de / ;
44) la valeur de (/)* au point x . (g ) est alors une application

0*(x) : TM x --> TNo(x )

dont on note

0*(x) • h ,

la valeur en un point h de TMx .

dx
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Soit X un champ de vecteur défini sur M . On note :
Xt() le groupe local à un paramètre engendré par X . On sait qu'en
général Xt(•) n'est défini que pour des valeurs de t suffisamment petites .
Pour simplifier les notations nous omettrons systématiquement l e
"pour t assez petit ." Il est facile de voir qu'aucune difficulté supplé-
mentaire n'est liée à cette question dans ce qui suit . Sous les réserve s
exprimés ci-dessus on peut dire alors que Xt(•) est une application de
R x M dans M :

(x , t) --~ Xt(x ) •

On a de plus les relations :
Xo(x) = x ,

X+(x) = Xt(Xe(x))

Pour t fixé on note : X * la différentielle de l'application

x --p Xt(x ) .

Dans ces conditions X7(x) est une application linéaire inversible de TMx dans
TMx (x) satisfaisant aux relations :

Xt(x) = identité ,

(X*(x)) -1 = X *- t(X t(x))

Soient X et Y deux champs de vecteurs définis sur M, on note :

[X Y] le crochet de Jacobi des champs X et Y.

On sait que si on note Vx (t) le vecteur de TMx défini par

Vx( t ) = (Y * (x) — 1(X(Y(x)) )

on a par définition de [X Y] ,

dt xO

	

( to( ))

	

[XY] ( to( ) )
t=t o

On pourra trouver dans [24] une interprètation géométrique de cette notion .
Pour ce qui nous intéresse la meilleure interprètation que l'on puisse donner es t
le théorème de Chow lui méme tel qu'il est démontré en § 1 .3 .

Si d'autre part (x i , x 2 , • • • , x n ) est un système de coordonnées locales de M,
(ax 1 , • • • , ax n) la base de TM x associée, si on not e

n

	

a
X (x) = E X i(x ,

. . . , xn)

	

,
i=1

	

ax i

on a

[X Y] (x 1 . . . xn) = X* (x 1 . . . xn) . Y(x 1 . . . xn) — Y * (x 1 . . . xn)X(x 1
. . . xn) ,

o~ X *(x 1 • • • x n) est la matrice :

ax.
X*(xi . . . xn) = ax

(x1 . . . xn) )	 j (x i

= ,•••,n, j— 1,

	

,n .
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Rappelons pour terminer une conséquence classique du théorème de s
fonctions implicites . Soit 4) :M -4 N une application de la variété M dans la
variété N. On dit que 4) est une immersion si quel que soit x dans M la valeur en x
de la différentielle

4)*(x) : TMx -4 TNo(x )
est une application linéaire injective .

PROPOSITION 1 .1 .1 . Soit 4) une immersion de M dans N. Quel que soit x dans M
il existe un voisinage 611 de x et un voisinage '//' de 4) (x) tels que :

(i) 4) restreinte à

	

est injective ;
(ii) il existe un système de coordonnées locales sur

	

(y i • • • yn ) tel que (/)(W )
soit défini par

= {(Y1 . . . y n) :Y1 = Y2 = . .=yp = o } ,

où p est égal à m — n, m et n désignant respectivement la dimension de M et de N .

1 .2 . Intégrabilité des familles de champs de vecteurs . Soit M une variété .
Introduisons la définition suivante .

DÉFINITION 1 .2 .1 . Soit D une famille de champs de vecteurs définis sur M .
On dit qu ' une sous-variété N de M est une sous-variété intégrale de D si N es t
connexe et si pour tout x de N on a l'égalit é

TN x = Y(D(x)) ,

où 1(D(x)) est l'espace vectoriel engendré par l'ensembl e

D(x) = {X(x) ;XeD} .

Le résultat essentiel que nous démontrons dans ce paragraphe est la pro-
position suivante .

PROPOSITION 1 .2 .1 . Soit D une famille de champs de vecteurs analytiques défini s
sur la variété analytique M, stable pour l 'opération de crochet, c ' est à dire telle que

(XeD, Ye D)=[XY]eD .

Par tout point x de M il passe une unique sous-variété intégrale de D, maximale pour
l'inclusion .

Nous nous proposerons de plus une description précise de la structure de
variété de la sous-variété de D qui sera interprétée par la suite (§ 2.1) en termes de

y

X

FIG . 1 .
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contrôle. Les idées contenues dans ce paragraphe sont très directement inspirée s
de celles de R . Hermann [8] et plus précisément le point essentiel, le lemme 1 .2 .1 ,
correspond au lemme 2.1 de Hermann .

La difficulté de ce théorème est due à ce que la dimension de l'espace vectoriel
D(x) n'est pas supposée être constante . Lorsqu'elle est constante le classiqu e
théorème de Frobenius (cf. prop . 1 .2 .2) s 'applique. L'exemple qui suit montre ce
qui peut se produire quand la dimension n'est pas constante .

Exemple 1 . Considèrons dans R 2 les deux champs suivants :

I1
;

I 1

1
exp — 2

1

	

x

0

Ces deux champs sont de classe C . On vérifie immédiatement que la famill e
stable par crochet engendrée par les champs +X et + Y est la famille D défini e
par

D= {+X ; +Y ; +Y (n) , neN} ,

où le champ Y (n) est le champ

Y ( x , y ) =

I 1

\(exP (

	

x)
~

(n)
si x>0 ,

0

où (exp (—1 /x 2 )) (n) désigne la dérivée n-ième de exp( — 1/x 2 ) . On a alor s

dim /(D(xy) ) = J2 si x>0 ,

1 si x <—0
(cf. Fig . 1 . )

Supposons que par (0, 0) il passe une sous-variété intégrale de la famille D. L 'espace
tangent en (0, 0) à cette sous-variété est donc la droite {(x, y) ; y = 01 . Il s'ensui t
que cette sous-variéte "pénètre" nécessairement dans le demi-espace {x, y ; x 0} ,
où elle devrait avoir une dimension égale à 2 ce qui est évidemment impossible .

Notons "F .C .V." une famille de champs de vecteurs sur une variété M .
DÉFINITION 1 .2 .2 . Soit D une F .C .V . On dit qu'un arc continu :

a : [ab] —a M

est un chemin intégral de D si a est indéfiniment différentiable par morceaux et s i
pour tout intervalle 1 inclus dans [ab] sur lequel a est différentiable il existe un
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champ X de D tel que

da

dt (t)=
X(a ( t )) ,

Par indéfiniment différentiable par morceaux il faut entendre plus précisémen t
que [ab] est union finie d ' intervalles I 1 • • • I q tels que a restreint à t . ; soit l a
restriction à 1; d'une application indéfiniment différentiable de R dans M . On
obtient donc un chemin intégral de D en "recollant continuement" un nombre
fini de courbes intégrales de champs X de D .

DÉFINITION 1 .2 .3 . Soit D une F .C.V. sur M . On appelle feuille intégrale de D
passant par X et on note : Lx l ' ensemble des points de M qui peuvent être joints à
x par un chemin intégral de D .

On verra qu'à quelques réserves près la feuille intégrale Lx est précisément
la sous-variété intégrale de D passant par x. On déduit immédiatement du classiqu e
théorème de Frobenius sur la complète intégrabilité des systèmes de Pfaff l e
résultat suivant concernant Lx .

PROPOSITION 1 .2 .2. Soit D une F.C.V. définie sur M telle que :
(i) D est un sous-module de V(M) ;
(ii) (X e D, Y e D) = [X Y] e D ;

(iii) la dimension de l'espace vectorie l

D(x) _ {X(x) ; X e DI

est indépendante de x et égale à p .
Alors l 'ensemble Lx peut être muni d 'une structure de variété différentiable S

telle que la sous-variété (Lx , S) soit l'unique sous-variété intégrale maximale de D
passant par x .

Démonstration. On sait d 'après le théorème de Frobenius qu'il existe une
unique sous-variété intégrale maximale de D passant par X. Il suffit donc d e
constater, ce qui est très clair d 'après les définitions, que Lx coïncide avec cett e
sous-variété.

Dans [8] Hermann propose un théorème dans lequel l'hypothèse selon
laquelle la dimension de D(x) est constante est supprimée au profit d'autre s
conditions de régularité. C 'est ce théorème que nous allons montrer après les
lemmes suivants .

DÉFINITION 1 .2.4. On dit qu 'une famille D de champs de vecteurs définis sur
M est localement de type fini si quelque soit x dans M il existe un nombre fini d e
champs de D :

X 1 . . .Xq

tels que pour tout X de D il existe un voisinage 'Yx, x de x sur lequel on ait

[XX'] (y) _ E f 1(Y)X l (y ),

	

Y E , x
i= 1

Cette condition est légèrement plus faible que la condition "locally finitely
generated" de Hermann. On verra qu'elle est réalisée pour des familles de champ s
de vecteurs analytiques . Le lemme 2.1 de Hermann reste vrai sous cette hypothès e
et on a alors le lemme suivant .

tel .
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LEMME 1 .2 .1 . (Hermann) . Soit D une F .C .V. sur M localement de type fini .
Quels que soient x dans M, X dans D et t dans R tels que Xt(x) soit défini, l 'application

X *(x) : TMx --* TMxt(x )

définit un isomorphisme entre les espaces vectoriel s

2(D(x)) et 2(D(Xt(x))) .

Démonstration. Il suffit de prouver que si le vecteur V appartient à l'espac e
1(D(x)), alors le vecteur X;'(x) • V appartient à l 'espace 2(D(Xt(x))) .

D'autre part l'arc :

e --~ Xe( x ),

	

e E [ O, t]

est compact, il suffit donc de montrer la proposition plus faible suivante :
"Pour tout x dans M il existe un réel e(x) strictement positif tel que pour tou t

t en valeur absolue inférieur à e(x) on ai t

V e c,r(D(x)) = X;'(x) • V e £(D(X t (x))) . "

La famille D est localement de type fini, il existe donc q champs de vecteurs :

X1 . . .Xq

et un voisinage de x sur lequel

[XX' ] (y) = E f i(Y)X`(Y),

	

j = 1 , . . . , q .
i =

Notons Vi(t) le vecteur de TMx défini par

V' ( t ) = (X*(x)) -1 . (X'( X t( x))

Par définition du crochet de deux champs on a

-V't = X*x ' XX' X x .

Soit c(x) un réel tel que

I ti < E(x) ~ Xt(x ) E ~,x •

On a alors pour Iti

	

E(x) ,

d

	

q
v i(t) = E f1(x,(x))()O'(x))' xi(x,(x )) ,

dt
q .

i= 1

Soit encore

d

	

_ q
- V' ( t ) -` L f X ( x)) V l(t) ,
dt

	

i =

Les q vecteurs V'(t) sont solution d'un système de q équations différentielle s
linéaires . Il existe donc des fonctions

. .al (t),

	

i= 1,

	

• ~q , j = 1 , . . . , q ,

j— 1 , . . . , q ,
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telles que

Vi(0) = E ai(t)Vi(t) .
i =

Soit encore

e (x )(x) • X'(x) =

	

ai(t)XIXt(x)) .
i =

Le vecteur X *(x) • Xi(x) appartient donc à M(D(X t(x))) . Les vecteurs Xi (x )
constituant un système de générateurs de 2(D(x)) ; le lemme est démontré .

DÉFINITION 1 .2 .5 . Soit D une F.C .V . sur M. On dit que D est symétrique si quel
que soit X dans D le champX appartient à D .

LEMME 1 .2 .2 . Soit D une F .C .V. sur M, symétrique, localement de type fini .
Soient X i , X 2 , • • • , Xp p champs définissant une base de 1(D(x)) . Soit ~x l 'applica-
tion définie pa r

(ti , t2, . . . , t p ) E Rp —* 4)x( t i , . . . , t p ) = Xp
P

o Xn _ i o . . . o X-1 (x) E M .
P

Il existe un voisinage °llx de x tel que & restreinte à Wx ait les propriétés suivantes :

(i) Ox(lix) c Lx

(ii) (P x est une immersion injective ;
(iii) Im (4(t 1 , • • • , t p )) = Y(D(O x(t i , • • • , t p ))), où Im (çx(t i , • • • , tp)) désigne

l'image de l'application

Ox ( t i , . . . , t p)) : Rp -* TMox(t1, . . .,t,) .

En d 'autres termes, ~x définit une sous-variété intégrale de D passant par x .
Démonstration . La définition d 'un chemin intégral impose que l'on parcoure

les courbes intégrales des champs de D dans le sens des t croissants . Comme la
famille D est symétrique on aura

X -t(x) = - X t(x) ,

et par suite : le point (i) est démontré. Démontrons le point (ii) .
L'application (Px est évidemment de classe C°°, d'autre part la dérivée à

l'origine de O x est déterminée par les vecteurs :

(a'.Ôt i

	

( o , . . . , o )
= X i (x) .

(P x est donc de rang p à l'origine ce qui démontre le point (ii) . Le point (iii) est un e
conséquence du lemme 1 .2 .1 . En effet on a vu qu e

80 x
>•i = 1, . . . , p= Y (D (x )) .

	

ôt•

	

. .

	

~

	

(o,• ,o )

On a d'autre part :

(00x

	

! X ~`
x , a~x

l ( )

	

at• )(0,. . .,o )

[ (
Y

âti )(1,o,o,O,)



58 1CONTROLABILITE DES SYSTEMES NON LINEAIRE S

par conséquence d'après le lemme 1 .2 .1 :

EY(D(Xt l ( x))) = Y ( D (Ox(t 1 > 0 .
Ôt•

		

)) )
(ti,o,o,o )

En opérant de proche en proche on démontre ainsi le point (iii) .
Démontrons pour terminer un troisième lemme . On considère la situatio n

suivante . Soit D une F.C .V. sur M, symétrique, localement de type fini . Soit

IP--* M

une immersion définie sur un ouvert de Rp telle que l'on ai t

Im (ii*(t)) = ~°(D(fi(t))),

	

t E 3?/ .

Soit x un point de 0(11) . Soit ~x l'application définie pa r

(h(t l ,

	

, tp) = X p ° . . . ° X)'l (x) ,

où les champs X I , • • • , XP définissent une base de '(D(x)) .
On peut alors énoncer le lemme suivant .
LEMME 1 .2 .3 . L'ensemble (4) x ) — 1 (l//(Q1)) est un voisinage de 0 .
Démonstration. Soit (t 1 , • • • , t p ) un point de '1 tel que

Ox(tl,
. . . , tp) E 1/ ( 1 )

L'application tif étant une immersion on pourra toujours par application d e
la proposition 1 .1 .1 se ramener à la situation suivante :

M est un ouvert de R n contenant l'origine .
i/i(11) est l'intersection d'un ouvert ' de R n contenant l'origine avec l a

variété linéaire :

L ,, =
}x1

. . . xn , xp+1 = xp+2 = x n = 0} .

La famille D est telle qu e

x E L p fl V ='(D(x)) = Lp ,

4 (t1,t2, . . .,tp)=0 .

Notons 0 l'application définie par

(0f, . . .,0p)ERp-÷ 0(01, . . .,0p)—(Px(t1 +01, . . .,tp+0p) .

Cette application est définie sur un ouvert de R p . On vérifie d'autre part que

p0(01, . . .,Op)_ Yep° . . . oY 81 (0) ,

où les champs Yi sont définis par

Y p(m) = Xp(m) ,

Yp' (m ) = X:(X p tn ( m) ' X"-1(Xp t p ( m ) )

Yl(m) = X pp
°
Xp

	

. . Xt 1*(X 1tl+ 1
o . . . ° Xp tp(m))

X z(X `—t 1
+ 1 0 . . . ° Xp t p(m))'
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D'après le lemme 1 .2 .1 les champs Y i sont tels qu e

Y i (m) e Y(D(m)) .

Par conséquence sur Y p n

	

on a

Y`(m)ELp ,

	

i= 1,•••, p, meLp n 1V ,

et par suite d'après les théorèmes classiques sur l'intégration des équations différen -
tielles on voit que pour (01 , • • • , 0 p) suffisamment voisins de 0 le point 0(0 1 , • • • , 0p)

= 4(t 1 + 0 1 , • • • , t p + 0p) appartient à Lp n te, donc à /i(W) ce qui démontre
le lemme .

Nous pouvons maintenant démontrer la proposition suivante qui est un e
petite généralisation de la proposition 2 .1 de [8] .

PROPOSITION 1 .2 .3 (Hermann) . Soit D une F .C.V. sur M, symétrique, localement
de type fini. Soit x un point de M . La feuille intégrale Lx de D passant par x peut êtr e
munie d'une structure de variété différentiable S telle que le couple (L x , S) soit un e
sous-variété intégrale de D.

Démonstration. Soit pour chaque y de Lx l 'application :

:

	

-*Lx
définie au lemme 1 .2 .2. Montrons que la famille de "cartes" définie par les (/)y
munit Lx d'une structure de variété différentiable .

(i) Soit p(y) la dimension de l'espace vectoriel sur lequel est défini 'Ky . On
vérifie immédiatement par application du lemme 1 .2 .1 que p(y) est constante su r
tout chemin intégral de D et, par suite, constante sur Lx .

(ii) Les applications i(t)y : d1Cy -* M sont des applications injectives de dlly dans
Lx . Montrons que les changements de cartes sont bien C . Soi t

Oz : 4 M
une autre carte . Si on applique le lemme 1 .2 .3 en prenant pour i/i l'application (/) z
on voit que l 'ensemble

~y 1 ((bz(w z) )
est un ouvert de R". Le théorème des fonctions implicites montre ensuite qu e
l 'application

:

	

10 z0 z) )

est de classe C .
(iii) Soit S = }(a y :

	

Lx ;y e Lx } . L'atlas S définit sur Lx une structure de
variété différentiable . Par construction même de S on a

T (L x , S )y = 4*(0 ) . (R") = Y(D( y) )
Il ne reste donc qu 'à montrer de (Lx , S) est une variété connexe ((L x , S) es t
trivialement séparée) . Pour cela il suffit de montrer qu'un chemin intégral joignan t
x à y est un arc de (Lx , S), donc vérifier que pour tout X dans D et tout y dans Lx
l'application

t -+ X t( y ) e L x

est continue ce qui se vérifie aisément en procédant comme au lemme 1 .2.3 .
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Remarque 1 . La construction d'une structure de variété différentiable su r
Lx qui vient d'être faite diffère sensiblement de celle que propose Hermann dans [8] .

Les cartes que nous proposons constituent un système local de "coordonnée s
curvilignes" de Lx reposant sur la connaissance d'une base de Dx .

Hermann suppose que D est un sous-espace vectoriel et définit une carte au
point y en choisissant un sous-espace Dy de D tel que l'application

Y –~ Y(Y )

soit un isomorphisme de D y sur D(y) . Ensuite à chaque Y de D y il associe le poin t

Yl ( y ) de L x .
A condition de choisir Y suffisamment petit on peut ainsi définir une cart e

au voisinage de y .
D 'un point de vue pratique (numérique) dans la construction que nou s

avons proposé une carte peut être complètement décrite par l ' intégration de p
équations différentielles .

Remarque 2 . L'hypothèse selon laquelle D est localement de type fini est
essentielle comme le montre l'exemple suivant . C'est le même exemple que
l'exemple 1 mais interprèté de façon différente .

Exemple 2 . Soit D la F.C .V. définie sur R 2 dans l'exemple 1 . L'allure des
courbes intégrales du champ X est donnée par Fig. 2. L'allure des courbes in-
tégrales du champ Yest donnée par Fig . 3 . Il est clair que la feuille intégrale de D
passant par l'origine est égale à R2 tout entier alors que la dimension de D à
l'origine est seulement égale à 1 . Ce contre exemple repose sur le fait qu'il exist e
des fonctions C°° nulles sur un ouvert, non identiquement nulles ce qui n'est pas l e
cas pour des fonctions analytiques .

On déduit immédiatement de la proposition 1 .2 .3 et du lemme 1 .2 .3 la propo-
sition suivante .

PROPOSITION 1 .2.4. Soit D une F .C.V. sur M symétrique, localement de typ e
fini . Soit x un point de M. Toute sous-variété intégrale de D passant par x est une
sous-variété de (Lx , S), où S est la structure définie en 1 .2.3.

Supposons maintenant que M soit une variété analytique et V (M) le module
des champs de vecteurs analytiques définis sur M. Rappelons les résultats classiques
d 'algèbre suivants .

FIG . 2 .



5 84

	

CLAUDE LOBR Y

1

FIG . 3 .

DÉFINITION 1 .2 .6 . On dit qu'un A-module E est Noetherien si toute famill e
non vide de sous-modules de E possède un élément maximal . Un anneau A es t
Noetherien si, considéré comme A-module, il est Noetherien .

PROPOSITION 1 .2 .5 . Si A est un anneau Noetherien, l'A-module fl n_ A 1 (A i = A)

est Noetherien [20, p . 55] .
PROPOSITION 1 .2 .6 . L 'anneau des séries entières convergentes à n indéterminée s

réelles, K[[x 1 , • • • , xn]] est un anneau Noetherien [21, p. 149] .
PROPOSITION 1 .2 .7 . Soit D une famille de champs de vecteurs analytique s

définis sur la variété M, close pour l ' opération de crochet, c'est à dire telle qu e

(XED, YED) [XY]ED .

La famille D est alors "localement de type fini . "
Démonstration . La condition étant locale il suffit de démontrer la propositio n

1 .2 .7 pour une famille D d 'applications analytiques de Rn dans R n .

Soit sd(R n, Rn) l'ensemble des applications analytiques de Rn dans R n . Soi t
Sd (Rn, R n) l'ensemble des germes en 0 d 'application analytiques de Rn dans R n.

On sait que Wd(R n, R n) est le quotient de sd(R n, R n) par la relation d'équi -
valence :

"f — g fet g coïncident sur un voisinage de 0" .

Notons 7r la projection canonique :

7r : d(Rn, Rn ) — Wd(R n, R n) .

Le module Wd(R n , R n ) est isomorphe au module : (K[[x 1 , • • • , xn]])n de s
séries entières convergentes à n indéterminées réelles qui est Noetherien (prop .
1 .2 .5 et 1 .2 .6) .

Soit

	

l'ensemble des parties finies de 7r(D) . La famill e

{M ;cxe}}

(Ma = module engendré par a) possède un élément maximal : M(ai . . . ao ; a i e 7r(D) .

Tout élément a de 7r(D) peut donc s'écrire :

P

a = E (Pi ao

	

E K[[x1,
. . . , xn]] •
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Soient X 1 , • • • , X" p éléments de D tels que rc(X i ) = a i . Etant donné un
élément quelconque X de D (en particulier de la forme X = [ YX i] , Y E D) on a

i = 1

Par conséquence il existe un voisinage de l'origine sur lequel on a

p
X (x 1 , . . . , xn) =

	

O i(x 1 ,
. . . , x n )X i(x 1 , . . . , xj

i =

ce qui démontre la proposition 1 .2 .7 .
On déduit des propositions 1 .2 .3 et 1 .2.7 la proposition suivante .
PROPOSITION 1 .2.8 . Soit D une famille de champs de vecteurs analytiques,

symétrique, définie sur la variété analytique M, stable par crochet (i .e., (X E D,

Y E D) = [X Y] E D) . Quel que soit x dans M, l'ensemble Lx peut être muni d ' une
structure de variété S telle que (Lx , S) soit une sous-variété intégrale de D .

Enfin on obtient la proposition 1 .2.1 en appliquant la proposition 1 .2 .4 à l a
famille symétrique engendrée par D .

Remarque . La proposition 1 .2 .3 s'applique à la situation décrite par Kucer a
dans [14] . En effet ce dernier énonce : Soit Olt un sous-espace vectoriel de 1(R n, R n)

tel que

(AE 01t,BE~lt)=AB - BA E

La famille D de champs de vecteurs :

D = { X -*AX ;AE1I }

est stable par crochet et localement de type fini (2(R n, R n) est un espace vectoriel
de dimension finie) .

1 .3 . Le théorème de Chow . Nous énonçons dans ce paragraphe une forme
particulière du théorème de Chow .

Nous donnons sur un exemple une idée de la démonstration . La demon-
stration générale n'est pas plus difficile mais la multiplication des indices la rend
fastidieuse . Elle est rédigée dans [17] .

Soit dans R 3 la famille de champs de vecteurs :

D = {±X 1 ; ± X 2 } .

PROPOSITION 1 .3 .1 . Si les vecteurs

X
1(x0),

X 2 ( x0), [ X 1 X2 ](xo )

sont indépendants, alors la feuille intégrale de D passant par xo est un voisinage d e
xo .

Démonstration. Soit Zr la famille de groupes à un paramètre définis pa r

Zt (x) = X'-

	

X (x) .

Si on note U) le vecteur

V,(/1)

	

â
(Z(X))

t=o
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on a

Vx(2) = X 1*a,(Xl.(x )) X 2 ( X l(x ) )

donc par définition du crochet de deux champs on a

(J/t))

	

= CX 1X 2 x) .x

	

~ (
A= 0

Soit 0 A la famille d'applications de R3 dans R 3 définie par

/A( t 1, t2, t3) — Z3° Xz° X1(x 0 )

Par définition de l'ensemble L x on a l' inclusion

Oa(ae ) C Lx

où QI est un voisinage de 0 dans R3 sur lequel /iA est bien définie. Montrons que
1i A est pour un ), convenable un difféomorphisme local au voisinage de 0 ce qu i

montrera la proposition . Pour cela calculons

	

0, 0) . On a

00A (0, 0 0 =X 1 x
1

00 0 0 0 =X 2 x
2

00A (0 > 0 > 0) = V 2) .t

	

xo (
3

Il est clair que

Vxo(0) = X2(x0) .

Soit L\(2) l'application de R dans R défini par

0(2) = det ( X 1 (xo), X 2 ( xo), Vxo( 2 ) )

On a

d
A (,I)A _ o = det (X 1 (xo), X 2 ( xo), [X 2X 1 ] (xo)) .

d2
-

Par hypothèse les vecteurs

X 1 (x0), X
2(x0),

C X 1X 2 ix 0

sont indépendants .
On a donc

A(0) = 0,

	

0'(0)

	

0 .

Par conséquence pour 2 suffisamment petit on a A(2) 0 .

A(0) = 0,
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Z

A

(0,0,1 )

(0,1,1)

+~• X

i

_ __y

y

FIG . 4 .

Exemple 3 . Sur Fig . 4 on voit comment en utilisant les courbes intégrales des
champs

I 1

		

1 0I
X= 0

	

Y= 1

\0 /

	

\ x

on peut atteindre le point (0, 0, 1) en partant de l'origine .
Afin de généraliser la proposition 1 .3 .1 à un système symétrique quelconque

de vecteurs de R n introduisons la notion de saturée d 'une famille de champs d e
vecteurs .

Soit D une famille de champs de vecteurs sur une variété M . On note AD la
famille :

AD = {[XY] ;X ; Y :XED, YED }

et An (D) la famille définie par

A'(D )1(D) = A(A n(D)) .

DÉFINITION 1 .3 .1 . Soit D une F .C.V. sur la variété M. On appelle saturée de
D et on note D la famille définie pa r

b' = U A n (D) .
nE N

On remarque que si D est symétrique, D l'est également. D'autre part mêm e
si la famille D est finie on peut avoir pour tout n ,

A n (D)

	

An-1 (D) .



588

	

CLAUDE LOBRY

D'autre part, par construction même, D est stable par crochet. On a alors l a
proposition suivante .

PROPOSITION 1 .3 .2 . THÉORÈME DE CHOW . Soit D une F .C .V. sur Rn symétrique
telle que dim (2(D(xo))) -_= n . Alors la feuille intégrale de D passant par xo est u n
voisinage de xo .

Démonstration . On procède comme dans la démonstration de la proposition
1 .3 .1 en utilisant des familles de groupes à un paramètre un peu plus élaborées qu e
la famille Z, (cf. [17]) .

Du théorème de Chow on déduit immédiatement les propositions :
PROPOSITION 1 .3 .3 . Soit D une F.C.V. symétrique définie sur une variété M de

dimension n . Si la dimension de l ' espace vectoriel 1f(13(x 0)) est égale à n, alors la
feuille intégrale Lx0 de D passant par xo est un ouvert de M .

Démonstration. C'est une conséquence immédiate de la proposition 1 .3 .2 .

PROPOSITION 1 .3 .4 . Soit D une F .C.V. symétrique définie sur une variété con-
nexe M de dimension n. Si pour tout x de M on a

dim Y(13 (x)) = n,

alors la feuille intégrale passant par x est égale à M .
Démonstration . C'est une conséquence immédiate de la connexité et de l a

proposition 1 .3 .1 .
PROPOSITION 1 .3 .5 . Soit D une famille de champs de vecteurs analytique ,

symétrique sur la variété M. Notons Lx et L x les feuilles intégrales de D et b' passan t
par x .

Quel que soit x dans M on a l'égalité

L x =Lx .

Démonstration . D'après la proposition 1 .2 .8 appliquée à la famille D on peut
munir Lx d'une structure de variété différentiable. Il suffit ensuite d'appliquer l a
proposition précédente à la restriction de D à L x .

En l 'absence d'hypothèse d 'analyticité on obtiendrait une proposition
analogue en supposant que D est localement de type fini.

En théorie du contrôle il est souvent important de savoir si l'ensemble de s
états accessibles est d'intérieur vide . La réponse à cette question sera donnée par
la proposition suivante .

PROPOSITION 1 .3 .6 . Soit D une famille de champs de vecteurs analytiques sur R n.
Une condition nécessaire pour que la feuille intégrale L x de D passant par x soi t
d'intérieur non vide est que la dimension de l 'espace vectorie l

1f(D(x))

soit égale à n . Si de plus la famille D est symétrique la condition est suffisante .
Démonstration . Supposons qu e

dim (Y(D(x))) = p < n .

Soit D' la famille symétrique engendrée par D . On a évidemment

1f(D(x)) = 1f(D'(x))
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La feuille intégrale Lx de D' passant par x contient L X . D'autre part on peut munir
Lx d'une structure de variété différentiable S telle que (Lx, S) soit une sous-variét é
connexe de Rn de dimension P .

On sait que toute sous-variété connexe et séparée d 'une variété a compact e
est a-compacte [1, p . 97] . La variété Rn est a-compacte, (Lx, S) est donc a-com-
pacte, comme elle est de dimension strictement plus petite que n l'ensemble L x'
est d ' intérieur vide . La condition est donc nécessaire . Si D est symétrique la con-
dition est suffisante d'après la proposition 1 .3 .3 .

2. Critères intrinsèques en théorie du contrôle. Nous allons utiliser les
résultats précédents pour obtenir des critères intrinsèques en théorie du contrôle .
Nous entendons par critère intrinsèque tout critère qui peut se déduire par de s
opérations algébriques sur la fonction f (x, t, u) . Par exemple, le critère de con-
trôlabilité de Kalman [13] : "Le système

= Ax + Bu, xERn ,

	

uERp ,

est contrôlable si

rang [A, AB, . . . , An
— 1 B] = n,"

est un critère intrinsèque . Par contre le critère : "Le système

dx
= A(t)x + B(t)u,

	

x e Rn ,

	

u e R p ,
d t

est contrôlable si

T
rang

	

4) - 1 (tot)B(t)t B(t)t O -1 (tot) dt = n ,
o

où 0 (t o t) est la matrice fondamentale du système," n'est pas un critère intrinsèque
car il s'exprime à l'aide de /(to t) qui s'obtient à partir des données en intégrant
une équation différentielle, ce qui n'est pas toujours possible pratiquement .

Le "principe du maximum" n'est pas non plus un critère intrinsèque puisqu'i l
fait intervenir également la résolvante du système le long d 'une trajectoire présumée
optimale .

2 .1 . Théorie du contrôle et familles de champs de vecteurs . Les problèmes d e
contrôle se formulent classiquement de la manière suivante .

Soit f: R n x R x R" -4 Rn une application suffisamment régulière. Soit e2 un
sous-ensemble de l'ensemble des applications intégrables d 'un intervalle de R
dans une partie U de R". A tout couple :

(xo , (0,1 : [t o t l] -a U ) )

constitué d'une condition initiale xo de Rn et d'un "contrôle" admissible
(/1 : [tot 1 ] - 4 U) on associe l'état final :

(x0 , (l/ : [ t0t1] --> U)) --~ x ( x0, t0 , t i ~ 0/1) E R n

dx

dt
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défini par

d
—x

(

x to, t,

	

= .f (xtu(t ))
dt

	

°~ o> >

	

> t, u(t)) ,

x(to) = xo .

Cette formulation, très générale, rend compte de nombreuses situation s
pratiques . Nous allons diminuer la généralité de cette situation en supposant qu e
fest une fonction C°° ou analytique de tous ses arguments et que 42 est l'ensemble
des fonctions C°° ou analytique par morceaux d 'un intervalle de R dans U . La
perte de généralité entraînée par ces restrictions n'est pas très grave dans l a
pratique .

Donnons maintenant quelques définitions précises .
DÉFINITION 2 .1 .1 . L'expression :
"Soit le systèm e

dx _

dt

	

f (x, t, u),

	

x e R n ,

	

u E U OE R p ,

	

C°° (resp. anal) . "

Sous-entend :
(i) Soit f: Rn x R x R" -* Rn de classe Cl " (resp. analytique) .
(ii) Soit U une partie quelconque de R", 11(U) l'ensemble des applications

C c par morceaux (resp. analytique par morceaux) d 'un intervalle de R dans U .
(iii) Au couple xo e Rn,

	

: [tot 1 ] --* U) de 11(U) on associe l'élémen t

x(xo,to,t 1 ,W ERn ,

défini par

(*)

L'application f étant supposée telle que les solutions de l'équation différ-
entielle (*) soient toujours définies pour t = t 1 .

DÉFINITION 2 .1 .2 . Soit le système

dx
dt = f (x, t , u),

	

x E R n ,

	

u E U OE Rp ,

	

C°° (resp. anal .) .

On appelle ensemble des états (xo, to)-accessibles à l ' instant t 1 (t 1 > to), et
on note A(xo, to, t 1 , U) l'ensemble :

A(xo, to, t 1 , U) = {x(x 0 ,t 0 ,t 1 ,1) : dl1eC([tot 1 ] --~ (1)}

(resp . analM ([tot l ] -* U)) ,

où CM([tot 1 ] — U) (resp. anal M([tot l ] -~ U)) désigne l'ensemble des application s
C°° (resp . analytiques) par morceaux de [tot l ] dans U .

On appelle ensemble des états (xo, to)-accessibles et on note A(xo, to, U )
l'ensemble :

A(xo, to, U) = U A(xo, to, t 1 , U) .
ti >t o

t e t t —xx t t,

	

011)

	

xx to, t 011), t~ t

	

[ o1]
dt

(o' o>>

	

)

	

f((o~ ~

	

~

	

O) ~

x( 01 1)xo, to, to,

	

= xo .
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Pour finir définissons la contrôlabilité "bang-bang " de la manière suivante .
DÉFINITION 2 .1 .3 . Soient les systèmes :

	

i
dx

= x t, u),

	

x e R n

	

u E U Rp

	

C°°

	

anal .) ,() dt

	

.Î(

	

)>

	

(resp .

dx
= x t, u),

	

x e R n

	

u E U c R P ,

	

C" res . anal .) .(ii) dt

	

f( > > )~

	

>

	

>

	

( p

Supposons que U soit inclus dans U . On dit que le système (i) est strictement
"U-bang-bang" contrôlable si quel que soient x 0 , t 0 , t 1 on a l 'égalit é

A(xo , to, t 1 , U) = A(xo , t 0 , t 1 , U) .

On dit que le système (i) est " U-bang-bang" contrôlable (au sens large) s i

A(x0 , t0 , U) = A(x 0 , t 0 , U) .

Il est clair que lorsqu'on s'intéresse à des problèmes de contrôle en temp s
minimum seule la notion de stricte "bang-bang" contrôlabilité est utilisable . Par
contre si dans un problème d'optimisation on étudie un critère sur l'état final o n
pourra utiliser la "bang-bang" contrôlabilité large . Dans la suite nous n'exam-
inerons que la contrôlabilité "bang-bang" au sens large .

Nous relions maintenant la notion de système à celle de famille de champ s
de vecteurs .

DÉFINITION 2 .1 .4 . Soit le système :

dx

=

dt

	

f (x, t, u), x E R n ,

	

u E U c RP ,

	

Cl " (resp . anal) .

Notons I l'ensemble des applications C°° (resp . analytiques) de R dans U .
On appelle famille de champs de vecteurs associée à (f, U) et on note :

	

( Xi)iEl ;

	

I = C°°(R, U) (resp. anal . (R ---~ U)) ,

la famille de champs de vecteurs sur Rn + 1 définie pa r

Xi(x, t)

	

f (x, t, i(t) )
_

		

ie1 .
1

On utilise également la notation :

(X t )iel = D(f, U) .

La proposition suivante est une conséquence immédiate des définitions
1 .2 .2, 2 .1 .2, 2 .1 .4 .

PROPOSITION 2 .1 .1 . Soit le systéme :

dx

	

= f (x, t , u),

	

x E Rn ,

	

u E U c R",

	

C°° (resp. anal . )
dt

et D (f, U) sa famille de champs de vecteurs associée .
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Soit xo un point de R n, to un réel . On a les égalités suivantes :

A ( x o , t o , t i , U) = n( L (xo,to) n {(x, t) ; t = t i { )

A(xo, to, U) = n( L (xo,to) )

où it est la projection de Rn+ 1 sur Rn :

(x,t)—* x

et L ( ,co,to) est la feuille intégrale (déf. 1 .2 .3) de D( f, U) passant par (xo, to) .

Les systèmes autonomes sont susceptibles d 'un traitement différent que nou s
définissons maintenant .

DÉFINITION 2 .1 .5 . On appelle système autonome un système de la forme :

= f (x, u),

	

x E R n ,

	

u E U OE R P ,

	

C" (resp . anal .) .

On dit de plus que le système est dénombrable si l'ensemble U est dénom-
brable .

DÉFINITION 2 .1 .6 . Soit

dx
= f (x, u),

	

x e Rn ,

	

u e U

	

R P,

	

C°° (resp . anal . )
dt

un système autonome dénombrable . On appelle famille de champs de vecteurs
associée à un tel système et on note :

(X u)u e U

la famille de champs de vecteurs sur Rn définie pa r

Xu( x) = .f ( x , u )

On a alors la proposition suivante .
PROPOSITION 2 .1 .2 . Soi t

dx

(*)
	 	 =

dt

	

f `x, u),

	

x e R n ,

	

u e U

	

R p ,

	

(resp . anal .)

un système autonome dénombrable . On a l ' égalité :

A(xo, 0, U) = Lxo ,

où L xo est la feuille intégrale de la famille de champs de vecteur (Xu )u e U associée
à (*) .

Démonstration. Il suffit de remarquer que si U est dénombrable les application s
C°° (resp. analytiques) par morceaux de R dans U sont constantes par morceaux .

2 .2 . Ensemble des états accessibles étude locale . Comme exemples d 'applica-
tion des résultats de §§ 1 .2 et 1 .3 nous donnons les propositions suivantes . Elle s
ne sont pas très fines et il est certain qu'un travail du type de celui de Kucera [14] ,
[15] permettrait d 'obtenir des résultats plus intéressants .

dx
dt
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On considère le système :

dx _
dt

	

f (x, t, u),

	

x e Rn ,

	

u E U c RP (anal .) ,

et sa famille de champs de vecteurs associée D (f, U) (cf. déf. 2 .1 .4) .
On note enfin D(f, U) la saturée (déf. 1 .3 .1) de D(f, U) .
PROPOSITION 2 .2 .1 . Soit dans Rn+ 1 un couple :

(x , t1) ; x e A(xo, to, t 1 , U) .

L'ensemble des points de Rn+ de la forme

(x, t) ;

	

x e A(xo, to, t, U)

est inclus dans une sous-variété de Rn+ 1 dont l'espace tangent au point

(x , t 1 )

est défini par

~(D(f, U)(, t 1 )) .

Démonstration. D 'après la proposition 2 .1 .1 le point (x, t i ) appartient, ainsi
que tous les points (x, t) tels que x e A(xo , to, t, U), à la feuille intégrale L( ,, 0 ,0) de
D(f, U) qui d'après (prop . 1 .2.1) est incluse dans une sous-variété de Rn+ don t
l 'espace tangent en (x, t 1 ) est '(D( f,, U) (x, t 1 )) .

Remarque 1 . Ce résultat concernant le coupl e

(x = x ( xo, to, t 1, ), t 1 )

dans l'espace des (x, t) ne fait intervenir que le couple (x, t1) et pas le contrôl e
û : [to t 1 ] - + U conduisant à x. En principe l'espace 2(D(f, U) (x, t 1 )) peut être
déterminé par des opérations de crochet (pas nécessairement en nombre fini !) .

Remarque 2 . Le résultat est très faible et ne renseigne que très peu sur l e
comportement de l 'ensemble des états accessibles au voisinage de x .

Remarque 3 . On ne peut rien obtenir par ce procédé concernant les état s
accessibles A(xo, to, U) car la projection selon i de la sous-variété L(xo,to) n'est
pas une sous-variété de R n . Par contre concernant l'ensemble des états A(xoto, t 1 , U )
on peut obtenir la proposition suivante .

PROPOSITION 2 .2 .2 . Soit dans R n le point x appartenant à A(xo, to, t 1 , U) .
L'ensemble A(xo, to, t i , U) est inclus dans une sous-variété dont l'espace tangen t
au point x est l'espace vectoriel :

~(D(f, U)(x, t i )) fl {(x, t) ; t = 0} .

Démonstration . L 'ensemble de Rn+ 1

{(x, t i ) ; x e A(xo, to, t i , U) }

est inclus dans la sous-variété de R n :

L(xo,to) nI {(x, t ) ; t = ti} .

Remarque . Ce résultat est un peu plus précis que le précédent . Il reste cepen-
dant très insuffisant comme le montre l'exemple classique suivant, du à Filippov .

(1)
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Exemple 4 .

dx
_ — y 2 + u 2

	

x E R,

dy
= u,

	

yeR ,dt
Dans R 3 la famille de champs de vecteurs associée est :

I_ Y 2 + 1

dt
u E R, lul = 1 .

X '(x, Y, t) _ 1

\

	

1

I __._ y 2 +

X2(x, y, t) =

Calculons les crochets . On a

/0 -2y 0\ 1—y 2 + 1'

-1

'0 -2y 0\ 1-y2 + 11 /4y \

[X 1 X 2 ] (xy) = 0

	

0

	

0

	

-1

	

0

	

0

	

0

	

1

	

= 0

0

	

0/ 1

	

1 ~

	

\0

	

0

	

\

	

1

	

\ 0

' 4\

[[XiX2 ]Xi ] = 0

1 0 /

Les vecteurs Xi , X 2 , [[X iX2]X
i] sont toujours indépendants . L 'ensembl e

A(xo, 0, 1, U) est inclus dans un ouvert de R 2 , ce qui n 'apporte évidemment aucu n
renseignement supplémentaire !

Y

1

FIG . 5 .
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Quelques calculs élémentaires montrent que l'allure de A(xo , 0, 1, U) es t
donnée par Fig . 5 . L'ensemble des états accessibles à l'instant 1 est un ensemble
limité par deux arcs, l'arc passant par le point (1, 0) n'appartenant pas à l'ensemble .
Filippov a montré par cet exemple qu'en l'absence d'hypothèse de convexité su r
l ' ensemble :

{f(x,u) ;ue U} ,

il ne peut pas exister de contrôle en temps minimum . Ceci est très clair lorsqu'on
représente dans R 3 la feuille intégrale du système défini par les deux champs X 1
et X 2. La troisième composante des champs étant constamment égale à 1 l a
troisième coordonnée s'interprète comme le temps écoulé depuis le départ . On
voit facilement que cette feuille intégrale est une partie de R 3 limitée par deux
surfaces, la surface inférieure n'appartenant pas à la partie, ce qui entraine la
non-existence d'un contrôle en temps minimum .

On peut enfin obtenir une condition nécessaire pour que l'ensembl e
A(xo, to, t, , U) soit d ' intérieur non vide.

PROPOSITION 2 .2 .3 . Une condition nécessaire pour que l'ensemble A(xo, to, t, , U )
des états (xo, to)-accessibles à l ' instant t l du système (1) (analytique) soit d'intérieu r
non vide est que

~
Y(D(f, U) . ( xo, t o) )

soit de dimension n + 1 .
Démonstration. Supposons que dim (1(D( f, U) • (xo, to))) n ; alors pour

tout x E A(xo, to, t l , U) on a

dim {(D(f, U) • ()T, t i )) (1 {(x, t) ; t = 0} } < n

car l 'espace 2(D(f, U) • ( --t i )) est toujours transverse à l'hyperplan {(x, t) ; t = 0} .

I

X

y
FIG . 6 .
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La proposition découle alors de la proposition 1 .3 .5 .
Exemple 5 . Appliquons ce résultat au système :

dx
= Ax + Bu,

	

xERn ,

	

uER p ,

	

U = {(u l , • • • , up) ;Iu 1 I = 1} ,
dt

A E 2(Rn , R n ),

	

B E 1(Rp , Rn) ,

x(0) = O .

On sait qu'une condition nécessaire et suffisante (Kalman et Halkin) pour
que l'ensemble des états (0, 0)-accessibles du système ci-dessus soit d 'intérieur non
vide est que

rang [B, AB, • • • , A n- i B] = n ;

en appliquant la proposition 2 .2 .2 on obtient la condition nécessaire . En effet,
la famille de champs de vecteurs associée est :

D(f, U) = {Ax ± V ; i = 1, . . , pl ,

où V1 , VI, représentent les colonnes de B .
On a alors

[Ax+V,Ax+V,]=AVj —AV,=A[Vj — V] .

On obtient donc tous les champs :

AV1 , AV2 , • • • , AVp

(à un facteur multiplicatif près) . Si on recommence on a

[Ax+V,AV;] =A•AV=A 2 V; .

On voit donc que la saturée de la famille D (f, U) contient les champs :

Ax -1- V, +AV,+A2V, •••, +An-i V,

	

i=1, . . ., p .

Le théorème de Hamilton-Caeley montre qu ' il est inutile de continuer (A n
s'exprime à partir des A i , i <= n — 1) et que par conséquence on a obtenu la saturé e
de D (f, U) . D'après la proposition 2.2.3 une condition nécessaire pour que
A (0, 0, tl , U) soit d'intérieur non vide est que l'espace vectoriel engendré par le s
vecteurs

±V,±AV,•••,±An-'V,

	

i=1,•••,p ,

soit de dimension n, ce qui peut également s 'écrire

rang [B, AB, • • • , A n- 'B] = n .

2 .3 . Etats accessibles d 'un système autonome symétrique . Nous étudions
ici les systèmes autonomes particuliers du type suivant .

DÉFINITION 2 .3 .1 . On appelle système symétrique un système de la form e

= H(x) • u, x e Rn ,

	

u E U c RP (anal .) ,
dx

dt
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FIG . 7 .

En effet soit dans R 2 le système défini par :

dx

	

1 1
=

	

u,

	

xER 2 ,

	

uEU~R2 ,
dt

	

1 1

U = {(u 1 ,u2) ;IuI < 11 .

Il est clair que le point (2, 0) peut être atteint au temps t = 1 à partir de l'origine
si on utilise des contrôles appartenant à U alors qu'avec des contrôles appartenan t
à U il faut attendre le temps t ~ 2 (cf. Fig . 7).

Ceci réside dans le fait qu 'en choisissant les contrôles "bang-bang" dan s
l'ensemble U on n 'utilise pas toute "l'énergie" du système. Pour obtenir de s
propositions de contrôlabilité "bang-bang" stricte il faut choisir un U permettant
d 'utiliser toute l'énergie tel que, par exemple,

{(u1, . . . , up) ; I u i' = 11 .

La proposition 2 .3 .1 est la conséquence des résultats qui vont suivre .
Introduisons la famille D des champs de vecteurs analytiques tels qu e

X e D . VxeR'1 : X(x) e H(x)(U) .

Cette famille est évidemment symétrique ; notons D la saturée de D pour
l'opération de crochet . Soit Lxo la feuille integrale de D passant par xo, on sait qu e

Lx0 est une "sous-variété" intégrale (Prop . 1 .3 .5) de D. Nous allons utiliser cett e
propriété de Lx0 pour démontrer la proposition suivante .

PROPOSITION 2 .3 .2 . Quel que soit xo on a l ' inclusion :

A(xo, 0, U) c Lx. ,

où A (xo, 0, U) est l'ensemble des états (xo, to)-accessibles (déf. 2 .1 .2) .
Remarquons pour commencer que la proposition suivante est fausse . "Soi t

t -~ 6(t) un arc différentiable tel que

6 E Y(D(a(t)))d t

quel que soit t le point 6(t) appartient à L

	

"
,(o)

.
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Exemple 7 . En effet considèrons dans R 2 les deux champs :

	

_ 1

	

2_ 1
Xi =

	

, X'

	

y

	

— y

Soit D = {X', X2 }, il-est clair que les feuilles intégrales de D sont les 3 ensembles :

E+={(x,y)y>0} ,

Soit maintenant l 'arc

E° = {(x,y) ;y = 0},

	

E = {(x, y) ; y < 0} .

t3
t --~ 3 = a(t),

	

t E R .
t

On a

da-
3t2

dt

	

13t 2

par conséquence,

da

	

-
- e Y(D(r t

et pourtant l ' arc a(t) traverse les trois feuilles intégrales de D (cf. Fig. 8).
Le fait que A ( x° , 0, U) est inclus dans L, ne sera donc pas une conséquenc e

du fait que si

x(x°, 0 , t l , W )

est un élément de A(x ° , 0, U) l'arc

t --4 x(x° , 0, t, dlC) = a(t)

	

(déf. 2 .1 .2 )

est tel que

~
dt

O6t = H(a(t)) O•~t EY(D( Off t )) .

y

~

	

t3
t-3 -( t 3)

X

FIG . 8 .
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Par contre supposons maintenant que l'application :

f :R n x R-+ Rn ,

(x, t) -+ f (x, t )

soit une application continue, différentiable en x, telle qu e

bo x E R n ,

	

Vt e R,

	

f (x, t) E I(D(x)) .

Soit x (x0 , t) la solution maximale de l'équation différentielle :

dx
dt = f (x, t),

	

x(0) = x o .

L 'application x (x0 , t) est une application d 'un intervalle ouvert de J de R
dans R n.

Si nous montrons que pour tout to appartenant à J il existe un voisinag e
011 to de to tel que

t E °li to

	

x(x0 , t) E Lx(xo,to)

on aura montré que la solution maximale x (x 0 , t) appartient entièrement à L xo .
Soit donc to un élément de J . Soit l 'application :

~ : Lx(xo,to) x R ---+ TLx(xo,to) ~

où T Lx(xo,to) est le fibré tangent à L4(xo,to) définie pa r

J(x,t) = f (x, t) ,

où f (x, t) est considéré comme un élément de l'espace tangent en x à la variét é

Lx(xo,to), ce qui est possible puisque f (x, t) appartient à 2(D-(x)) . On a défini ains i
une "équation différentielle" sur la variété Lx(xo,to) . Soit x (x(xo , t 0 ), t) une solution
dans Lx(xoto) d e

Cette solution peut évidemment être considérée comme une solution dan s
R n de

Par conséquence sur un voisinage de to la solution x(xo, t) ne quittera pas l a
variété Lxo .

Pour démontrer la proposition 2 .3 .2 il suffit d'appliquer ce qui vient d'être
dit pour f (x, t) à la fonction H(xet(t) les discontinuités de i(t) n'introduisan t
pas de difficultés supplémentaires.

f

dx _

dt

	

f(x, t) ,

x(t 0) = x (x0, t 0 )

f

dx

dt

_
	 _ f(x , t) ,

x(t 0) = x (x0 , t0)
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Introduisons maintenant la famille D de champs de vecteurs définie pa r

D = {± V1, ±V2, . . . , ±V p } .

La proposition suivante est une conséquence immédiate des définitions .
PROPOSITION 2 .3 .3 . Soient Lx() la feuille intégrale de D passant par xo (déf. 1 .2.3) ,

A(xo, 0, U) l 'ensemble des états (xo, 6)-accessibles (déf. 2.1 .2) du système

dx = H(x)u,

	

u e U .d t

On a l ' égalité

L xo = A(xo , 0, U) .

La proposition 2.3 .1 est une conséquence immédiate de la propositio n
suivante .

PROPOSITION 2.3 .4 . Soient Lxo et Lxo les feuilles intégrales des familles D
et D passant par xo . On a les égalités :

Lxo = A(xo, 0, U) = A(xo, 0, U) = Lx o .

Démonstration . On vient de voir que

Lxo = A(xo, 0, U) C A(xo, 0, U) C Lxo .

Il suffit donc de montrer que Lxo = Lxo . Il est clair que pour tout x de Rn
on a

Y(D(xo)) = Y( D ( xo) )

Par conséquence l'égalité désirée est une conséquence de la propositio n
1 .3 .3 (théorème de Chow) .

On peut enfin énoncer, lorsque le système n'est pas .analytique, le théorèm e
de contrôlabilité suivant .

PROPOSITION 2.3 .5 . Soit le système autonome symétrique :

dx
= H(x)u,

	

x e Rn ,

	

u E U OE RP ,

	

C°°d
t

U

	

P

U = ( u l , u p) ~ i u il = 0 ou 1, E ( u i~ = 1 .
i = 1

Soit D lafamille de champs

D = {+ V1, . . . +Vp } ,

et D la saturée D par crochet .
Si S(D(xo)) est de dimension n l ' ensemble A(xo, 0, U) est un ouvert contenan t

xo, si quel que soit x dans Rn If(D(x)) est de dimension n l'ensemble A(xo, 0, U )
est égal à Rn.

Démonstration. C ' est une conséquence immédiate des propositions 1 .3 .3 et
1 .3 .4 .

Exemple 8 . Pour terminer remarquons que la proposition de contrôlabilit é
"bang-bang" est certainement valable pour des systèmes non symétriques .
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Considérons par exemple dans R 2 le système :

= u(t)X 1 (x) + (1 — u(t))X2(x),

	

x e R n ,

	

u E U C R,

U = {u ;0 < u < 1} ,

U = {0} U {1} .

On peut montrer assez facilement que les ensembles

n A(xo, 0, U) et 011 n A(xo, 0, U)

sont égaux lorsque W est un voisinage de xo . En effet les courbes intégrales de X 1
et X2 définissent au voisinage de xo une "figure" dont l'allure est donnée pa r
Fig . 9 .

Il est clair que si on intègr e

dx
= u ( t ) X 1 (x ) + ( 1 — u(t))X2(x),

	

D < 1 ç 1 ,
dt

x(0) = xo ,

on obtient un arc qui appartient à la région hachurée (pour t assez petit) . Cette
région se définit simplement à l'aide des deux courbes intégrales de X1 et X 2
passant par xo . Il n'en est plus de même dans le cas où l'on considère le mêm e
système dans R3 .

Si les vecteurs X 1 (xo), X 2 (xo), [X 1 X 2 ] (xo) sont indépendants, on a alors a u
voisinage de xo une figure du type de Fig . 10 . Sur cette figure on a fait apparaîtr e
les deux arcs :

X- ( xo), t

	

0 ,

X2 (xo), t

	

0 .

Ces deux arcs étant tracés on obtient deux "surfaces " en traçant d 'une part :

les arcs X( x),

	

t

	

0,

	

x e X2 (xo),

	

t

	

0 ;

d'autre part :

les arcs X2 (x), t

	

0,

	

x e Xr (xo),

	

t >= 0 .

dx

dt

FIG . 9 .
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Ces deux surfaces S 1 et S 2 sont donc décrites pa r

S 1 = {X2 ~Xr1(xo), t 1 ? 0, t2 ? 0 } ,

S 2 = {X1 °X (xo), t 1 > 0 , t2

	

0} .

Grâce à ces deux surfaces on peut définir une région dans R 3 . On montrer a
ensuite qu 'une courbe intégrale de

dx

	

= u(t)X 1 (x) + (1 — u(t))X2(x),

	

0 < u <__ 1 ,
dt

x( o ) =xo ,

reste dans cette région. Dans le cas général, pour p champs dans R n, on devra
définir un certain nombre d 'hypersurfaces qui permettront de définir une régio n
"bang-bang" accessible . La définition de ces hypersurfaces fera intervenir l e
comportement mutuel des champs donc les crochets au point xo .

L 'exemple de Filippov (exemple 4) prouve qu ' il n 'existe pas de théorème
général de "bang-bang" contrôlabilité (même au sens large) . Cet exemple fait
apparaitre le phénomène suivant .

On a vu que

/4y\

[X 1 X2 ] (xyz) = 0

\0 ,

Ce crochet est donc nul sur l'hyperplan y = 0 .

FIG . 10 .
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Si d'autre part on applique la construction décrite dans l'exemple précéden t
à cette situation on constate que les deux surfaces S, et S 2 sont imbriquées, c e
qui ne permet évidemment plus de limiter une région de l 'espace . Le calcul des
crochets suivants tels que

1 4 \

[[X'X2], X
I] (xyz) = 0

\0 /

permet simplement d'affirmer que l'ensemble des états accessibles est situé a u
"dessus" d'une partie de S 1 ou S2 .

Le fait que les deux surfaces soient imbriquées est lié à la "singularité" d u
crochet [X 1 X2 ] .

Ces deux exemples suggèrent donc de donner une définition adéquate de s
"singularités" qui peuvent se produire et d 'énoncer alors, pour des F .C .V. qui n e
présentent pas de "singularités," un théorème de "bang-bang" contrôlabilité d u
type suivant :

"Soit D une F .C .V. ne présentant pas de "singularités. " Soi t

dx _

dt ~
f(x, t,1.1),

	

xE Rn ,

	

u ER p ,

	

ueU,

x( t o) = xo ,

un système tel que pour tout x et tout t on ait l'inclusio n

f (x, t, u) c co (D(x)) .

Alors l'ensemble des états accessibles du système est inclus dans la feuille intégral e
de D passant par le point xo ."

Remerciement . Pour terminer je desire remercier J . Martinet qui pourrait
revendiquer bien des idées exploitées ici .
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